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A B S T R A C T

Skewed data distribution leads to certain tasks or nodes handling much more data than others, thereby
slowing down their execution speed and classifying them as stragglers. Existing solutions attempt to establish
a well-balanced workload to mitigate stragglers by using either data stream grouping or task scheduling.
This ‘‘one size fits all’’ approach only considers single-level requirements and fails to address the diverse
needs of the system across multiple levels, ultimately limiting its performance. To address these issues and
mitigate stragglers effectively, we propose a hierarchical collaborative strategy called Ms-Stream. It aims
to balance the data stream workloads among tasks and maintain load difference among compute nodes
within an acceptable range. This paper discusses this strategy from the following aspects: (1) Ms-Stream
constructs models for topology, grouping, and resource, along with the formalization of problems, including
data stream grouping, task subgraph partitioning, and task deployment. (2) Ms-Stream employs a lightweight
two-level grouping method to support dynamic workload assignment for stateful tasks, selectively offloading
resources from task stragglers to others. (3) Ms-Stream allocates communication-intensive tasks to the same
group through the directed acyclic graph representations of streaming applications, concurrently ensuring
the equitable distribution of computation-intensive tasks across groups. (4) Ms-Stream deploys task groups to
compute nodes with varying resource capacities following the descending maximum padding priority rule for a
balanced workload. Performance metrics such as system throughput and latency are evaluated with real-world
streaming applications. Experimental results demonstrate the significant improvements made by Ms-Stream,
reducing maximum system latency by 61% and increasing maximum throughput by more than 2x compared
to existing state-of-the-art works.
1. Introduction

Skewed data distribution is a primary factor contributing to the
issue of load imbalance, leading to certain tasks or nodes executing
at a slower pace and consequently impacting the overall performance
of distributed stream computing systems [1]. These stragglers not only
increase system latency in data processing, degrading user experience,
but also create a need for additional computing resources to handle
peak loads, thereby raising operational costs [2]. Unpredictable varia-
tions in data size and velocity received by stream computing systems
result in inherently unstable processing, causing fluctuations in the
workload of tasks or nodes [3,4]. This, in turn, poses a greater challenge
for systems in managing skewed data streams.

The skewed data distribution primarily results in under-utilization
of resources, manifesting in two main aspects: (1) Data with similar
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characteristics are aggregated to the same tasks for processing, leading
to significantly higher loads in certain tasks (i.e., task stragglers), thus
impacting system response time [5]. (2) Inappropriately deployed tasks
with unbalanced workloads by the scheduler can lead to the aggrega-
tion of high-load tasks onto the same compute nodes [6]. Consequently,
certain nodes remain idle for extended periods, while others (i.e., node
stragglers) are overwhelmed with processing an extensive amount of
data [7], further exacerbating the wastage of computational resources.
In such an environment, it is important for the system to employ a task-
based and node-based load balancing strategy to optimize the system
performance.

Load balancing approaches for distributed stream computing sys-
tems have been extensively investigated with the objective of opti-
mizing system performance and resource allocation [8]. Many efforts
https://doi.org/10.1016/j.future.2024.107673
Received 31 March 2024; Received in revised form 2 December 2024; Accepted 6 
vailable online 14 December 2024 
167-739X/© 2024 Elsevier B.V. All rights are reserved, including those for text and
December 2024

 data mining, AI training, and similar technologies. 
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focus on refining data stream grouping techniques to mitigate strag-
lers in stateful tasks, which arise due to uneven data distribution
nd varying state update frequencies between tasks. For example, a
opularity-aware differentiated stream computing system [9] employs
huffle grouping to allocate hotkeys, identified through a lightweight
robabilistic counting scheme, while using key grouping for less fre-
uent keys. An online predictive scheduling scheme [10] steers data

streams in a distributed manner to balance workload across tasks and
inimize data stream processing response time. Novel algorithms [11]

or grouping data streams have also been proposed, which adapt to
hanging network bandwidth to reduce the high state migration costs
ssociated with frequent data stream rescheduling.

While these methods have proven effective in enhancing system
erformance by balancing the workload of tasks, there remain many

challenges that warrant attention. Firstly, modifications to the grouping
rules necessitate the rerouting of certain data streams. This, in turn,
calls for the caching of mapping relationships between tuple key values
and task identifiers. Should the cached data volume exceed manageable
limits, it could give rise to increased query time and memory uti-
lization, thereby adding to the system’s overall complexity. Secondly,
although these methods can distribute data evenly among tasks in op-
erators, addressing the load balancing issue from a single perspective,
such as data grouping, data flow scheduling, or at the task or node
level, only provides limited improvement in system performance [12].

Other efforts have primarily focused on optimizing task schedul-
ng to mitigate node stragglers. The objectives include minimizing
nter-node communication and achieving an equitable distribution of
esource loads among the nodes [13]. A two-phase mapping mechanism
as used in [14], where tasks are grouped to reduce inter-group com-

munication in the first phase, and more capable nodes are prioritized
for task assignment in the second phase. A trade-off between the
communication latency of operators and the workload of worker nodes

as examined in [15] by first placing highly communicative operators
n the same worker nodes and then iteratively rescheduling only the

less communicative operators online. These studies employ a round-
robin algorithm for the iterative deployment of task groups to nodes
with higher computational capabilities. While effectively balancing
resource loads among logical task groups and optimizing inter-group
communication, they do not necessarily ensure the balanced distribu-
tion of resource loads among the physical compute nodes. The improper
eployment of task groups to compute nodes can worsen the imbalance
n workload among nodes [16].

Optimizing load balancing in distributed streaming computing sys-
ems presents a multifaceted challenge that necessitates careful consid-
ration at various levels [3]. Focusing solely on load balancing between

tasks within the operators falls short of maximizing system throughput,
just as concentrating solely on load balancing between compute nodes
falls short of minimizing system response time.

In terms of optimizing inter-task load, ensuring an equitable dis-
tribution of data among tasks within operators does not necessarily
chieve an equitable workload distribution across nodes. This is primar-
ly due to two significant reasons: (1) The parallelism of each operator

in streaming applications can vary, resulting in different resource con-
sumption averages for tasks within these operators. (2) Some operators
might involve complex calculations that consume more computing
resources, while others may perform simpler operations that use fewer
resources. When tasks with high resource load are deployed to the same
node, it can result in a pronounced imbalance in node workload [17].

In terms of optimizing inter-node load, dynamically fine-tuning task
deployment via the scheduler can keep the load difference between
compute nodes within an appropriate range. However, skewed data
streams can cause some tasks in operators to process more data, leading
to longer queuing time and further affecting the system latency [18].
Therefore, a load skew-aware scheduling strategy at multiple tiers is ur-
gently expected to mitigate both task and node stragglers in distributed
stream computing systems.
2 
Motivated by the above discussions, we propose a hierarchical
collaborative framework called Ms-Stream. It aims at continuously op-
timizing system performance through the integration of various factors
cross multiple levels. Briefly, Ms-Stream dynamically reschedules data
uples at runtime based on the load difference between task stragglers
nd others in stateful operators. It constructs a two-tier router to
nable each task in stateful operators to manage multiple partitioned
ata, effectively mitigating the complexity and reducing the size of
raditional routers.

Further, two fine-grained models for resource allocation and re-
source placement are introduced to mitigate node stragglers. (1) Re-
source allocation: Communication-intensive tasks are assigned to the
ame group to minimum inter-node communication, while
omputation-intensive tasks are evenly distributed across groups. (2)
esource placement: Task groups are deployed to compute nodes with
arying resource capacities, aiming to minimize the load difference
etween node stragglers and other nodes.

Through this multi-tier collaboration, Ms-Stream can maintain a
prolonged online state and effectively handle data streams with skewed
distribution, while supporting features such as high throughput, fast
response time and efficient resource utilization.

1.1. Contributions

This paper proposes a hierarchical collaborative strategy
(Ms-Stream) for mitigating stragglers and improving the throughput
and latency of distributed stream computing systems. The key contri-
butions are as follows:

(1) A two-tier routing table for workload allocation is implemented
by combining hash-based and key-based data grouping. This
table relocates some partitions from task stragglers to other tasks
in stateful operators, adapting to skewed data streams.

(2) Communication-intensive tasks are grouped together via Graph
Convolutional Network (GCN), while guaranteeing a well-
balanced distribution of computation-intensive tasks among
these groups.

(3) Task groups are assigned to compute nodes with diverse resource
capacities through the descending maximum padding priority
rule for a balanced workload distribution across nodes.

(4) Ms-Stream is integrated into the Apache Storm platform and
evaluated on metrics such as system throughput and latency.
Experimental results show that Ms-Stream provides promising
improvements compared to existing state-of-the-art solutions.

1.2. Paper organization

The rest of the paper is organized as follows: Section 2 reviews
the related work on data stream grouping and streaming application
scheduling. Section 3 introduces the Ms-Stream system model, includ-
ing models for topology, grouping, and resources. Section 4 formalizes
the problems caused by stragglers in distributed stream computing
ystems, especially focusing on data stream grouping, task subgraph

partitioning and task deployment. Section 5 introduces the optimiza-
tion methods to address the problems identified in Section 4. Section 6
explains the framework and main algorithms of Ms-Stream. Section 7
analyzes the performance evaluation results with metrics of system
throughput and latency. Section 8 concludes our work and presents
irections for future work.

2. Related work

In this section, we review state-of-the-art work in two related areas:
ata grouping and task scheduling for stream processing. A comparison

of five key aspects between Ms-Stream (our work) and relevant research
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Table 1
Related work comparison.

Related work Aspects

Scheduling object Methodology Objective Time complexity Heterogeneous

Li et al. [6] Task Cost-effective assignment Inter-node load balancing 𝑂(𝑘 ⋅ 𝑙 𝑜𝑔 𝑘 + 𝑛2) ✔

SP-Ant [15] Task Ant colony algorithm Communication-aware 𝑂(𝑖𝑡 ⋅ 𝑛2) ✔

Hone [19] Tuple Largest-Backlog-First Inter-task load balancing 𝑂(𝑢) ✔

Dalton [20] Tuple Reinforcement learning Inter-task load balancing Null ✗

PS-UIM [21] Task Heuristic algorithm Resource-aware 𝑂(𝑛 ⋅ 𝑘 ⋅ 𝑛𝑤) ✔

POTUS [22] Tuple Predictive tuple grouping Inter-task load balancing 𝑂(𝑢2 ⋅ 𝑟𝑡) ✔

LLFD [23] Tuple Least-Load Fit Decreasing Inter-task load balancing 𝑂(𝑢 ⋅ 𝑐 𝑘 ⋅ 𝑟𝑡) ✔

Brown et al. [24] Task Resource provisioning Resource-aware Null ✔

Our work Task, Tuple Two-Level grouping, GCN, Descending
maximum padding priority

Inter-task load balancing,
Inter-node load balancing

𝑂(𝑡𝑠), 𝑂(𝑖𝑡 ⋅ 𝑢2 ⋅ (𝑑 + 2)), 𝑂(𝑘 ⋅ 𝑙 𝑜𝑔 𝑘) ✔
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is summarized in Table 1. Under column ‘‘Time complexity’’, 𝑢 repre-
sents the number of tasks for the operator, 𝑘 is the number of nodes,
𝑛 is the total number of tasks, 𝑖𝑡 is the number of algorithm iterations,
𝑛𝑤 is the number of workers per node, 𝑐 𝑘 is the number of candidate
tuples, 𝑟𝑡 is the number of tuples migrated, and 𝑡𝑠 is the size of the
routing table.

2.1. Data stream grouping

Data stream grouping is a crucial operation in stream computing
ystems, redirecting data tuples from an unbounded data stream to
asks in operators based on specific rules [25]. This process plays a

vital role in enabling real-time aggregation, data distribution, and event
correlation, making it essential for efficiently processing real-time data
streams in applications such as stream analytics and monitoring. In
recent years, an increasing number of researchers have focused on
optimizing data grouping to achieve low latency and high throughput
in stream computing environments.

To optimize workload distribution and reduce system latency, a
uple scheduler [19] employing an online Largest-Backlog-First (LBF)
lgorithm was introduced. This approach effectively manages tuple
cheduling to minimize queue backlogs and balance queue backlogs
n tasks, mitigating task stragglers when workloads exhibit variance.
owever, it may face limitations when dealing with stateful operators.

To mitigate the system performance degradation incurred by work-
load imbalance across tasks, a finer-grained control method [22] was
roposed. By distributing data stream tuples between tasks, this method
dapts well to variations in data streams and workload discrepancies.
t mainly employs the power of predictive scheduling to achieve a
unable trade-off between communication cost reduction and system
ueue stability. Unfortunately, it lacks the capacity to redirect data
treams of stateful operators.

To distribute workload effectively among stateful operators, a key-
based workload partitioning strategy [23] was proposed for dynamic
workload assignment. This approach combines hash-based and explicit
key-based routing strategies to specify destination worker threads for
some keys while using a hashing function for others. However, manag-
ing a large number of data tuples in routing tables can increase tuple
emission time and memory overhead.

To address load imbalance caused by skewed data among stateful
perators, a learned partitioning method [20] was proposed for dis-

tributed stream systems. This method relies on reinforcement learning,
providing rewards for hotkeys based on a cost model that captures
load variations and continuously optimizes the learned model for load
balancing among operator tasks. However, resource load variability can
lead to a large state space, increasing the time required for the agent
to identify the target operator for tuple dispatch.

In summary, balancing workload among tasks in operators by op-
imizing data stream grouping has been extensively studied. Most
pproaches either disregard workload balancing among tasks in stateful
perators or overlook the complexity of data structures established for
orkload assignment. To address these limitations, we develop a two-

ier routing table that is lightweight and ensures minimal consumption
f system resources.
 p

3 
2.2. Task scheduling

Task scheduling plays an important role for improving system
hroughput and reducing response time [26]. In stream computing

systems, the allocation of computational resources relies on efficient
task scheduling, which dynamically assigns computational tasks to
available nodes, considering resource requirements and system load.
Finding an optimal task scheduling has proven challenging, as this
scheduling problem is NP-hard [27]. Furthermore, this complexity
s plain by the fact that tasks scheduling is performed in an online

environment, and has to consider both the system availability and
scheduling efficiency.

To achieve reliable and efficient processing of unpredictable stream
workflows, strategies for scheduling and provisioning dynamic work-
flow scenarios with various complexities and degrees of unpredictabil-
ity [24] were investigated. These strategies primarily focus on task pri-
ritization and give precedence to scheduling critical tasks. However,
hey ignore communication overhead between tasks.

To minimize system response time, a novel stream processing
scheduling [15] using an ant colony algorithm was proposed to make
a trade-off between the communication latency of operators and the
tilization of worker nodes. This algorithm finds the best operator

assignment plan by considering the inter-node communication latency
of operators and collocating highly communicative operators on the
same worker nodes. However, it overlooks workload variations among
nodes, which can impact system performance.

To avoid inefficient utilization of computing resources caused by
interference among stream processing tasks, an optimal scheduling
method [21] was proposed for processing big data streams on het-
erogeneous servers in a multi-core environment. This approach uses a
fine-grained strategy for core scheduling and a coarse-grained strategy
for compute node scheduling to improve resource utilization in clusters.

To minimize job execution cost and balance load in cluster, a cost-
efficient task scheduling algorithm and a cost-efficient load balancing
algorithm [6] were introduced. The task scheduling algorithm reduces
overall cost consumption but may result in load imbalance within the
luster. This limitation is addressed by the cost-efficient load balancing

algorithm which strikes a balance between load distribution and cost
optimization.

In summary, most of the aforementioned approaches aimed to estab-
ish effective resource management for distributed stream computing
ystems, often focusing on one perspective or level, e.g., the data

grouping or task scheduling perspective, or the task or node level.
owever, optimizing performance from one single perspective or level
an limit the extent of performance improvement. Moreover, effec-
ive coordination is essential, considering the interconnected nature of
ask- node-levels. In our work, we construct a multi-level collaborative
ramework to mitigate both task and node stragglers, optimizing system
erformance at both the task level and node level.
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Table 2
Description of primary symbols used in this paper.

Symbol Description

𝑅𝑜𝑖,𝑘 Resources consumed by task 𝑜𝑖,𝑘 in operator 𝑜𝑖
𝑅𝑜𝑖 Set of resource load of all tasks in operator 𝑜𝑖
𝑅𝑎𝑛 Set of resource load of activated nodes
𝑅𝑔 Set of resource load of task groups
𝑊 Diagonal matrix consisting of resource load of each task group
𝐴 Diagonal matrix consisting of resource load of each compute node
𝐵 Matrix consisting of resource load of each task
𝐸 Matrix consisting of communication rates between tasks
𝑋 Deployment decision matrix
𝑌 Matrix consisting of probability for each task’s affiliation with

groups
𝐿𝐼 𝑇 Load imbalance degree between tasks
𝐿𝐼 𝑁 Load imbalance degree between nodes
∑ Sum of all elements in the matrix

Fig. 1. Initialization of a streaming application.

3. System model

Before introducing the Ms-Stream strategy and its related algo-
rithms, we first explain the topology model, the data grouping model
and the resource model in distributed stream computing environments.
For enhanced clarity, Table 2 provides the primary notations used
throughout the paper.

3.1. Topology model

The primary function of a streaming application is to process and
analyze continuously generated data streams, enabling real-time mon-
itoring, analysis, decision-making, and response [28]. These applica-
tions empower enterprises to make rapid, data-driven decisions based
on real-time information, improving business operations and enhancing
user experiences.
4 
The logic topology of each streaming application can be represented
as a directed acyclic graph (DAG) [26]. It consists of a set of operators
and a set of directed edges, defined as 𝐺𝐿 = {𝑂(𝐺𝐿), 𝐸 𝑑(𝐺𝐿)}. Here,
𝑂(𝐺𝐿) = {𝑜𝑖|𝑖 ∈ 1,… , 𝑛} denotes a finite set of 𝑛 operators, and
the function 𝑓 (𝑜) of each operator 𝑜 is completely unique, that is if
∀𝑜𝑖, 𝑜𝑗 ∈ 𝑂(𝐺𝐿), then ∃∕𝑓 (𝑜𝑖) = 𝑓 (𝑜𝑗 ), meaning the function of each
operator is different. 𝐸 𝑑(𝐺𝐿) = {𝑒𝑖,𝑗 |1 ≤ 𝑖, 𝑗 ≤ 𝑛 and 𝑖 ≠ 𝑗} denotes a
finite set of directed edges, where the weights associated with the edges
represent communication costs between operator 𝑜𝑖 and operator 𝑜𝑗 .

If a streaming application’s logical topology 𝐺𝐿 is submitted to the
data center, multiple task instances will be initialized for each operator
according to the parallelism set by user, where for ∀𝑜𝑖,𝑘, 𝑜𝑖,𝑚 ∈ 𝑜𝑖,
∃𝑓 (𝑜𝑖,𝑘) = 𝑓 (𝑜𝑖,𝑚), meaning the function of each task instance within
the same operator is identical. This dependency between task instances
is described as a directed acyclic task topology 𝐺𝑇 = {𝑂(𝐺𝑇 ), 𝐸 𝑑(𝐺𝑇 )},
where 𝑂(𝐺𝑇 ) ⊆ 𝑂(𝐺𝐿), 𝐸 𝑑(𝐺𝑇 ) ⊆ 𝐸 𝑑(𝐺𝐿). ∀𝑜𝑖 ∈ 𝑂(𝐺𝐿), ∃𝑘 ∈ {1,… , 𝑢},
{𝑜𝑖1,… , 𝑜𝑖𝑘,… , 𝑜𝑖𝑢} are tasks of operator 𝑜𝑖, and {𝑜𝑖1,… , 𝑜𝑖𝑢} ⊂ 𝑂(𝑇 ).

As shown in Fig. 1, a streaming application is submitted to the
cluster through the scheduler by the user. The initial operator topol-
ogy consists of 6 operators, denoted as {𝑜1, 𝑜2,… , 𝑜6}, each serving a
different function. A task topology is then constructed based on the
configuration of operators, where operators 𝑜4 and 𝑜6 each have 1
parallel task, 𝑜1, 𝑜3 and 𝑜5 each have 2 parallel tasks, and 𝑜2 has 3
parallel tasks. Tasks within the same operator have the same function,
for example, 𝑓 (𝑜1,1) = 𝑓 (𝑜1,2), indicating that the functions for tasks 𝑜1,1
and 𝑜1,2 are identical.

3.2. Grouping model

Data stream grouping refers to the process of dividing a data stream
into different substreams to enable parallel processing [29]. In a stream
processing system, the input data streams need to be distributed to
different tasks or operators for parallel computation. Given a data
stream 𝑑 𝑠𝑘 = {𝑑 𝑡1, 𝑑 𝑡2,… , 𝑑 𝑡𝑖,…}, all the data tuples in the stream 𝑑 𝑠𝑘
are intelligently assigned to tasks in downstream operators through a
grouping function 𝐹 (𝑑 𝑠𝑘). This grouping function 𝐹 (𝑑 𝑠𝑘) strategically
directs tuples to tasks based on their characteristics. As a result, the
data stream 𝑑 𝑠𝑘 is efficiently decomposed into multiple substreams
{𝑑 𝑠𝑘,1,… , 𝑑 𝑠𝑘,𝑚,… , 𝑑 𝑠𝑘,𝑛}, where each individual substream, exempli-
fied by 𝑑 𝑠𝑘,𝑚, is precisely routed to tasks 𝑜𝑘,𝑚. The grouping model can
be described by Eq. (1).

𝐹
(

𝑑 𝑠𝑘
)

=
{

𝑑 𝑡1, 𝑑 𝑡2,…
}

→
{

𝑑 𝑠𝑘,1,… , 𝑑 𝑠𝑘,𝑚,… , 𝑑 𝑠𝑘,𝑛
}

(1)

The relationship between data stream 𝑑 𝑠𝑘 and these substreams can
be described as (2).

𝑑 𝑠𝑘 =
𝑛
⋃

𝑚=1
𝑑 𝑠𝑘𝑚 (2)

An upstream task in 𝑜𝑘−1 emits data tuples to 𝑛 tasks {𝑜𝑘,1, 𝑜𝑘,2,… ,
𝑜𝑘,𝑛} in the downstream operator 𝑜𝑘 through the grouping function
𝐹 (𝑑 𝑠𝑘). An effective data grouping strategy is one data tuple is only
emitted to one task in operators. Therefore, the relationship between
operator 𝑜𝑘’s substreams can be described by (3).

𝑑 𝑠𝑘,1
⋂

𝑑 𝑠𝑘,2,… ,
⋂

𝑑 𝑠𝑘,𝑛 = ∅ (3)

3.3. Resource model

A streaming application’s task topology 𝐺𝑇 is a real-time data pro-
cessing application designed to continuously analyze and process data
streams. It utilizes various resources, primarily comprising communica-
tion and computational resources [30]. By effectively leveraging these
resources, streaming applications can efficiently process data streams
in real-time, adapting to dynamically changing data scenarios. Proper
configuration and management of heterogeneous resources are cru-
cial for ensuring scalability, performance, and reliability in streaming
applications [31].
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(1) Communication resource. We implement the built-in IMetric
interface on the Storm platform to collect the communication rates
between tasks. If two tasks are deployed on different compute nodes,
it gives rise to a communication rate between these tasks, denoted as
𝑐 𝑟(𝑜𝑖,𝑘, 𝑜𝑗 ,𝑚), and it can be calculated by Eq. (4).

𝑐 𝑟(𝑜𝑖,𝑘, 𝑜𝑗 ,𝑚) =
⎧

⎪

⎨

⎪

⎩

0, If 𝑜𝑖,𝑘 and 𝑜𝑗 ,𝑚 ar e
deployed on same node,

𝑒𝑐 𝑟, Otherwise.
(4)

where 𝑒𝑐 𝑟 denotes the average communication rate during the time
interval [𝑡𝑠, 𝑡𝑒], and 𝑡𝑠 and 𝑡𝑒 denote the start time and end time of
this interval set by the user, respectively. As the data stream rate
may experience transient fluctuations, we can mitigate their impact
by subtracting the maximum and minimum rates and calculating the
average rate 𝑒𝑐 𝑟. It can be obtained by Eq. (5).

𝑒𝑐 𝑟 =
∫ 𝑡𝑒
𝑡𝑠

𝑒𝑡𝑐 𝑟𝑑 𝑡 − max(𝑒𝑡𝑐 𝑟) − min(𝑒𝑡𝑐 𝑟)
𝑡𝑒 − 𝑡𝑠

, (5)

where 𝑒𝑡𝑐 𝑟 denotes the communication rate between tasks at time 𝑡,
𝑡 ∈ [𝑡𝑒, 𝑡𝑠].

(2) Computing resource. High CPU consumption indicates the exe-
cution of computationally intensive tasks, potentially leading to slower
responsiveness. Concurrently, increased memory usage may induce
system instability, augmented swapping operations, and an overall
degradation in performance. To model computing resource, we collect
CPU and memory consumption data from nodes using the built-in Top
command in Linux.

At time 𝑡, a compute node 𝑐 𝑛𝑖 may run multiple different tasks. We
efine this set of tasks on compute node 𝑐 𝑛𝑖 as 𝑇𝑐 𝑛𝑖 . In addition, we
enote the CPU utilization of the compute node 𝑐 𝑛𝑖 as 𝐿𝑐 𝑛𝑖 , and the
umber of data tuples processed by each task 𝑜𝑖,𝑘 of compute node 𝑐 𝑛𝑖
s 𝑝𝑟𝑜𝑖,𝑘 ,𝑐 𝑛𝑖 , where 𝑜𝑖,𝑘 ∈ 𝑇𝑐 𝑛𝑖 .

Then, the CPU utilization of each task 𝑜𝑖,𝑘 running on the compute
node 𝑐 𝑛𝑖 can be calculated by Eq. (6).

𝑅𝑐
𝑜𝑖,𝑘

=
𝑤𝑜𝑖,𝑘 ⋅ 𝑝𝑟𝑜𝑖,𝑘 ,𝑐 𝑛𝑖

∑

𝑜𝑗 ,𝑚∈𝑇𝑐 𝑛𝑖 𝑤𝑜𝑗 ,𝑚 ⋅
∑

𝑜𝑗 ,𝑚∈𝑇𝑐 𝑛𝑖
(

𝑝𝑟𝑜𝑗 ,𝑚 ,𝑐 𝑛𝑖 ⋅ 𝜌𝑜𝑖,𝑘 ,𝑐 𝑛𝑖
) ⋅ 𝐿𝑐 𝑛𝑖 , (6)

where 𝑅𝑐
𝑜𝑖,𝑘

denotes the CPU utilization of task 𝑜𝑖,𝑘 on compute node 𝑐 𝑛𝑖.
𝑜𝑖,𝑘 denotes the complexity of task 𝑜𝑖,𝑘 in operator 𝑜𝑖. 𝜌𝑜𝑖,𝑘 ,𝑐 𝑛𝑖 denotes

he decision variable of task, and it can be obtained by Eq. (7).

𝜌𝑜𝑖,𝑘 ,𝑐 𝑛𝑖 =
{

1, 𝑜𝑖,𝑘 is running,
0, ot her wise. (7)

Similarly, at time 𝑡, the memory utilization of compute node 𝑐 𝑛𝑖 can
be defined as 𝑀𝑐 𝑛𝑖 . The memory utilization of each task 𝑜𝑖,𝑘 running on
ompute node 𝑐 𝑛𝑖 can be calculated by Eq. (8).

𝑅𝑚
𝑜𝑖,𝑘

=
𝛽𝑜𝑖,𝑘 ⋅ 𝑝𝑟𝑜𝑖,𝑘 ,𝑐 𝑛𝑖

∑

𝑜𝑗 ,𝑚∈𝑇𝑐 𝑛𝑖 𝛽𝑜𝑗 ,𝑚 ⋅
∑

𝑜𝑗 ,𝑚∈𝑇𝑐 𝑛𝑖
(

𝑝𝑟𝑜𝑗 ,𝑚 ,𝑐 𝑛𝑖 ⋅ 𝜌𝑜𝑖,𝑘 ,𝑐 𝑛𝑖
) ⋅𝑀𝑐 𝑛𝑖 , (8)

where 𝑅𝑚
𝑜𝑖,𝑘

denotes the memory utilization of task 𝑜𝑖,𝑘 on compute node
𝑐 𝑛𝑖. 𝛽𝑜𝑖,𝑘 denotes the space complexity of task 𝑜𝑖,𝑘.

Then, the resources consumed by task 𝑜𝑖,𝑘 on node 𝑐 𝑛𝑖 at time 𝑡,
enoted as 𝑅𝑜𝑖,𝑘 , can be calculated by Eq. (9).

𝑅𝑜𝑖,𝑘 = 𝜇 ⋅ 𝑅𝑐
𝑜𝑖,𝑘

+ (1 − 𝜇) ⋅ 𝑅𝑚
𝑜𝑖,𝑘

, 𝜇 ∈ [0, 1], (9)

where 𝜇 denotes the weighting factor between the CPU and memory
utilization.

4. Problem formulation

In this section, we formalize the problems related to stragglers in
tasks or nodes in distributed stream computing systems. These prob-
lems mainly include data grouping, subgraph partitioning, and task
deployment.
5 
4.1. Data grouping

If tasks within operators experience skewed workloads, with certain
tasks processing significantly more data than others (referred to as task
tragglers), it can lead to several adverse effects. Firstly,it may result
n ineffective resource utilization, where some tasks are excessively
tilized while others remain idle, potentially wasting computational
esources and affecting overall system efficiency. Secondly, task strag-
lers, handling larger volume of data, can become performance bot-

tlenecks for the entire streaming application, impacting overall task
execution time and resulting in a decrease in system throughput.

We define the load imbalance degree between tasks within operator
𝑜𝑖 as 𝐿𝐼 𝑇 . It measures the degree of load skew between tasks within
an operator and can be calculated by Eq. (10).

𝐿𝐼 𝑇 = max

⎛

⎜

⎜

⎜

⎝

max
(

𝑅𝑜𝑖

)

− 𝑅𝑜𝑖

𝑅𝑜𝑖

,
𝑅𝑜𝑖 − min

(

𝑅𝑜𝑖

)

𝑅𝑜𝑖

⎞

⎟

⎟

⎟

⎠

, (10)

and

𝑅𝑜𝑖 =

∑𝑐 𝑎𝑟𝑑(𝑜𝑖)
𝑘=0 𝑅𝑜𝑖,𝑘

𝑐 𝑎𝑟𝑑(𝑜𝑖)
, (11)

where 𝑅𝑜𝑖 and 𝑐 𝑎𝑟𝑑(𝑜𝑖) denote the set of resource load of tasks and the
number of tasks in operator 𝑜𝑖, respectively.

To mitigate the impact of task stragglers on system performance, it
is advisable to maintain 𝐿𝐼 𝑇 within an appropriate range, e.g., maxi-
mum 𝜒 . Therefore, the data grouping strategy problem should satisfy
the condition 𝐿𝐼 𝑇 ≤ 𝜒 .

4.2. Subgraph partitioning

A streaming application 𝐺𝑇 is deployed to 𝑘 compute nodes {𝑐 𝑛1,
 𝑛2,… , 𝑐 𝑛𝑘}. We construct a matrix 𝐸 based on the communication

loads between tasks 𝑇 = {𝑜1,1, 𝑜1,2,… , 𝑜𝑖,𝑘,… , 𝑜𝑗 ,𝑚}, where 𝑜𝑗 ,𝑚 repre-
sents the 𝑚th task of the final operator 𝑜𝑗 in this streaming application,
and it can be described by Eq. (12).

𝐸 =
[

𝑒𝑙 ,𝑏
]

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑒1,1 𝑒1,2 ⋯ 𝑒1,𝑛
𝑒2,1 𝑒2,2 ⋯ 𝑒2,𝑛
⋮ ⋮ ⋱ ⋮
𝑒𝑛,1 𝑒1,1 ⋯ 𝑒𝑛,𝑛

⎤

⎥

⎥

⎥

⎥

⎦

(12)

where 𝑛 denotes the number of tasks in the streaming application 𝐺𝑇 .
𝑒𝑙 ,𝑏 denotes the communication load between the 𝑏th task number and
the 𝑙th task number in the task set 𝑇 .

The optimization objective for the subgraph partitioning problem is
o minimize communication loads between compute nodes and evenly
istribute the workload among them. This can be generalized as shown
n Eq. (13).
min𝑍 = 𝜆 ⋅

∑

1⩽ℎ,𝑠⩽𝑘

[

𝑐
(

𝑔ℎ, 𝑔𝑠
)

+ 𝑐
(

𝑔𝑠, 𝑔ℎ
)]

+ (1 − 𝜆) ⋅
∑

|

|

|

|

|

(

𝑊
𝑘

−
∑

𝑊
𝑘2

)

⊙ 𝐼
|

|

|

|

|

= 𝜆 ⋅
𝑘
∑

ℎ
𝑐
(

𝑔ℎ, ̃𝑔ℎ
)

+ (1 − 𝜆) ⋅
∑

|

|

|

|

|

(

𝑊
𝑘

−
∑

𝑊
𝑘2

)

⊙ 𝐼
|

|

|

|

|

(13)

where 𝜆 denotes the weighting factor between communication load and
computing load. ∑ denotes the sum of all elements in the matrix. 𝑊
is a diagonal matrix that comprises the resource workloads of the task
groups resulting from the partitioning of tasks in 𝐺𝑇 into subgraphs. 𝐼
is an 𝑘 × 𝑘 identity matrix. 𝑔ℎ denotes the ℎth task group (subgraph in
topology 𝐺 = {𝑔 ,… , 𝑔 ,… , 𝑔 ,… , 𝑔 }). 𝑔 denotes the complement
𝑇 1 ℎ 𝑠 𝑘 ℎ
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of subset 𝑔ℎ in topology 𝐺𝑇 . 𝑐
(

𝑔ℎ, 𝑔𝑠
)

denotes the communication load
etween group 𝑔ℎ and group 𝑔𝑠, which can be calculated by Eq. (14).

𝑐
(

𝑔ℎ, 𝑔𝑠
)

=
∑

𝑙∈𝑔ℎ

∑

𝑏∈𝑔𝑠

𝑒𝑙 ,𝑏

𝑑𝑙 =
∑

𝑏∈𝑔𝑠

𝑒𝑙 ,𝑏
(14)

We define vector 𝑣𝑡 = (𝑣𝑡,1,… , 𝑣𝑡,𝑖,… , 𝑣𝑡,𝑛)T, where 1 ⩽ 𝑡 ⩽ 𝑘 and
⩽ 𝑖 ⩽ 𝑛 are group indicators, and the size of 𝑣𝑡 equals the number of

asks in topology 𝐺𝑇 . 𝑣𝑡,𝑖 can be calculated by Eq. (15).

𝑣𝑡,𝑖 =
{

1, t he 𝑖t h task belongs to the 𝑡t h g r oup
0, ot her wise. (15)

The communication load generated by all tasks in task group 𝑔ℎ can
be calculated by Eq. (16).
∑

∈𝑔ℎ

𝑑𝑙 = 𝑣Tℎ𝐷 𝑣ℎ (16)

where 𝑣ℎ denotes the tasks belonging to the ℎth group. 𝐷 is a diagonal
matrix with the 𝑙th diagonal element as 𝑑𝑙.

In addition, the communication load between tasks in task group 𝑔ℎ
an be calculated by Eq. (17).

𝑐
(

𝑔ℎ, 𝑔ℎ
)

= 𝑣Tℎ𝐸 𝑣ℎ (17)

where 𝐸 denotes the matrix of communication loads between tasks in
set 𝑇 .

Then, the communication load between task group 𝑔ℎ and other
groups can be obtained by subtracting the intra-group communication
oad in group 𝑔ℎ from the total communication load of all tasks in group
ℎ, and it can be calculated by Eq. (18).
𝑐
(

𝑔ℎ, ̃𝑔ℎ
)

=
∑

𝑙∈𝑔ℎ

∑

𝑏∈𝑔ℎ

𝑒𝑙 ,𝑏 = 𝑣Tℎ𝐷 𝑣ℎ − 𝑣Tℎ𝐸 𝑣ℎ

= 𝑣Tℎ (𝐷 − 𝐸) 𝑣ℎ

(18)

where 𝑔ℎ denotes the complement of subset 𝑔ℎ in 𝐺𝑇 .
Therefore, the objective function of subgraph partitioning can be

reformulated as Eq. (19).

min𝑍 = 𝜆 ⋅
𝑘
∑

𝑡=1
𝑣T
𝑡 (𝐷 − 𝐸) 𝑣𝑡

+ (1 − 𝜆) ⋅
∑

|

|

|

|

|

(

𝑊
𝑘

−
∑

𝑊
𝑘2

)

⊙ 𝐼
|

|

|

|

|

(19)

4.3. Task deployment

The challenge in task deployment involves choosing 𝑘 nodes from a
ool of 𝑚 available compute nodes and assigning 𝑘 subgraphs to them,
ith the constraint that each subgraph, although it may have multiple

ompute nodes as potential candidates, can only be deployed to one
ompute node. Based on this description, we construct a deployment
ecision matrix 𝑋, which can be described by Eq. (20).

𝑋 =
[

𝑥𝑖,𝑗
]

=
⎡

⎢

⎢

⎣

𝑥1,1 ⋯ 𝑥1,𝑚
⋮ ⋱ ⋮

𝑥𝑘,1 ⋯ 𝑥𝑘,𝑚

⎤

⎥

⎥

⎦

, (20)

where 𝑥𝑖,𝑗 can be calculated by Eq. (21).

𝑥𝑖,𝑗 =

⎧

⎪

⎨

⎪

⎩

1, t he 𝑖t h task group is
deployed to the 𝑗t h node

0, ot her wise.
(21)

And matrix 𝑋 must satisfy conditions given by Eq. (22).
⎧

⎪

⎪

⎨

⎪

⎪

𝑚
∑

𝑗=1
𝑥𝑖,𝑗 = 1, 𝑖 = 1, 2,… , 𝑘,

𝑘
∑

𝑥𝑖,𝑗 = 1, 𝑗 = 1, 2,… , 𝑚.
(22)
⎩ 𝑖=1 f

6 
Based on the matrix 𝑋, the objective function 𝐽 of task deployment
can be generalized as Eq. (23).

min 𝐽 = 𝜎 (𝑋 𝐴 +𝑊 𝑋) , (23)

where 𝜎(⋅) denotes the standard deviation of (⋅). Matrix 𝐴 denotes the
esource load of compute nodes and is a 𝑚×𝑚 diagonal matrix with the
th diagonal element as 𝑎𝑖.

𝑎𝑖 can be calculated by Eq. (24).

𝑎𝑖 = 𝜇 ⋅ 𝐿𝑐
𝑐 𝑛𝑖 + (1 − 𝜇) ⋅𝑀𝑐

𝑐 𝑛𝑖 , 𝜇 ∈ [0, 1], (24)

and matrix 𝑊 denotes the resource load of task groups and can be
alculated by Eq. (25).

𝑊 = 𝑉 T𝐵 𝑉 , (25)

where 𝑉 = (𝑣1, 𝑣2,… , 𝑣𝑘)T and matrix 𝐵 denotes the resource load of
each task in task topology 𝐺𝑇 . 𝐵 is a diagonal matrix with the 𝑖th
diagonal element as 𝑏𝑖. 𝑏𝑖 is the resource load of the 𝑖th task in task
set 𝑇 .

Based on above description, the objective function of task deploy-
ment can be reformulated as Eq. (26). If the objective function 𝐽 can
e minimized, the resource load between the compute nodes deployed
or topology 𝐺 will be balanced as much as possible, ensuring efficient
esource utilization in cluster.

𝐽 =
∑

|

|

|

|

|

(

𝑋 𝐴 +𝑊 𝑋
𝑘

−
∑

(𝑋 𝐴 +𝑊 𝑋)
𝑘2

)

⊙ 𝑋
|

|

|

|

|

(26)

5. Ms-Stream: optimizer models

In this section, we present three optimizer models designed to
address the three aforementioned challenges, namely, optimizers for
data grouping, subgraph partitioning, and task deployment.

5.1. Data grouping optimizer

In the streaming application 𝐺𝑇 , a stateful operator 𝑜𝑖 comprises 𝑢
tasks denoted as 𝑜𝑖 = {𝑜𝑖,1, 𝑜𝑖,2,… , 𝑜𝑖,𝑢}, where 𝑜𝑖,𝑢 is the final task of
operator 𝑜𝑖. To balance the workload among these 𝑢 tasks in operator
𝑜𝑖, data tuples{𝑑 𝑡1, 𝑑 𝑡2,… , 𝑑 𝑡𝑖,…} from upstream operators are grouped
using a two-tier router. This router is achieved by the map function
𝑀(𝑑 𝑡𝑖), which distributes data tuple 𝑑 𝑡𝑖 in partition 𝑝𝑤 to the specified
ask 𝑜𝑖,𝑘, as described by Eq. (27).

𝑀(𝑑 𝑡𝑖) = 𝑝𝑤 → 𝑜𝑖,𝑘, (27)

where partition 𝑝𝑤 denotes a set of data tuples with similar charac-
eristics, 𝑝𝑤 ∈ 𝑃 , 𝑃 = {𝑝1,… , 𝑝𝑤,… , 𝑝𝑚}, where 𝑚 is the number of

partitions and 𝑚 > 𝑘. Partition 𝑝𝑤 is a conceptual entity and can be
calculated by Eq. (28).

𝑝𝑤 = 𝐻 𝑎𝑠ℎ (𝑑 𝑡𝑖 (𝑘𝑒𝑦)
)

%𝑐 𝑎𝑟𝑑 (𝑃 ) , (28)

where 𝑑 𝑡𝑖 (𝑘𝑒𝑦) denotes the key values of tuple 𝑑 𝑡𝑖, and 𝑐 𝑎𝑟𝑑(𝑃 ) denotes
the size of set 𝑃 .

As shown in Fig. 2, downstream operator 𝑜𝑖 contains two tasks
𝑖,0, 𝑜𝑖,1. Upstream tasks emit data tuples to operator 𝑜𝑖 through this
outer. Firstly, the data tuple determines the partition number to be

emitted using the hash function. Secondly, the map function is em-
loyed to locate the task number associated with the partition number.
inally, the tuple is emitted to the designated task. The two-tier router

in Fig. 2 offers notable advantages over traditional routers [9,32].
Traditional routers, such as Megaphone router [32], maintain state
information for each input tuple, requiring global queries to route
tuples to task instances, which can degrade performance with large
data volumes. However, our two-tier router avoids per-tuple state

anagement. Instead, it maps partitions (logical groups of tuples with
he same characteristics) to downstream tasks, resulting in a lighter,
aster design with reduced retrieval time.
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Fig. 2. Two-tier router in Ms-Stream.
If the workload disparity between tasks in operator 𝑜𝑖 satisfies the
condition 𝐿𝐼 > 𝜒 , significant load imbalance occurs in the stream
computing system. In this case, we need to sort the partition 𝑃 in
ascending order based on their resource consumption and migrate some
data from task 𝑜𝑖,ℎ with high workload to task 𝑜𝑖,𝑙 with low workload,
satisfying conditions given by Eq. (29). In this process, we utilize the
built-in data transmission channels of the Storm platform to migrate
these states. These states are transmitted in the form of data streams
among operator tasks.

𝑅𝑜𝑖,ℎ − 𝑅𝑜𝑖

𝑅𝑜𝑖

⩽ 𝜒

⇒
𝑅𝑜𝑖,ℎ ⋅

(

𝑝𝑟𝑜𝑖,ℎ ,𝑐 𝑛 −
∑

𝑞∈𝑀 𝑆 𝑝𝑞
)

− 𝑅𝑜𝑖 ⋅ 𝑝𝑟𝑜𝑖,ℎ ,𝑐 𝑛
𝑅𝑜𝑖 ⋅ 𝑝𝑟𝑜𝑖,ℎ ,𝑐 𝑛

⩽ 𝜒

⇒𝑝𝑟𝑜𝑖,ℎ ,𝑐 𝑛 −
(1 + 𝜒) ⋅ 𝑅𝑜𝑖 ⋅ 𝑝𝑟𝑜𝑖,ℎ ,𝑐 𝑛

𝑅𝑜𝑖,ℎ
⩽

∑

𝑞∈𝑀 𝑆
𝑝𝑞 ,

(29)

where 𝑀 𝑆 denotes the set of migrated partitions, and 𝑀 𝑆 ⊂ 𝑃 .

5.2. Subgraph partitioning optimizer

Recently, deep learning approaches have been employed to address
subgraph partitioning challenges. Our proposed solution for distributed
stream computing systems relies on the Generalizable Approximate
Partitioning (GAP) framework [33], specifically designed for grouping
tasks in streaming applications. As shown in Fig. 3, the subgraph
partitioning model of Ms-Stream mainly includes two modules: the
graph embedding module and the graph partitioning module.

(1) Graph embedding module. The primary objective of the graph
embedding module is to acquire task embeddings by leveraging both
the graph structure and task features. In this module, we employ Graph
Convolution Network (GCN) [34] and Graph Sample and Aggregate
(GraphSAGE) [35] techniques to master graph representations formed
by tasks in the streaming application. GCN leverages convolutional op-
erations on the graph’s adjacency matrix to learn task representations.
GraphSAGE samples and aggregates information from the neighbors
of each task, providing flexibility in choosing different neighborhood
sampling and aggregation strategies for generating task representations.

(2) Graph partitioning module. This module is designed to per-
form graph partitioning by taking task embeddings as input and pro-
ducing the probability 𝑌 for each task’s affiliation with groups in
{𝑔1, 𝑔2,… , 𝑔𝑘}. This module is a fully connected layer followed by
softmax, and its training objective is to minimize the specified loss
function.

We implement a different loss function 𝐿𝐹 based on GAP to evalu-
ate the balancedness of groups, which can be described by Eq. (30).

[ ( )]
𝐿𝐹 = 𝐵 𝑐 𝑐 𝑔ℎ, ̃𝑔ℎ + 𝐵 𝑛 [𝑌 ] + 𝐵 𝑟 [𝑌 ] (30)

7 
In the first term of Eq. (30), 𝐵 𝑐 [𝑐 (𝑔ℎ, ̃𝑔ℎ
)]

denotes the probability
that two tasks are not in the same group, which can be calculated by
Eq. (31).

𝐵 𝑐 [𝑐 (𝑔1,… , 𝑔𝑘
)]

=
∑

(𝑌 ⊘ 𝛤 ) (1 − 𝑌 )⊙ 𝐸 (31)

where 𝛤 can be calculated by Eq. (32).

𝛤 = 𝑌 T𝐻 , (32)

and 𝐻 is the vector that represents the degree of tasks.
In the second term of Eq. (30), 𝐵 𝑛 [𝑌 ] represents the balancedness of

the number of tasks in each group, which can be calculated by Eq. (33).

𝐵 𝑛 [𝑌 ] =
𝑘
∑

𝑗=1

( 𝑛
∑

𝑖=1
𝑌𝑖,𝑗 −

𝑛
𝑘

)2

=
∑

(

𝟏T𝑌 − 𝑛
𝑘

)2
,

(33)

where 𝑛 denotes the total number of tasks in the streaming application
𝐺𝑇 and 𝑘 denotes the number of groups.

In the third term of Eq. (30), 𝐵 𝑟 [𝑌 ] denotes the balancedness of
resource load of each group, which can be calculated by Eq. (34).

𝐵 𝑟 [𝑌 ] =
𝑘
∑

𝑗=1

( 𝑛
∑

𝑖=1
𝑌𝑖,𝑗 ⋅ 𝐵𝑖,𝑖 −

∑

𝐵
𝑘

)

=
∑

(

𝑌 T𝐵𝟏 −
∑

𝐵
𝑘

)2
(34)

where matrix 𝐵 denotes the resource load of each task in 𝐺𝑇 and is a
𝑛 × 𝑛 diagonal matrix. 𝟏 is a 𝑛 × 1 column vector and each element in
this vector is ‘‘1’’.

Based the above description, the loss function of the subgraph
partitioning model can be reformulated as Eq. (35).
𝐿𝐹 =

∑

(𝑌 ⊘ 𝛤 ) (1 − 𝑌 )⊙ 𝐸

+
∑

(

𝟏T𝑌 − 𝑛
𝑘

)2
+
∑

(

𝑌 T𝐵𝟏 −
∑

𝐵
𝑘

)2 (35)

Through this loss function, the model continuously inputs the topol-
ogy, iteratively updating parameters until it converges to an optimal
solution.

5.3. Task deployment optimizer

Graph partitioning primarily aims to minimize communication be-
tween subgraphs and balance resource loads among them. After parti-
tioning, each subgraph has a different resource load. If these subgraphs
are not appropriately deployed to compute nodes, nodes hosting sub-
graphs with higher resource loads may become stragglers, impacting
the overall application performance. Therefore, Ms-Stream employs a
descending maximum padding priority strategy to further optimize the
cluster’s resource efficiency.
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Fig. 3. Subgraph partitioning model.
We classify the compute nodes 𝐶 𝑛 = {𝑐 𝑛1, 𝑐 𝑛2,… , 𝑐 𝑛𝑚} in the cluster
into activated nodes 𝐴𝑛 = {𝑎𝑛1, 𝑎𝑛2,… , 𝑎𝑛𝑢} and inactive nodes 𝐼 𝑛 =
{𝑖𝑛1, 𝑖𝑛2,… , 𝑖𝑛𝑣}. Activated nodes 𝐴𝑛 are those nodes that are already
running other tasks. Inactive nodes 𝐼 𝑛 are those nodes that are not
running any tasks and are in sleep state. The relationship between them
can be described by Eq. (36).

𝐶 𝑛 = 𝐴𝑛 ∪ 𝐼 𝑛, 𝐴𝑛 ∩ 𝐼 𝑛 = ∅ (36)

If the number of nodes in 𝐼 𝑛 are over-activated when deploying a
streaming application, the cluster will incur more energy consumption.
Therefore, nodes in 𝐴𝑛 are used with higher priority than nodes in 𝐼 𝑛.

Assume there exists task groups {𝑔1, 𝑔2,… , 𝑔𝑘} generated by the
subgraph partition optimizer. We deploy these 𝑘 groups to the 𝑚
available compute nodes and define the resource threshold for nodes
as 𝜉. Firstly, an ascending sort algorithm is applied to the resource load
𝑅𝑎𝑛 = {𝑅𝑎𝑛1 , 𝑅𝑎𝑛2 ,… , 𝑅𝑎𝑛𝑢} of activated nodes, while the resource load
𝑅𝑔 = {𝑅𝑔1 , 𝑅𝑔2 ,… , 𝑅𝑔𝑘} of each task group is subjected to a descending
sort. Secondly, a bijection is established between the elements of the
sorted sets 𝑅𝑔 and 𝑅𝑎𝑛. We compare the first elements of sets 𝑅𝑔 and
𝑅𝑎𝑛. If the condition satisfies Eq. (37), a key–value pair ⟨𝑔𝑧, 𝑎𝑛𝑒⟩ is
formed, and both elements are removed from 𝑅𝑔 and 𝑅𝑐 𝑛.
𝑅𝑔𝑧 + 𝑅𝑐 𝑛𝑒 ⩽ 𝜉 , 𝑅𝑔𝑧 ∈ 𝑅𝑔 , 𝑅𝑐 𝑛𝑒 ∈ 𝑅𝑐 𝑛, (37)

where 𝑅𝑔𝑧 and 𝑅𝑐 𝑛𝑒 are the first elements in set 𝑅𝑔 and 𝑅𝑎𝑛, respec-
tively. In cases where this condition Eq. (37) is not satisfies, the element
𝑅𝑔𝑧 in 𝑅𝑔 is mapped to 𝐼 𝑛 and is removed after this mapping. This
iteration continues until there are no more elements in 𝑅𝑔 .

6. Ms-Stream: framework and algorithms

Based on the above analysis, we combine the aforementioned three
optimization models into a hierarchical straggler-aware scheduling
strategy. In this section, we introduce the Ms-Stream framework and
algorithms for data grouping, subgraph partitioning, and task deploy-
ment.
8 
6.1. System framework

As shown in Fig. 4, the Ms-Stream framework includes five levels:
user level, topology level, deployment level, data level, and resource
level. Ms-Stream primarily utilizes the built-in IMetric interface of
Storm for tracking the runtime information of each stream application
and thereby ensuring minimal monitoring overhead.

The user level enables users to build logical topologies by clearly
defining the internal logic and data dependencies of streaming applica-
tions, primarily using the Spout and Bolt interfaces provided by Storm.
The topologies vary depending on the unique functions defined by
different users. Although optimizing these topologies poses a challenge,
enhancing user comprehension of the applications helps in developing
more effective topologies. Once submitted to the Storm platform, these
topologies can be further optimized.

The topology layer is primarily responsible for continuously mon-
itoring and assessing the load distribution among nodes in real-time.
Should it identify an imbalance in this distribution that adversely
affects the system’s overall performance, the topology layer will proac-
tively initiate a redeployment for tasks across the nodes. This task
redeployment process mainly pursues two core objectives: minimizing
the amount of communication load between nodes and achieving a
relative balance in the workload across nodes.

The deployment layer, activated after the topology layer redis-
tributes tasks among nodes, primarily handles the task groups received
from the topology layer and deploys them across the cluster. Its key
objectives encompass achieving a relative balance in the resource loads
of the cluster’s nodes, ensuring a balanced load on nodes where task
groups are deployed, and minimizing the number of activated nodes
without compromising performance. We implement the IScheduler in-
terface built into the Storm platform to achieve these objectives. After
passing through the topology layer and the deployment layer, we obtain
a set of task-to-node mappings. The IScheduler implementation class
redeploys the tasks to the corresponding computational nodes based
on this mapping set.

The data layer plays a crucial role in the system architecture, pri-
marily responsible for monitoring and evaluating the workload among
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Fig. 4. Ms-Stream framework.

various tasks within the system. To achieve efficient data management,
this layer utilizes an innovative two-tier routing table design, allowing
a single task to effectively manage multiple data partitions. When faced
with the challenge of imbalanced workload distribution among tasks,
the data layer employs intelligent algorithms to reassign the distribu-
tion of partitions across tasks. This readjustment aims to optimize data
stream and enhance the overall performance of the system.

The resource layer is primarily responsible for effectively running
streaming applications and their associated monitoring components,
ensuring the efficient utilization of resources, while also maintaining
the stable operation of systems. Moreover, the resource layer must col-
laborate closely with other layers of the system to ensure smooth infor-
mation stream and accurate data processing. In this process, multi-level
strategic coordination is important.

6.2. Data grouping algorithm

At the data level, an uneven distribution of data streams among
tasks within operators can lead to system inefficiencies. To address
this issue, it is essential to balance the workload across these tasks. By
optimizing performance at the task level, we can significantly enhance
the global efficiency of the entire task topology. This approach not
only alleviates the stress on overburdened tasks but also ensures a
more effective and harmonious utilization of available resources. The
algorithm for balancing the workload between tasks within operator is
described in Algorithm 1.

The input of Algorithm 1 is data tuple 𝑑 𝑡, and its output is the
task number 𝑜𝑖,𝑘 to which the tuple will be emitted. Step 1 initializes
the routing table, which stores the mapping relationships between
partitions and tasks. Step 3 to step 7 focus on determining the target
9 
Algorithm 1: Data grouping algorithm.
Input: data tuple 𝑑 𝑡;
Output: TaskID 𝑜𝑖,𝑘;

1 Initialize the routing table
𝑀(𝑃 , 𝑂) = {(𝑝1, 𝑜𝑖,1), (𝑝2, 𝑜𝑖,1), ..., (𝑝𝑚, 𝑜𝑖,𝑢)} ;

2 /*Data stream processing logic*/
3 if 𝑑 𝑡 is the data stream then
4 Get the key value of the data tuple, denoted as 𝑘𝑒𝑦 ;
5 Get the hash value of 𝑘𝑒𝑦, noted as ℎ𝑘𝑒𝑦 ;
6 𝑝𝑤 = ℎ𝑘𝑒𝑦%𝑠𝑖𝑧𝑒(𝑃 ) ;
7 Find the TaskID 𝑜𝑖,𝑘 corresponding to 𝑝𝑤 from 𝑀(𝑃 , 𝑂) ;
8 /*Control stream processing logic*/
9 else
10 Get the partition number 𝑝𝑤 from data tuple 𝑑 𝑡 ;
11 Get the TaskID 𝑜𝑖,𝑘 from data tuple 𝑑 𝑡 ;
12 Modify the TaskID corresponding to 𝑝𝑤 in 𝑀(𝑃 , 𝑂) to 𝑜𝑖,𝑘 ;
13 return TaskID 𝑜𝑖,𝑘

instance number for dispatching the data tuple. This involves a two-step
process: initially computing the partition number associated with the
data tuple, and then using this partition number to consult the routing
table in order to find the corresponding instance number. Steps 9 to
12 primarily respond to the data migration strategy. Balancing the load
among tasks will result in the migration of some partitions from lagging
tasks to those with lower workloads. The three steps in this algorithm
are capable of synchronizing the routing table with these changes in
partition numbers.

In Algorithm 1, the main functions involve handling data streams
and control streams. Initially, it is designed to handle data streams
by receiving data tuples and routing them to the appropriate tasks
for processing. The secondary function is to manage control flows by
detecting and responding to variations in the workload of downstream
tasks. In cases of workload imbalance among these downstream tasks, a
reorganization of the partitions within these tasks is necessary, leading
to alterations in the corresponding instances of each partition. This
algorithm ensures system reliability by synchronizing these dynamic
relationships between partitions and tasks in the routing table.

6.3. Subgraph partitioning algorithm

At topology level, if there is an imbalance in the workload distribu-
tion among nodes, it becomes essential to minimize the resource load
differences between straggler nodes and other nodes by dynamically
redistributing task deployments across compute nodes at runtime. We
define the load imbalance degree 𝐿𝐼 𝑁 between nodes as shown in
Eq. (38).

𝐿𝐼 𝑁 = max
(

𝑚 ⋅max (𝐴)
∑

𝐴
− 1, 1 − 𝑚 ⋅min (𝐴)

∑

𝐴

)

, (38)

where Matrix 𝐴 denotes the resource load of compute nodes and is an
𝑚 × 𝑚 diagonal matrix.

We define the threshold value for load imbalance degree as 𝜂. If
𝐿𝐼 𝑁 > 𝜂, the system will trigger a rescheduling. During the phase
of online rescheduling, it is crucial to partition the task topology
into subgraphs. This approach is designed to minimize communication
latency in the system and achieve a more balanced distribution of
workload across the nodes. The details of this process are described
in Algorithm 2.

The input of Algorithm 2 includes the matrix 𝐵 of task resource
load, the matrix 𝐸 of communication load between tasks, and the
number 𝑚 of subgraphs. The output of this algorithm is a probability
matrix 𝑌 , where the element 𝑌𝑖,𝑗 denotes the probability of the 𝑖th task
belonging to the 𝑗th subgraph. Steps 5 to 10 encode the edge features
of streaming applications by continuously aggregating the neighboring



M. Wu et al.

u
c
b

g

t
n
b
s
r

U
e
w

Future Generation Computer Systems 166 (2025) 107673 
Algorithm 2: Subgraph partitioning algorithm.
Input: Task features 𝐵, edge features 𝐸, number of subgraphs

𝑚;
Output: Probability matrix 𝑌 ;

1 Initialize the maximum number of iteration defined by user,
noted as 𝑐 𝑜𝑢𝑛𝑡 ;

2 while 𝑐 𝑜𝑢𝑛𝑡 > 0 do
3 Initialize the depth of the graph encoding, noted as 𝑑 ;
4 for 𝑖 = 1 to 𝑑 do
5 for each 𝑒𝑙 ,𝑏 in 𝐸 do
6 Get task neighbors 𝜗 of edge 𝑒𝑙 ,𝑏 ;
7 Get the edge set 𝜀𝑖,𝑗 of each task 𝜗𝑖 in 𝜗 ;
8 Calculate the embedding of edge 𝑒𝑙 ,𝑏 based on 𝜗 and

𝜀 information ;
9 𝑒𝑙 ,𝑏 =

∑

𝑣∈𝜗
𝑣 ⋅

∑

𝑒∈𝜀𝑣,𝑗
𝑒 ;

10 end
11 for each 𝑅𝑜𝑖,𝑘 in 𝐵 do
12 Get task neighbors 𝜗 of task 𝑜𝑖,𝑘 ;
13 Get edges 𝜀 between each task in 𝜗 and 𝑜𝑖,𝑘 ;
14 Calculate the embedding of task 𝑜𝑖,𝑘 based on 𝜗 and

𝜀 information;
15 𝑅𝑜𝑖,𝑘 =

∑

𝑣∈𝜗,𝑒∈𝜀
𝑣 ⋅ 𝑒 ;

16 end
17 end
18 𝐻 (0) ←CONCAT(𝐵,𝐸) ;
19 𝐻 (2) ← Linear(Linear(𝐻 (0)));
20 𝑌 ← softmax(𝐻 (2)) ;
21 Calculate the loss function and backpropagate the gradient;
22 𝑐 𝑜𝑢𝑛𝑡 = 𝑐 𝑜𝑢𝑛𝑡 − 1;
23 end
24 return 𝑌

edge features. Steps 11 to 16 can encode the task characteristics of
a streaming application by continuously aggregating neighbor feature
information. Step 18 concatenates the encoded edge features and task
features. In step 19, this integrated dataset is then fed into a fully
connected neural network for processing. Step 20 outputs the proba-
bility matrix 𝑌 through the softmax function. Step 21 calculates the
loss function, followed by the execution of gradient backpropagation
for updating the network’s parameters.

In Algorithm 2, by repeatedly inputting the network topology and
pdating the network parameters, the algorithm not only optimizes the
ommunication load between subgraphs, but also ensures a dynamic
alance in resource allocation among subgraphs.

6.4. Task deployment algorithm

Based on Algorithm 2, when a streaming application is successfully
partitioned into multiple subgraphs, each subgraph can have several
nodes that satisfy the deployment criterion. This criterion states that the
computational resources required by the subgraph are less than those
available on the node. In cases where subgraphs are assigned to nodes
in an inefficient manner, this could lead to the unnecessary activation
of a significant number of compute nodes within the data center. Such
a scenario not only escalates energy consumption substantially but also
results in a marked underutilization of available resources, as many
nodes may remain idle or be employed below their capacity. The details
of this process are described in Algorithm 3.

The input of Algorithm 3 includes the resource load 𝑅𝑔 of task
groups, the resource load 𝑅𝑎𝑛 of activated nodes, and inactive nodes
𝐼 𝑛. The output of this algorithm is the mapping result 𝑀 𝑟 between task
roups and nodes. Steps 2 to 5 involve sorting 𝑅 and 𝑅 according
𝑎𝑛 𝑔

10 
Algorithm 3: Task deployment algorithm.
Input: Resource load 𝑅𝑔 = {𝑅𝑔1 , 𝑅𝑔2 , ..., 𝑅𝑔𝑘} of task groups,

Resource load 𝑅𝑎𝑛 = {𝑅𝑎𝑛1 , 𝑅𝑎𝑛2 , ..., 𝑅𝑎𝑛𝑢} of activated
nodes, Inactive nodes 𝐼 𝑛 = {𝑖𝑛1, 𝑖𝑛2,… , 𝑖𝑛𝑣} ;

Output: Mapping result 𝑀 𝑟 between task groups and nodes ;
1 Initialize an empty set of 𝑀 𝑟 ;
2 if 𝑅𝑎𝑛 is not empty then
3 Sort 𝑅𝑎𝑛 in ascending order ;
4 end
5 Sort 𝑅𝑔 in descending order ;
6 if size of 𝑅𝑔 is greater than 𝑅𝑎𝑛 then
7 𝜙 = 𝑠𝑖𝑧𝑒(𝑅𝑔) − 𝑠𝑖𝑧𝑒(𝑅𝑎𝑛) ;
8 Get 𝜙 elements from 𝐼 𝑛 to add to the header in 𝑅𝑎𝑛 and

mark the resource load of the elements as 0 ;
9 end
10 while 𝑅𝑔 is not empty do
11 Get the first element 𝑅𝑔1 in 𝑅𝑔 ;
12 Get the first element 𝑅𝑎𝑛1 in 𝑅𝑎𝑛;
13 if 𝑅𝑔1 + 𝑅𝑎𝑛1 ⩽ 𝜉 then
14 𝑀 𝑟 ← ⟨𝑔1, 𝑎𝑛1⟩ ;
15 remove(𝑅𝑔1 ,𝑅𝑎𝑛1 );
16 else
17 𝑀 𝑟 ← ⟨𝑔1, 𝑖𝑛1⟩ ;
18 remove(𝑅𝑔1 ,𝑖𝑛1);
19 end
20 end
21 return 𝑀 𝑟

to different rules. Steps 6 to 9 involve assessing whether 𝑅𝑎𝑛 meets the
criteria for deploying 𝑅𝑔 . If it does not, we add some inactive nodes to
𝑅𝑎𝑛 to meet the minimum node requirement for deploying 𝑅𝑔 . Steps 10
to 20 involve mapping the task groups to suitable nodes, which mainly
consists of two parts: (1) If deploying the task group to a node does not
cause overload, we map the task group to that node. (2) Otherwise, we
deploy the task to an inactive node. Since sets 𝑅𝑎𝑛 and 𝑅𝑔 are ordered,
we only operate on their head elements.

In Algorithm 3, activated nodes are given priority in usage to reduce
he energy consumption of the cluster. When matching task groups to
odes, two objectives can be met: (1) Efforts are made to ensure load
alancing among the nodes where the task groups are deployed. (2) The
ystem’s resource load is also balanced as much as possible to improve
esource utilization efficiency.

7. Performance evaluation

In this section, we evaluate the performance of Ms-Stream sys-
tem. The experimental environment and parameter settings are first
discussed, followed by an analysis of the impact of inter-task and inter-
node load imbalance on the system, as well as the system performance.

7.1. Experimental setup

The Ms-Stream system is built on Storm [36] and deployed on
buntu 20.04. The system’s cluster comprises 20 machines, each pow-
red by an Intel(R) Xeon(R) X5650 CPU (dual-core, 2.4 GHz), equipped
ith 2 GB of RAM, and a 100 Mbps Ethernet interface card. Moreover,

two machines host Storm Nimbus as master nodes, and three are
designated for running ZooKeeper. Machines assigned both Nimbus and
ZooKeeper also function as supervisor nodes, while the remaining 15
exclusively serve as supervisor nodes.

(1) Datasets. In the experiment, we utilize a real-world data set
[37] from Alibaba Cloud and synthetic datasets following the Zipf
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Fig. 5. Logical graph of COMMCount.

Fig. 6. Logical graph of Top_N.

distribution to test the system performance. The real-world dataset en-
compasses the activities of approximately one million random Taobao
users who were active between November 25th and December 3rd,
2017. These activities include clicks, purchases, additions to cart, and
likes. Each row of the dataset represents a tuple, consisting of user
ID <Long type>, product ID <Long type>, product category ID <Long
type>, type of activity <String type>, and timestamp <Long type>.

The Zipf distribution is a probability distribution used to describe
the relationship between the frequency of elements in a dataset and
their rank [38]. Its coefficient determines the skewness of the element
frequency distribution. A larger coefficient corresponds to a greater
degree of skewness. Therefore, we use the Zipf coefficient to adjust
the skewness of the synthetic dataset. We set different coefficients to
construct the dataset. For example, we set this coefficient to 0.2, 0.4,
0.6, 0.8, and 1.0, respectively, and denote the constructed datasets as
Zipf0.2, Zipf0.4, Zipf0.6, Zipf0.8, and Zipf1.0. The generation of these
synthetic datasets is similar to the methods described in [38,39].

(2) Streaming applications. We evaluate Ms-Stream with two
different streaming applications: COMMCount and Top_N. COMMCount
counts the number of browsing commodities, and Top_N identifies
the products with the highest purchasing power. The logic graphs of
COMMCount and Top_N are shown in Fig. 5 and Fig. 6, respectively.

(3) Baseline schemes and metrics. In the experiment, we compare
the performance of Ms-Stream with those of state-of-the-art designs,
including the popularity-aware key Grouping (PStream) [9], partial key
grouping (PKG) [40], resource-aware scheduling (R-Storm) [41], and
Storm [36]. We mainly evaluate the load imbalance degree, system
bottleneck, and latency. High bottleneck (i.e. maximum throughput)
and low latency are two critical metrics of system performance. We
define system bottleneck as the maximum number of data tuples suc-
cessfully processed per second by the system, and latency as the average
processing time for each tuple.

7.2. Inter-task load imbalance

In this experiment, the impact of different 𝐿𝐼 𝑇 values on system
performance is evaluated using various synthetic datasets. We set the
11 
Fig. 7. Load imbalance degree of stateful tasks on different datasets.

Fig. 8. System bottleneck of COMMCount with different load imbalance degrees
between tasks.

trigger load balancing factor 𝜒 to 1.0. This setting triggers the balancing
load strategy when the imbalance degree between tasks exceeds 1.0.

We simulate changing workloads under different scenarios by ad-
justing the data stream skewness. As shown in Fig. 7, we use the
synthetic datasets as input to the stream computing system to simulate
the load variations of operator tasks. The experimental results show
that the degree of load imbalance increases with the rise of the Zipf
skew coefficient. This is because, as the Zipf coefficient increases, the
unevenness of data distribution grows, leading to a minority of tuples
occupying a larger proportion. In stream computing systems, this may
cause some tasks to process significantly more data than others. To
address data skew, efficient load balancing strategies are to be adopted
to balance tasks’ workloads.

Given an increasing data stream rate and an increment of 500
tuples/s, the system bottleneck (i.e., maximum throughput) of different
approaches is evaluated using different synthetic datasets. As shown
in Figs. 8 and 9, compared to PStream and PKG, Ms-Stream exhibits
a higher system bottleneck when running different streaming appli-
cations. In the COMMCount experiment, Ms-Stream achieves a 15.2%
improvement over PStream. In the Top_N experiment, Ms-Stream shows
a 22.1% enhancement compared to PStream. The significant boost in
Ms-Stream can be attributed to its lightweight routing strategy and
effective state data management. From these two experiments, it can be
observed that PKG’s system bottleneck decreases with increasing data
skew. This is because PKG sends a data tuple to the lower-load task
among two tasks, which can alleviate load imbalance but not eliminate
the issue, bringing additional communication and memory overhead.

Given a stable input rate of 10,000 tuples/s, the system latency of
different works is evaluate using different synthetic datasets. Compared
to PStream and PKG, Ms-Stream has a lower response time when
running different streaming applications. As shown in Fig. 10, Ms-
Stream and PStream exhibit stable system latency as the skewness of
the data stream increases. The average system latency for Ms-Stream
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Fig. 9. System bottleneck of Top_N with different load imbalance degrees between
tasks.

Fig. 10. System latency of COMMCount with different load imbalance degrees between
tasks.

Fig. 11. System latency of Top_N with different load imbalance degrees between tasks.

and PStream is 9.6 ms and 7.6 ms, respectively. Ms-Stream reduces
system latency by 20.3% compared to PStream. When the data stream
skewness is set to Zipf 0.0, the latencies for Zipf 0.0 and Zipf 0.2 are
very similar. This is because the degree of resource imbalance at Zipf
0.2 is insufficient to have a significant influence on system latency.

Similarly, in the Top_N experiment shown in Fig. 11, Ms-Stream
reduces system latency by 17.8% compared to PStream. It can be found
from experiments of the two streaming applications that Ms-Stream
exhibits latency similar to PStream and PKG on Zipf0.2 because the
load imbalance degree remains below the threshold, preventing Ms-
Stream and PStream from triggering the load balancing strategy. The
experiments demonstrate that Ms-Stream is more effective in balancing
the workload among tasks within operators.

7.3. Inter-node load imbalance

In this experiment, we assess the effect of imbalanced resource loads
𝐿𝐼 𝑁 across nodes on system performance by employing a range of
12 
Fig. 12. Load imbalance degree of nodes on different datasets.

synthetic datasets. We consider the resource utilization of compute
nodes under extreme scenarios. When the average resource utiliza-
tion of compute nodes in the cluster reaches 55%–60%, the resource
utilization of the node with the highest resource consumption should
not exceed 80%. This metric ensures stable system operation under
high load conditions, preventing the overload of any single node from
causing performance bottlenecks or system crashes. Therefore, the load
balancing threshold, denoted as 𝜂, for the Ms-Stream system is config-
ured at 0.4. This parameter activates the load balancing mechanism
whenever the imbalance degree of resource allocation exceeds 0.4.

Firstly, we construct the experimental environment with varying
degrees of load imbalance by feeding diverse synthetic datasets into
the stream computing system. The varying degrees of load imbalance
can simulate the resource utilization of the cluster at different times. As
shown in Fig. 12, as the coefficient of Zipf increases, the load imbalance
in the system generally exhibits an upward trend.

Given an increasing data stream rate and an increment of 500
tuples/s, the system bottleneck (i.e., maximum throughput) of different
approaches is evaluated with different load imbalance degrees between
nodes. As shown in Figs. 13 and 14, Ms-Stream effectively maintains a
stable system bottleneck even as data skew increases. This is achieved
through its advanced load balancing mechanisms and intelligent task
scheduling, which effectively distribute the workload across the cluster
while ensuring optimal resource utilization. In contrast, R-Storm and
Storm exhibit a gradual decline in their system bottlenecks as data
skew increases. This is attributed to their less effective load balancing
strategies, which struggle to handle the uneven workload distribution,
leading to performance degradation.

At Zip0.2, the system bottleneck of Ms-Stream is lower than that of
R-Storm due to the relatively lower data skew, which falls below the
threshold required to trigger load balancing policies within Ms-Stream.
However, in scenarios of highly skewed data streams, Ms-Stream’s sys-
tem bottleneck significantly surpasses that of both R-Storm and Storm.
The experimental results indicate that as the skewness of the data
stream increases, the improvement in system performance achieved by
Ms-Stream compared to R-Storm and Storm becomes more evident.

Given a stable input rate of 5000 tuples/s, the system latency of dif-
ferent works is evaluated with different load imbalance degree between
nodes. As shown in Figs. 15 and 16, the system latencies of Ms-Stream,
R-Storm, and Storm increase significantly with the degree of data skew.
However, Ms-Stream can maintain a lower system latency than R-Storm
and Storm. While Ms-Stream effectively balances the resource load of
the cluster, its system latency has a slight increase as the degree of
data skew increases, because the system latency is affected by various
factors, including the imbalance of workload between nodes and tasks.
When the data stream becomes more skewed, a large number of data
tuples are accumulated in fewer tasks, resulting in longer queuing time
for tasks, which in turn affects the system latency. Therefore, it is
crucial to implement a multi-level load balancing strategy to ensure
optimal performance.
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Fig. 13. System bottleneck of COMMCount with different load imbalance degrees
between nodes.

Fig. 14. System bottleneck of Top_N with different load imbalance degrees between
nodes.

Fig. 15. System latency of COMMCount with different load imbalance degrees between
nodes.

Fig. 16. System latency of Top_N with different load imbalance degrees between nodes.
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Fig. 17. System bottleneck of two streaming applications on real-word datasets.

Fig. 18. System latency of two streaming applications on real-word datasets.

7.4. Overall performance improvement

In these experiments, we evaluate the overall performance of Ms-
Stream using a real-world dataset provided by Alibaba Cloud, focusing
on two metrics: system bottleneck and system latency.

Given an increasing data stream rate and an increment of 500
tuples/s, Ms-Stream exhibits significant improvements in system bot-
tleneck compared to state-of-the-art works across different streaming
applications. As shown in Fig. 17, the average system bottleneck for two
streaming applications are 39,000 tuples/s, 28,500 tuples/s, 34,000
tuples/s, 23,500 tuples/s, and 49,000 tuples/s for PStream, PKG, R-
Storm, Storm, and Ms-Stream respectively when the system stabilizes.
Compared to the most advanced PStream, Ms-Stream enhances the
system bottleneck by 25.6%. It is evident that the average bottleneck of
Ms-Stream surpasses that of other works when the input rate is stable.

Given a stable input rate of 8000 tuples/s, Ms-Stream significantly
reduces system latency in different streaming applications compared
to state-of-the-art works. As shown in Fig. 18, in the COMMCount
experiment, the average system latency is 10.4 ms, 13.3 ms, 14.4 ms,
18.6 ms, and 7.2 ms for PStream, PKG, R-Storm, Storm, and Ms-Stream
respectively when the system stabilizes. In the Top_N experiment, the
average system latency is 14.1 ms, 16.4 ms, 18.2 ms, 21.1 ms, and
9.5 ms for PStream, PKG, R-Storm, Storm, and Ms-Stream respectively
when the system stabilizes. The maximum system latency of Ms-Stream
is reduced by 61.2%, while the minimum is reduced by 30.7%. The
reason why Ms-Stream has lower latency is that Ms-Stream imple-
ments a multi-layer load balancing strategy to optimize the system’s
performance in the face of skewed data stream.

Given a stable input rate of 2000 tuples/s, Ms-Stream has lower
system latency across various numbers of streaming applications com-
pared to state-of-the-art approaches. As shown in Fig. 19, for a single
streaming application, Ms-Stream exhibits the lowest latency at 6.1 ms,
while Storm demonstrates the highest at 11.2 ms. As the number of
streaming applications increases, all systems experience an increase
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Fig. 19. Average system latency under varying numbers of applications.

in latency, with Ms-Stream consistently maintaining lower values. No-
tably, the rate of latency increase for Ms-Stream is significantly lower
than those of the other systems as the number of streaming applica-
tions grows. This performance improvement can be attributed to Ms-
Stream’s optimized resource scheduling and data stream management
mechanisms.

8. Conclusions and future work

In this paper, we introduced Ms-Stream, a hierarchical schedul-
ing strategy designed to tackle skewed data distribution challenges
in stream computing systems. These challenges cause untimely task
execution and hinder system efficiency by generating task and node
stragglers. The primary objective of Ms-Stream is to balance workloads
among tasks and keep the workload differences among nodes within
acceptable limits. It achieves this by establishing a lightweight, two-
level grouping method that facilitates dynamic workload assignment
for stateful tasks and offloads resources from stragglers. Furthermore, it
ensures the equitable distribution of computation-intensive tasks across
groups and deploys task groups to nodes of varying capacity using
a descending maximum padding priority rule. We implemented the
proposed strategy on the Apache Storm platform. Experimental results
demonstrated remarkable performance enhancements across various
skewness levels, whether synthetic or real-world datasets. This ap-
proach offers a significant advantage over existing solutions, markedly
improving both system throughput and latency.

In our future work, we will integrate the auto-scaling operator par-
allelism mechanism into Ms-Stream to further reduce data processing
latency and consider the energy consumption of cluster to improve
energy efficiency.
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