
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

SPSC: Stream Processing Framework atop
Serverless Computing for Industrial Big Data

Zinuo Cai, Zebin Chen, Xinglei Chen, Ruhui Ma, Member, IEEE, Haibing Guan, Rajkumar Buyya, Fellow, IEEE,

Abstract—With the advance of smart manufacturing and
information technologies, the volume of data to process is
increasing accordingly. Current solutions for big data processing
resort to distributed stream processing systems such as Apache
Flink and Spark. However, such frameworks face challenges of
resource underutilization and high latency in big data application
scenarios. In this paper, we propose SPSC, a serverless-based
stream computing framework where events are discretized into
the atomic stream and stateless Lambda functions are taken
as context-irrelevant operators, achieving task parallelism and
inherent data parallelism in processing. Also, we implement a
prototype of the framework on AWS (Amazon Web Service) using
AWS Lambda, AWS SQS and AWS DynamoDB. The evaluation
shows that compared with Alibaba’s real-time computing Flink
version, SPSC outperforms by 10.12% when the overhead is close.

Index Terms—Cloud Computing, Intelligent Industry, Big
Data, Serverless Computing, Stream Processing

I. INTRODUCTION

NOWADAYS, large amounts of data are generated to
process as the development of information and commu-

nication technologies, such as the Internet of Things, industrial
sensors, sensor networks, etc., which impacts manufacturing
profoundly. With the technologies, data generated from mod-
ern manufacturing systems are experiencing explosive growth,
which has reached over 100 EB annually [1]. The manufac-
turing data contains rich knowledge to utilize, driving the
transformation of the conventional manufacturing paradigm
to the intelligent manufacturing paradigm. Smart manufactur-
ing utilizes the concepts of cyber-physical systems with the
Internet of Things (IoT), cloud computing, service-oriented
computing, artificial intelligence and data science [2], which
would be the hallmark of the next industrial revolution.

To deal with big data processing tasks, researchers resort to
distributed stream processing systems where data is generated
as streams and processed by distributed and low-latency com-
putational frameworks on a continuous basis. The common
distributed data stream processing frameworks include open-
source frameworks such as Storm, Spark Streaming, Flink
and Kafka Streams and proprietary frameworks such as IBM
Streams. To process the data streams with short delays and
deal with the large volume of data, researchers have proposed
combining cloud and edge computing with stream processing
systems. Apache Flink and Spark are general-purpose stream-
ing data processing frameworks.

However, existing methods are not suitable for the in-
creasing amount of data. On the one hand, an abundance
of computing infrastructure and resources remain underused
with the increasing growth of the Internet of Things and edge

computing. On the other hand, due to the latency issues and
networking overhead, today’s cloud models suffer from high
latency and response time when processing large volumes and
varieties of data. The responsibilities of managing underlying
infrastructure optimally are heavy for developers, and the
process is mainly manual, task-specific and error-prone [3].

Fortunately, we identify that serverless computing [4, 5, 6,
7, 8], an emerging cloud computing paradigm, can effectively
solve the difficulties faced by cloud computing when applied
to collecting and processing industrial big data. Serverless
computing does not mean that there are no servers in the cloud.
Still, the operations of servers, such as application and release,
scaling up and down, are handled by cloud vendors other than
users. Serverless computing is also known as function as a
service (FaaS) because cloud computing users only need to
write code and complete the running logic of the application.
Cloud computing providers should meet other requirements for
code operation, such as lightweight virtualization to execute
functions, external databases to save the status of functions,
and monitoring and log services. These backend services are
the key to ensuring the safe and correct execution of stateless
function instances. Therefore, serverless computing is featured
as function-as-a-service (FaaS) for cloud computing users and
backend-as-a-service (BaaS) for providers.

Introducing serverless computing to the processing of
streaming industrial data solves the two challenges mentioned
above. First of all, the resource utilization efficiency of the
system can be effectively improved. Serverless computing can
automatically scale up and down, rather than the traditional
cloud computing model, which requires reserving sufficient
computing resources to cope with the surge of industrial data.
Moreover, because serverless computing takes functions as the
smallest resource application unit, lightweight virtualization
is more agile than virtualization schemes represented by
virtual machines, reducing the execution delay of the stream
processing system.

Therefore, we propose SPSC, a stream computing frame-
work to handle industrial data atop serverless computing plat-
forms in this paper. We conceptually divide the events of the
processing process into several subsets and call them atoms.
The lowest level of operation of the framework is the atomic
level, and each computing unit is also designed to perform
atomic processing. In other words, the framework workflow
is a computational diagram of implementing transactional
microservices on the atomic flow using data flow semantics.
Therefore, Lambda functions become operators in stream
computing, and users only need to pay attention to atomic-
level transaction business logic when coding. Then, we use



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

API Gateway

ControllerDatabase

Executor

(a) A Typical Serverless Framework.

NGINX

CouchDB Controller

KafKa

Invoker Invoker Invoker

(b) OpenWhisk.

Frontend

Worker
Manager

Placement

Function
Metadata

Workers

(c) AWS Lambda.

Fig. 1: Architectures of Serverless Platforms.

AWS SQS as a message queue to realize the communication
between operators and the storage of intermediate states. The
visibility of SQS ensures the At Least Once mechanism of the
framework. We also use AWS DynamoDB as the framework’s
persistent storage solution for state storage so that users can
quickly expand the database and do not need to design data
relationships.

In this paper, we have made the following contributions:
• We propose a stream computing framework atop server-

less architecture. Our approach combines the fundamental
idea of the stateful data flow model with the serverless
architecture, divides the event into atoms, and then uses
the stateless Lambda function to realize the operator in
the stream computing. We also use AWS SQS and AWS
DynamoDB as message queues and persistent storage
solutions.

• Based on the designed framework, we propose a par-
allel computing method. By discretizing the processing
process into an atomic stream, operators are context-
irrelevant, thus achieving task parallelism. The automatic
adjustment of the concurrency of Lambda instances and
the polling mechanism of message queues make data
parallelism an inherent attribute of the framework.

• We have implemented a prototype of the framework
and evaluated the performance of our implementation.
According to our experimental results, compared with
Alibaba’s real-time computing Flink version, which is
charged according to the lease duration, our framework
can save 10.8% of the cost on average under the same
computing tasks. Our framework can improve the per-
formance by 10.12% on average when the overhead is
close.

II. BACKGROUND & MOTIVATION

A. Serverless Computing
Serverless computing is a new paradigm of cloud com-

puting. Its typical feature is function-as-a-service (FaaS),

which is evolved from infrastructure-as-a-service (IaaS) [9]
and platform-as-a-service (PaaS) [10]. Compared with the
traditional cloud computing paradigm, serverless computing
has the following advantages in the processing and collecting
industrial big data. First, serverless computing provides more
cost-efficient cloud services because of its “pay as you use”
billing mode. Users only need to pay for how many cloud
computing resources they use. On the contrary, in the platform-
as-a-service mode, users need to charge for the occupied
resources, even if the resources are not used. Second, server-
less computing provides an excellent ability to automatically
scale up and down, effectively responding to the change and
frequency of industrial data volume. Because the generation
of industrial data is a process of time series change, it is
necessary to automatically increase or decrease the function
instances according to the amount of data. Because server-
less computing provides a lightweight application execution
environment, container creation or destruction is faster than
virtual machines. Third, serverless computing can reduce the
time and experience of operation and maintenance personnel.
Serverless computing is not featured as function-as-a-service
but also as backend-as-a-service, including object storage, load
balancing, resource scheduling and other backend services, to
meet the needs of serverless computing.

Figure 1a shows the typical framework design of a server-
less computing platform. Among the components of a server-
less platform, Gateway is usually the platform’s entrance
responsible for receiving user requests. Controller is usually
the core of the framework and undertakes the functions of
user request processing, load balancing, function instance
creation and destruction, etc. Executor is the execution en-
vironment of functions, usually lightweight containers or vir-
tual machines, such as Docker, gVison or Firecracker [11].
Open-source serverless computing platforms include Open-
Whisk [12], OpenFaas [13] and Fission [14]. Figure 1b shows
the framework of OpenWhisk. Its Gateway uses the open-
source reverse proxy server NGINX, and the Pod is composed



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

of a Docker container in the Kubernetes cluster corresponding
to the executor. Commercial serverless computing frameworks
include Amazon’s AWS Lambda, Google Cloud and Alibaba
Cloud’s Function Compute. The architecture of AWS Lambda
is shown in Figure 1c. After the frontend receives the user’s
request, the worker manager will schedule and start the
function instance. The function metadata will be sent to the
corresponding worker for execution. Our subsequent work will
be based on AWS Lambda.

B. Data Stream Processing

Stream processing is the processing of data produced as a
stream of events in motion. Unlike traditional batch process-
ing, where static data is stored in a database, a file system,
or other forms of mass storage and handled as needed, stream
processing processes dynamic or continuous data as an event
upon receiving one from the stream. A stream is an unbounded
sequence of events generated continuously in time from the
source to the sink. Stream processing pipelines often involve
multiple operations such as filters, aggregations, analytics,
transformations, enrichment, branching, joining, etc. As un-
bounded and global datasets are increasingly getting common
and essential in day-to-day business [15], the majority of data
are born as continuous streams such as sensor measurements,
Weblogs, mobile usage statistics and financial trades. The
stream processing market is experiencing exponential growth
with applications relying heavily on real-time analytics, in-
ferencing and monitoring, such as telecommunications, smart
cities, health care, transportation, retail, manufacturing, adver-
tising, cyber security, and finance.

Data processing systems are evolving to be more stream-
oriented, where each data record is continuously processed
as it arrives by distributed and low-latency computational
frameworks. Currently, multiple distributed data stream pro-
cessing frameworks, open source (Storm, Spark Streaming,
Flink, Kafka Streams) and commercial (IBM Streams), exist
for ingesting, processing, storing, indexing, and managing
streaming data. Research on data stream processing engines
has diverged into four directions: query-based systems such
as NiagaraCQ [16], TelegraphCQ [17], and AsterixDB [18];
online distributed machine learning systems such as Scalable
Advanced Massive Online Analysis (SAMOA) [19]; streaming
graph analytics systems such as GraphJet [20]; general purpose
streaming data processing frameworks such as Flink and Spark
Streaming, with low-latency and a distributed parallel process-
ing architecture. Apache Flink is an open-source distributed
stream processing framework for stateful computations over
unbounded and bounded data streams. Spark is a unified
analytics engine for large-scale data processing supporting
high-level APIs and general execution graphs.

Under several emerging application scenarios, such as op-
erational monitoring of extensive infrastructure, IoT (Internet
of Things) and smart cities, data streams must be processed
under very short delays, and the data volume is enormous.
These data stream processing frameworks have to be scal-
able and efficient. To meet these challenges, architecture
has been proposed to use cloud computing to enable data

stream processing as the resource elasticity and fault tolerance
features of cloud computing. Here describe several public
cloud solutions for processing streaming data. Amazon Kinesis
Streams [21] is a service that enables continuous data intake
and processing for several types of applications, such as
data analytics and reporting, infrastructure log processing, and
complex event processing. Google Cloud Dataflflow [22] is a
programming model and managed service for developing and
executing a variety of data processing patterns such as Extract,
Transform, and Load (ETL) tasks, batch processing, and
continuous computing. Azure Stream Analytics (ASA) enables
real-time analysis of streaming data from several sources such
as devices, sensors, websites, social media, applications, and
infrastructures, among other sources [23].

C. Amazon Cloud Services

Since serverless computing is featured as FaaS for cloud
customers and BaaS for cloud vendors, we adopt the following
three backend services in addition to AWS Lambda. We use
Amazon S3 to store the raw data, AWS SQS as the commu-
nication channel between lambdas and AWS DynamoDB to
persist the results.

Amazon S3. Amazon Simple Storage Service (Amazon S3)
is an object storage service allowing users to store, protect
and retrieve data from “buckets” at any time from anywhere.
Amazon S3 focuses on two key components: buckets and
objects that work together to create the storage system. Users
create buckets to store objects in the cloud. Objects are data
files, including documents, photos and videos, identified by a
unique key each. The use cases of Amazon S3 include data
lakes, mobile applications, IoT devices and big data analytics.

AWS SQS. AWS Simple Queue Service (SQS) is a man-
aged service by AWS to handle message queueing, releasing
developers from setting up and maintaining a queue system.
AWS SQS is built on the broad mechanism of message queues
and provides high-level APIs that developers can use to com-
municate with the service. SQS is frequently used to decouple
distributed backend services or accommodate mismatches in
service scalability.

AWS DynamoDB. DynamoDB is a NoSQL serverless
database provided by AWS which follows a key-value store
structure and adopts a distributed architecture for high avail-
ability and scalability. In DynamoDB, data is organized in
tables containing items, and each item contains a set of key-
value pairs of attributes. As in any serverless system, there’s
no infrastructure provisioning needed with DynamoDB.

III. DESIGN

This section gives a detailed overview of SPSC, a stream
processing framework atop serverless computing platforms.

A. Overview

The application mainly includes parallel workflow, com-
munication and fault tolerance. Figure 2 shows the designed
stream computing framework based on the services provided
on AWS, which reduces the hardware requirements for users.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

Amazon
S3

Sensors

Raw
Data

Trigger

Pre-commmit
Operator

AWS SQS Queue

A

AWS
DynamoDB

B

Process Operators

Intermediate States

Intermediate
States

Results

Fault Handler

Fig. 2: Overview of the Serverless stream computing
framework.

In the hypothetical industrial scenario, the intelligent sensors
collect and upload the raw data to the low-cost persistent
storage service S3 provided by AWS. Generally speaking,
production data analysis in industrial scenarios does not
require too high real-time, and the raw data is persistent
and massive. Using S3 can save considerable storage costs.
When the raw data is uploaded to S3, the Lambda instance
of the pre-submit operator will be triggered to perform the
initial processing of the data. Then the intermediate states
of the data will be pushed into the queue of AWS SQS.
The messaging mechanism of SQS itself can ensure that the
intermediate state will only be processed by one Lambda
instance, avoiding the additional cost caused by redundant
processing. Similarly, the pushed message in the queue will
trigger the start of the instance of the process operator. The
process operator is the coding entry of the user program logic.
The intermediate states between process operators are also
transferred through SQS queues to ensure real-time and non-
repetitive processing. The last process operator, which can be
regarded as the exit of the user program, stores the results
in the structured NoSQL database AWS DynamoDB, thus
making the calculation results persistent. To deal with the
unbounded input of stream computing, the framework needs
to have the ability to deal with and recover from the failure
of computing nodes. Hence, we design a Lambda function to
handle failures in the computing procedure.

B. Parallel Workflow

First of all, we need to declare that the framework abstracts
the computing task into the concept of atomic stream. The
level of processing is a low level. The data in the stream
should be cut as small as possible to meet the concept of
data elements. All kinds of operators in the framework operate
based on the level of data elements, which are the lowest and
indivisible processing level. In other words, data elements are
atoms.

Atomic stream. Atomic stream is a relatively ordered,
distributed and immutable atomic stream. Processors generate
atomic streams, and consumers consume them. In order to
ensure the indivisibility of atoms, we stipulate that consumer
must complete all the work of consuming and processing
the atom it holds before consuming and processing the next
atom. Consumption must follow atomic order. Producers must
produce atoms after consuming and processing atoms and
before consuming and processing subsequent atoms. The re-
sulting atomic production order will establish the atomic order.
This enables us to safely combine the roles of producers and
consumers. An operator can assume the roles of producers and
consumers at the same time, reducing the difficulty of user
coding while maintaining end-to-end fault-tolerance between
micro-services.

Atom. Conceptually, each atom contains a finite stream of
events, and each event belongs to exactly one atom. Events and
atoms are distinct with different purposes. Events represent
input in the form of consumed and processed data, while atoms
represent a group of events to be processed together in an
atomic manner. States between instances of Serverless function
cannot be simply shared, but the state is visible during the
running of a single instance. We can combine a set of context-
related event operations to form an operator. Events within
the atom can be processed simultaneously. This difference
is useful because starting the operation of an atom requires
atomic-related costs (reflected in the generation of function
instances in the Serverless architecture). Smaller atoms have
higher relative costs. Users should determine the size of atoms
according to their needs.

Workflow. Workflow (Figure 3) consumes atomic stream
and generates atomic stream. Workflow is a directed acyclic
graph (DAG) of source, procedures and links. Workflow has a
source, which is the event intake point of workflow. Procedures
are stateful operators that use atoms and generate atoms.
Workflow has a sink point, which can be considered as
the exit of workflow, that is, the exit of calculation results.
The workflow needs to conform to the principles of atomic
processing. That is, the workflow must always use and process
one atom at a time, that is, it does not need to process two
atoms at the same time. Nested workflows are not supported.
Workflow has an input source and an output sink, just like the
Source and Sink in other stream computing systems.

Parallel Method. To improve the throughput and efficiency
of stream computing, common parallel methods are task
parallelism and data parallelism. Task parallelism allows tasks
from different operators to perform calculations on the same or
different data in parallel to make better use of the computing
resources of the cluster. Data parallelism performs the same
operation in parallel on the data subset, allowing processing
of large amounts of data and spreading the computing load
to multiple computing nodes. In the Serverless architecture,
the operators implemented by Lambda function and triggered
by the specified data flow naturally has the task parallel
attribute. By cutting the processing process into multiple
context-independent processing operators, the framework re-
alizes on-demand startup of operators, thus saving costs while
ensuring throughput. The instantiation of lambda functions



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

Source Procedure Sink

(a) The simplest workflow.

Source

Procedure

Sink

Procedure

(b) Slightly complex workflow.

Fig. 3: Workflow examples in the framework. Figure 3a shows the simplest workflow structure. The gray nodes represent
the user-defined processing operators, and the yellow nodes represent the atomic streams passed between operators.
Figure 3b shows a slightly complex but DAG-compliant workflow. The processing process can be split according to
the actual situation to generate multiple processing paths. However, it is recommended that only one Source and Sink
exist for a workflow.

will automatically obtain instance resources from the public
reservation pool to perform computing tasks, and dynamically
tilt computing resources for each function based on utilization.
The feature of AWS SQS service that can only be seen
by one person at the same time automatically manages the
data subsets. The above features of AWS services enable the
framework to automatically generate several operator instances
to process atoms in parallel, while avoiding some common
problems of data parallelism. That is to say, on the Serverless
architecture, users can code highly reliable stream computing
logic by applying the idea of task parallelism and data paral-
lelism without having too much relevant knowledge.

C. State Storage

The data processed by the stream processing system is often
borderless: data will always be input from the data source,
and users need to see the real-time results of SQL queries. At
the same time, the computing nodes in the stream processing
system may make errors and failures, and may expand and
shrink in real time according to the user’s needs. In this
process, the system needs to be able to efficiently transfer
the intermediate states of the calculation between nodes and
persist the results to the external system, so as to ensure
the uninterrupted calculation. Common state storage solutions,
such as embedded storage, require the computing nodes to
manage the state storage, which is obviously not applica-
ble in the dynamically generated, stateless, and storage-and-
calculation separation Serverless architecture. The stateless
nature of Lambda functions makes the Serverless-based stream
computing framework only adopt the architecture of storage
and computing separation.

Separation of Storage and Computing. The storage re-
sponsibility and calculation responsibility of the system are
separated. The storage node is only responsible for data
storage, while the calculation node is only responsible for
calculation, that is, to execute business logic. Such a design is
called the separation of storage and computing. For the state-
less computing instances generated by Lambda instantiation,
each instance is the same and naturally supports horizontal

expansion. The generated instances of the same type obtain the
states by polling and then process them to easily achieve load
balancing. Failover is also simpler and faster. If an instance
fails, the computing task on it will be acquired by other
instances. For developers, they can focus on the develop-
ment of computing business logic without paying attention
to such troublesome storage problems as data consistency,
data reliability and data read and write performance, which
greatly reduces the development difficulty and improves the
development efficiency.

Message Queue. Stream computing systems usually do not
need message queues, because they can communicate directly
between functions, and end-to-end Exactly Once mechanism
is also guaranteed in other ways. However, on the Serverless
platform, there is no direct communication between instances,
which also makes it difficult to implement the end-to-end Ex-
actly Once mechanism. The message queue service provided
by the service provider, such as AWS SQS, can ensure that
each message pushed to the queue will be shared by only one
object at the same time. After a period of time, if the object
does not perform other operations on the message, the message
will be released to other objects. Just set its visibility time to
be longer than the instance lifetime in the framework, you
can think that when a message is released to other objects,
the previous instance has failed, thus realizing the failover.
Therefore, in the design of the framework, we use AWS SQS
as the message queue to complete the communication between
operators and intermediate state storage.

Persistent Storage. The final results of stream computing,
or some states that do not need immediate processing tem-
porarily, need to be persisted to the external storage system.
For example, if we want to count the production data in the
past five minutes, and some of the earlier data arrive later than
the later data due to network communication and other reasons,
in this case, we can only store the states in the persistent
storage database, and then sort it before processing. The
disordered and temporarily stored message queue obviously
does not support the above requirements. NoSQL, which
does not need to design data relations in advance, is easy



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

to expand and can be used on demand, is widely used in
persistent storage systems of stream computing systems. AWS
DynamoDB, a fully hosted cloud NoSQL database service
provided by Amazon, can realize seamless expansion and
automatically delete expired items from the table. We use it
as a framework for persistent storage system.

D. Fault Tolerance

The problem of unbounded input stream in the stream
computing system has brought many new challenges to Fault
Tolerance, such as low latency, Exactly Once mechanism, and
so on. Many stream computing tasks are 7 × 24 hours without
interruption, with end-to-end second delay. It is extremely
difficult to quickly recover to normal in case of unexpected
problems such as network flash, machine failure, and so on,
without affecting the correctness of the calculation results.
Moreover, the statelessness and separation of components of
the Serverless architecture make the fault-tolerant design of
this framework different from the traditional stream computing
system.

Timeout. Unlike traditional stream computing system oper-
ators, which will exist for a long time once generated, Lambda
instances have a limited and short survival time. To save
the cost of repeatedly generating instances, the framework
is designed to continuously process atoms once an operator
instance is generated until atoms cannot be obtained or times
out. Therefore, it can be considered that the instance running
timeout will be a common exception in the running process.
Considering the startup costs that can be saved, we think it
is acceptable that a very small amount of data is delayed due
to timeout exceptions. We set a timeout exception handling
function. When the instance senses that it is about to timeout,
it will throw a timeout exception and invoke the function.
The exception handler invokes the operator function again
according to the received event. In fact, because of the high
substitutability of operator instances, even if the function is
not restarted, other working instances will poll the processing
atoms. However, restarting it makes the number of concurrent
instances of the operator stable and can reduce the fluctuation
of throughput as much as possible.

At Least Once. Due to the statelessness and non-direct
communication of Lambda instance running, the snapshot
recovery mechanism commonly used in streaming computing
systems such as Flink is obviously difficult to implement. That
is to say, it is very difficult to achieve Exactly Once on the
Serverless architecture which is hard to perceive and maintain
the running state. However, the design of storing intermediate
states through message queues and serving as communication
channels between operators makes it easy for the framework
to implement At Least Once. AWS SQS guarantees that a
message will only be owned by one object at the same time.
When the visibility time setting is exceeded, if the message
has not been processed by the owner, it will be returned to the
queue and opened to other objects. By setting the visibility
time slightly longer than the instance survival time, we can
ensure that each atom will be processed at least once.

IV. EVALUATION

In order to verify the performance of the prototype of
our framework, we compare its performance with that of the
Serverless real-time computing platform launched by Alibaba
Cloud in this section.

A. Environment

We deploy the prototype of the framework on the AWS
platform and use the services provided by the supplier. As
designed in the framework, we created AWS SQS queues
and AWS DynamoDB tables for the prototype. Then, we
created S3 buckets to store randomly generated source data.
Next, we deployed the prototype code on AWS Lambda and
allocated a concurrent quota of 40 instances. Among them, in
order to improve the throughput of reading data from slow
S3 storage, 10 reserved concurrency is allocated for the pre-
commit operator of the source. In other words, there are still
30 instances left in the public reservation pool.

For the Flink version of Alibaba Cloud’s real-time com-
puting platform, we have rent it in a pay-as-you-go way.
According to the official manual, 1 CU=1 core CPU+4 GB
memory. CU corresponds to the CPU computing capacity
of the underlying system. When creating a workspace, the
system deploys a development console for each cluster. Each
development console and its necessary components require
about 2 CU of control resources. So we rented 6 CU, 2
for controlling resources and 4 for actual calculation. Other
configurations, such as the datebase RDS, use the default
configuration 4 RCU.

B. Performance Metrics

We have carried out the same experiments on the prototype
and the leased Alibaba Cloud real-time computing platform,
and the evaluation metrics of their performance are as follows:

Throughout. The number of events successfully transmitted
by the computing framework in unit time. The unit of through-
put in this experiment is: events/second. Throughput reflects
the load capacity of the system and how much data the system
can process per unit time under the corresponding resource
conditions. Throughput is often used for resource planning,
but also to help analyze system performance bottlenecks, so
as to make corresponding resource adjustments to ensure that
the system can meet the processing capacity required by users.
Suppose that the merchant can make 20 lunches per hour
(throughput: 20 lunches per hour), and a delivery boy can
only deliver two lunches per hour (throughput: 2 lunches per
hour). The bottleneck of this system is in the delivery of the
boys, which can arrange ten delivery boys for the merchant.

Latency. The time of event from entering the system to
exiting the system. The unit of latency in this experiment
is: microsecond. Latency reflects the real-time processing of
the system. A large number of real-time computing services
such as financial transaction analysis have high requirements
for latency. The lower the latency, the stronger the real-time
of data. Suppose that it takes 5 minutes for the merchant to
make a lunch and 25 minutes for the brother to deliver. In this



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

Ali Flink Lambda RAM=128M Lambda RAM=1024M0

5000

10000

15000

20000

25000

30000

35000

Av
er

ag
e 

Th
ro

ug
ho

ut
(e

ve
nt

s/
s)

8064.20

4395.34

35113.28

(a) Throughput of Alibaba Flink and prototype.

Ali Flink Lambda RAM=128M Lambda RAM=1024M0

200

400

600

800

1000

Av
er

ag
e 

La
te

nc
y(

m
s)

243

751

1096

(b) Latency of Alibaba Flink and prototype.

Fig. 4: The Average results obtained by Counting Several Random Windows.

TABLE I: Cost Calculation.

Scenario Cost of Running for 1 hour(USD) Cost without Writing to DB(USD) Cost per million Events(USD)

Ali Flink 35.588 1.028 0.037
Lambda RAM=128M 18.482 0.483 0.034

Lambda RAM=1024M 161.492 3.994 0.032

process, the user feels a latency of 30 minutes. If the latency
becomes 60 minutes after changing the delivery plan, and the
food is cold when it is delivered, the new plan is unacceptable.

Cost. General ledger of all cloud services leased. Since
the cloud service leased in this experiment comes from two
cloud service providers in different regions, and the currency
charged is their local official currency, we have converted
the two according to the exchange rate at the time of the
experiment, which is about 6.7 yuan to 1 USD. The charging
standard of Alibaba Cloud real-time computing platform is
0.133 USD/CU/hour, and the bill is calculated from the time
the workspace is generated. It also includes the SLB service
and database service it provides. For SLB, the unit price of
each instance is 0.01 USD per hour. For databases, RDS is
used by default, and its price is 0.055 USD/hour/RCU. And the
price per million write request units is 1.20 USD. The billing
of AWS cloud services includes the billing of Lambda, SQS
and DynamoDB. For Lambda, when the memory is 128M,
the price for each instance to run 1ms is 0.0000000021 USD.
When the memory is expanded proportionally, the price can
also be seen as increasing proportionally. For SQS, the first
1 million requests are free, and the price of 1 million to
100 billion requests is 0.40 USD per million requests. We
believe that the number of demand requests for our framework
should be within the latter range. For DynamoDB, the price
per million write request units is 1.25 USD.

C. Performance

In order to test the performance of the framework itself,
we conducted input-output tests on both. Specifically, in
the prototype, we set two operators, one is the pre-commit
operator and the other is the processing and sink operator. The
pre-commit operator randomly generates message and records
the generated timestamp, and then pushes it into the SQS
queue. The processing operator writes the processing time after

receiving the message from the queue, which is actually the
output time, and then writes it to the table. The same is true for
Alibaba Cloud real-time computing platform, where a job that
generates data and writes it to the database is published. Then,
we randomly grab several five-minute windows and count the
average throughput and average latency of the two during this
period.

Figure 4 shows the throughput and latency of the experimen-
tal results. As can be seen from Figure 4a, the throughput of
the prototype we built has no major defects compared with Ali
Flink, and it can achieve a considerable increase in throughput
with the increase of allocated RAM. Throughput does not
increase linearly. It is speculated that communication with SQS
limits its linear growth. Therefore, the relationship between
communication queues and throughput can be studied in the
future. Compared with Ali Flink, the latency of the prototype
has increased significantly, which is understandable. The time
cost of communicating with external cloud services such as
SQS must be higher than the internal communication of main
memory in Ali Flink. The comparison of performance between
different configurations is not significant, but it proves that
our framework can realize the functions of stream computing
system.

In order to compare the advantages of our framework, we
calculated the costs that customers usually care about most,
as shown in Table I. A lot of overhead comes from reading
and writing data to the database, because persistent storage
is always expensive. However, generally speaking, the request
to write records to the database is far lower than the request
in the input-output experiment, so the cost calculation of
database storage should be removed. From the perspective
of processing costs per million businesses, our framework
has a slight advantage over Ali Flink, that is, it can save
10.8 % of the cost on average when processing the same
business volume. Although throughput and cost are not strictly



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

linear, we can still estimate the approximate throughput of the
prototype at the same cost by linear interpolation. According
to our estimation, if Lambda’s overhead cost is 1.028 USD,
its estimated throughput is 8812 events/s. That is to say, our
framework is expected to improve the performance by 10.12
% at the same cost.

V. RELATED WORK

a) Serverless Computing and its Application: Serverless
computing [24, 25, 26, 27, 28] is a promising paradigm of
next-generation cloud computing. It has been widely used
in many fields thanks to its more lightweight virtualization
runtime and faster startup and destruction time than virtual
machines. In distributed machine learning, the parallel ability
that serverless computing can provide can optimize the training
speed of data parallelism or pipeline parallelism [29, 30, 31,
32, 33, 34]. LambdaML [32] is a general machine learning
training platform atop serverless computing, and Jiang et al.
conduct a comprehensive study on the different aspects, like
communication channel, synchronization and cost efficiency.
Siren [34] also employs AWS Lambda, the most representative
serverless computing platform, for distributed model training
and designs a reinforcement learning algorithm to guide the
resource configuration for functions. In addition, serverless
computing can also be applied to the deployment of the pre-
training model [4, 5, 6, 7, 8] to deal with the inference task
of changing requests. Because serverless computing has good
scalability and an efficient startup rate, the operation and
maintenance personnel do not need to consider the system’s
load balancing and concurrent processing when deploying
model reasoning tasks. Infless [7] designs an automatic re-
source scheduling and configuration controller for a deep
learning model serving atop OpenFaaS, an open-source server-
less computing platform. Yang et al. propose a long-short-
term-histogram (LSTH) algorithm to resolve the cold start
challenge in serverless serving. In addition to the training and
deployment tasks of machine learning, other high-performance
computing tasks can also benefit from serverless comput-
ing platforms, such as video processing [35, 36, 37, 38],
high-dimensional matrix operations [39, 40, 41], workflow
tasks [42, 43, 44, 45], etc.

b) Serverless Computing for Data Processing: [46] in-
troduces a serverless architecture for big data analysis. As the
size of data is increasing day by day, it is tough and complex to
design the exact architecture for data analysis, including server
management, storage, clustering, algorithm deployment, etc.
The misconfiguration would lead to the underuse of resources
and infrastructure and unnecessarily high costs. With the
challenges of scalability and efficiency that big data processing
systems face, researchers have turned to serverless (Fuction-
as-a-Service) to strengthen big data analysis. Stefan [3] pro-
posed a serverless real-time data analytics platform for edge
computing. As the user-defined functions are seamlessly and
transparently hosted and managed by the serverless platform,
it releases the developers of the burden to resort to opti-
mal management of underlying infrastructure on the edge
side. Mijanur [46] presented the serverless architecture for

big data analytics with a serverless big data application on
AWS (Amazon Web Service). With the serverless paradigm,
developers can concentrate on the implementation of data
analytics applications rather than underlying infrastructure
and pay only for constant execution rather than particular
server components. Portals [47] is a serverless, distributed
programming model that blends the exactly-once processing
guarantees of stateful dataflow streaming frameworks with the
message-driven compositionality of actor frameworks. With
Portals, the decentralized application can be built dynamically
and scale on demand with the guarantee of strict atomic
processing.

VI. CONCLUSION

In this paper, we proposed SPSC, a stream computing
framework built on serverless architecture to cope with indus-
trial data. By dividing and abstracting the events into atoms
and atomic streams, SPSC realizes task and data parallelism
and achieves high throughput and efficiency of stream com-
puting. Combined with AWS components such as AWS SQS
and AWS DynamoDB, SPSC achieves abilities of At Least
Once guarantee and persistent storage for stream computing
applications in the serverless computing environment. Through
extensive evaluation, we show that SPSC exceeds Alibaba’s
real-time computing Flink version by 10.12% in performance.

ACKNOWLEDGMENT

This work was supported in part by Pilotage Program–
Special Subject on Internet of Things, Shanghai Key Labo-
ratory of Scalable Computing and Systems, China Institute
of IOT (Wuxi), Wuxi IoT Innovation Promotion Center, and
Open Project from Jiangsu Key Laboratory of Media Design
and Software Technology (Jiangnan University) under Grant
21ST0101. Ruhui Ma (ruhuima@sjtu.edu.cn) is the corre-
sponding author.

REFERENCES

[1] W. Li, Y. Liang, and S. Wang, Data driven smart
manufacturing technologies and applications. Springer,
2021.

[2] A. Kusiak, “Smart manufacturing,” International Journal
of Production Research, vol. 56, no. 1-2, pp. 508–517,
2018.

[3] S. Nastic, T. Rausch, O. Scekic, S. Dustdar, M. Gusev,
B. Koteska, M. Kostoska, B. Jakimovski, S. Ristov, and
R. Prodan, “A serverless real-time data analytics platform
for edge computing,” IEEE Internet Computing, vol. 21,
no. 4, pp. 64–71, 2017.

[4] A. Ali, R. Pinciroli, F. Yan, and E. Smirni, “Optimizing
inference serving on serverless platforms,” Proceedings
of the VLDB Endowment, vol. 15, no. 10, pp. 2071–2084,
2022.

[5] K. Mahajan and R. Desai, “Serving distributed inference
deep learning models in serverless computing,” in 2022
IEEE 15th International Conference on Cloud Comput-
ing (CLOUD). IEEE, 2022, pp. 109–111.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

[6] J. Li, L. Zhao, Y. Yang, K. Zhan, and K. Li, “Tetris:
Memory-efficient serverless inference through tensor
sharing,” in 2022 USENIX Annual Technical Conference
(USENIX ATC 22), 2022.

[7] Y. Yang, L. Zhao, Y. Li, H. Zhang, J. Li, M. Zhao,
X. Chen, and K. Li, “Infless: a native serverless sys-
tem for low-latency, high-throughput inference,” in Pro-
ceedings of the 27th ACM International Conference on
Architectural Support for Programming Languages and
Operating Systems, 2022, pp. 768–781.

[8] T. P. Bac, M. N. Tran, and Y. Kim, “Serverless computing
approach for deploying machine learning applications
in edge layer,” in 2022 International Conference on
Information Networking (ICOIN). IEEE, 2022, pp. 396–
401.

[9] S. S. Manvi and G. K. Shyam, “Resource management
for infrastructure as a service (iaas) in cloud computing:
A survey,” Journal of network and computer applica-
tions, vol. 41, pp. 424–440, 2014.

[10] R. Yasrab, “Platform-as-a-service (paas): the next hype
of cloud computing,” arXiv preprint arXiv:1804.10811,
2018.

[11] A. Agache, M. Brooker, A. Iordache, A. Liguori,
R. Neugebauer, P. Piwonka, and D.-M. Popa, “Fire-
cracker: Lightweight virtualization for serverless appli-
cations.” in NSDI, vol. 20, 2020, pp. 419–434.

[12] “Openwhisk,” https://openwhisk.apache.org/, accessed
Jan, 2023.

[13] “Openfaas,” https://www.openfaas.com/, accessed Jan,
2023.

[14] “Fission,” https://fission.io/, accessed Jan, 2023.
[15] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J.

Fernández-Moctezuma, R. Lax, S. McVeety, D. Mills,
F. Perry, E. Schmidt et al., “The dataflow model: a practi-
cal approach to balancing correctness, latency, and cost in
massive-scale, unbounded, out-of-order data processing,”
2015.

[16] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang, “Nia-
garacq: A scalable continuous query system for internet
databases,” in Proceedings of the 2000 ACM SIGMOD
international conference on Management of data, 2000,
pp. 379–390.

[17] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J.
Franklin, J. M. Hellerstein, W. Hong, S. Krishnamurthy,
S. R. Madden, F. Reiss, and M. A. Shah, “Telegraphcq:
continuous dataflow processing,” in Proceedings of the
2003 ACM SIGMOD international conference on Man-
agement of data, 2003, pp. 668–668.

[18] S. Alsubaiee, Y. Altowim, H. Altwaijry, A. Behm,
V. Borkar, Y. Bu, M. Carey, I. Cetindil, M. Cheelangi,
K. Faraaz et al., “Asterixdb: A scalable, open source
bdms,” arXiv preprint arXiv:1407.0454, 2014.

[19] G. D. F. Morales and A. Bifet, “Samoa: scalable ad-
vanced massive online analysis.” J. Mach. Learn. Res.,
vol. 16, no. 1, pp. 149–153, 2015.

[20] A. Sharma, J. Jiang, P. Bommannavar, B. Larson, and
J. Lin, “Graphjet: Real-time content recommendations at
twitter,” Proceedings of the VLDB Endowment, vol. 9,

no. 13, pp. 1281–1292, 2016.
[21] “Amazon kinesis streams,” https://aws.amazon.com/cn/

kinesis/data-streams/, accessed Jan, 2023.
[22] “Google cloud dataflow,” https://cloud.google.com/

dataflow/, accessed Jan, 2023.
[23] “Azure stream analytics,” https://azure.microsoft.com/

en us/services/stream-analytics/, accessed Jan, 2023.
[24] Z. Li, L. Guo, J. Cheng, Q. Chen, B. He, and M. Guo,

“The serverless computing survey: A technical primer for
design architecture,” ACM Computing Surveys (CSUR),
vol. 54, no. 10s, pp. 1–34, 2022.

[25] I. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink,
V. Ishakian, N. Mitchell, V. Muthusamy, R. Rabbah,
A. Slominski et al., “Serverless computing: Current
trends and open problems,” Research advances in cloud
computing, pp. 1–20, 2017.

[26] H. Shafiei, A. Khonsari, and P. Mousavi, “Serverless
computing: a survey of opportunities, challenges, and
applications,” ACM Computing Surveys, vol. 54, no. 11s,
pp. 1–32, 2022.

[27] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai,
A. Khandelwal, Q. Pu, V. Shankar, J. Carreira, K. Krauth,
N. Yadwadkar et al., “Cloud programming simplified: A
berkeley view on serverless computing,” arXiv preprint
arXiv:1902.03383, 2019.

[28] J. M. Hellerstein, J. Faleiro, J. E. Gonzalez, J. Schleier-
Smith, V. Sreekanti, A. Tumanov, and C. Wu, “Serverless
computing: One step forward, two steps back,” arXiv
preprint arXiv:1812.03651, 2018.

[29] Y. Liu, B. Jiang, T. Guo, Z. Huang, W. Ma, X. Wang,
and C. Zhou, “Funcpipe: A pipelined serverless frame-
work for fast and cost-efficient training of deep learning
models,” Proceedings of the ACM on Measurement and
Analysis of Computing Systems, vol. 6, no. 3, pp. 1–30,
2022.

[30] P. G. Sarroca and M. Sánchez-Artigas, “Mlless: Achiev-
ing cost efficiency in serverless machine learning train-
ing,” arXiv preprint arXiv:2206.05786, 2022.

[31] P. Gimeno Sarroca and M. Sánchez-Artigas, “Mlless:
Achieving cost efficiency in serverless machine learning
training,” arXiv e-prints, pp. arXiv–2206, 2022.

[32] J. Jiang, S. Gan, Y. Liu, F. Wang, G. Alonso,
A. Klimovic, A. Singla, W. Wu, and C. Zhang, “Towards
demystifying serverless machine learning training,” in
Proceedings of the 2021 International Conference on
Management of Data, 2021, pp. 857–871.

[33] F. Xu, Y. Qin, L. Chen, Z. Zhou, and F. Liu, “λdnn:
Achieving predictable distributed dnn training with
serverless architectures,” IEEE Transactions on Comput-
ers, vol. 71, no. 2, pp. 450–463, 2021.

[34] H. Wang, D. Niu, and B. Li, “Distributed machine learn-
ing with a serverless architecture,” in IEEE INFOCOM
2019-IEEE Conference on Computer Communications.
IEEE, 2019, pp. 1288–1296.

[35] L. Ao, L. Izhikevich, G. M. Voelker, and G. Porter,
“Sprocket: A serverless video processing framework,” in
Proceedings of the ACM Symposium on Cloud Comput-
ing, 2018, pp. 263–274.

https://openwhisk.apache.org/
https://www.openfaas.com/
https://fission.io/
https://aws.amazon.com/cn/kinesis/data-streams/
https://aws.amazon.com/cn/kinesis/data-streams/
https://cloud.google.com/dataflow/
https://cloud.google.com/dataflow/
https://azure.microsoft.com/en�us/services/stream-analytics/
https://azure.microsoft.com/en�us/services/stream-analytics/


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

[36] M. Zhang, Y. Zhu, C. Zhang, and J. Liu, “Video process-
ing with serverless computing: A measurement study,” in
Proceedings of the 29th ACM workshop on network and
operating systems support for digital audio and video,
2019, pp. 61–66.

[37] F. Romero, M. Zhao, N. J. Yadwadkar, and C. Kozyrakis,
“Llama: A heterogeneous & serverless framework for
auto-tuning video analytics pipelines,” in Proceedings of
the ACM Symposium on Cloud Computing, 2021, pp. 1–
17.

[38] M. Zhang, F. Wang, Y. Zhu, J. Liu, and B. Li, “Serverless
empowered video analytics for ubiquitous networked
cameras,” IEEE Network, vol. 35, no. 6, pp. 186–193,
2021.

[39] S. Werner, J. Kuhlenkamp, M. Klems, J. Müller, and
S. Tai, “Serverless big data processing using matrix
multiplication as example,” in 2018 IEEE International
Conference on Big Data (Big Data). IEEE, 2018, pp.
358–365.

[40] V. Shankar, K. Krauth, K. Vodrahalli, Q. Pu, B. Recht,
I. Stoica, J. Ragan-Kelley, E. Jonas, and S. Venkatara-
man, “Serverless linear algebra,” in Proceedings of the
11th ACM Symposium on Cloud Computing, 2020, pp.
281–295.

[41] V. Gupta, S. Kadhe, T. Courtade, M. W. Mahoney, and
K. Ramchandran, “Oversketched newton: Fast convex
optimization for serverless systems,” in 2020 IEEE In-
ternational Conference on Big Data (Big Data). IEEE,
2020, pp. 288–297.

[42] B. Carver, J. Zhang, A. Wang, A. Anwar, P. Wu, and
Y. Cheng, “Wukong: A scalable and locality-enhanced
framework for serverless parallel computing,” in Pro-
ceedings of the 11th ACM Symposium on Cloud Com-
puting, 2020, pp. 1–15.

[43] A. Mahgoub, E. B. Yi, K. Shankar, E. Minocha, S. El-
nikety, S. Bagchi, and S. Chaterji, “Wisefuse: Workload
characterization and dag transformation for serverless
workflows,” Proceedings of the ACM on Measurement
and Analysis of Computing Systems, vol. 6, no. 2, pp.
1–28, 2022.

[44] A. Mahgoub, K. Shankar, S. Mitra, A. Klimovic,
S. Chaterji, and S. Bagchi, “Sonic: Application-aware
data passing for chained serverless applications,” in
USENIX Annual Technical Conference (USENIX ATC),
2021.

[45] A. Mahgoub, E. B. Yi, K. Shankar, S. Elnikety,
S. Chaterji, and S. Bagchi, “Orion and the three rights:
Sizing, bundling, and prewarming for serverless dags,” in
16th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 22), 2022, pp. 303–320.

[46] M. M. Rahman and M. H. Hasan, “Serverless architecture
for big data analytics,” in 2019 Global Conference for
Advancement in Technology (GCAT). IEEE, 2019, pp.
1–5.

[47] J. Spenger, P. Carbone, and P. Haller, “Portals: An
extension of dataflow streaming for stateful serverless,”
in Proceedings of the 2022 ACM SIGPLAN International
Symposium on New Ideas, New Paradigms, and Reflec-

tions on Programming and Software, 2022, pp. 153–171.

Zinuo Cai is currently a graduate student in Com-
puter Science at Shanghai Jiao Tong University,
China. He obtained the bachelor’s degree in Soft-
ware Engineering at Shanghai Jiao Tong University.
His research interests are focused on resource sched-
ule and system security in cloud computing.

Zebin Chen is currently a graduate student in the
Department of Computer Science and Engineering at
Shanghai Jiao Tong University, China. His research
interests center around the applications of distributed
systems.

Xinglei Chen is currently a graduate student in
Computer Science at Shanghai Jiao Tong University,
China. His research interests are focused on system
security in cloud computing.

Ruhui Ma is currently an associate professor in the
Department of Computer Science and Engineering
at Shanghai Jiao Tong University. He received his
Ph.D. degree in computer science from Shanghai
Jiao Tong University. His research interests include
cloud computing systems, AI systems, and machine
learning.

Haibing Guan is currently a professor in the School
of Electronic Information and Electronic Engineer-
ing, Shanghai Jiao Tong University, and the direc-
tor of the Shanghai Key Laboratory of Scalable
Computing and Systems. He received his Ph.D.
degree from Tongji University in 1999. His research
interests include cloud/distributed computing and
machine learning.

Rajkumar Buyya (Fellow, IEEE) is a red-
mond barry distinguished professor and director
of the Cloud Computing and Distributed Systems
(CLOUDS) Laboratory, University of Melbourne,
Australia. He has authored more than 625 publica-
tions and seven text books. He is one of the highly
cited authors in computer science and software
engineering worldwide (h-index=153, g-index=324,
more than 121,200 citations). Microsoft Academic
Search Index ranked him as #1 author in the world
(2005-2016) for both field rating and citations eval-

uations in the area of distributed and parallel computing. He is recognized as
a “Web of Science Highly Cited Researcher” during 2016-2021 by Thomson
Reuters.


	Introduction
	Background & Motivation
	Serverless Computing
	Data Stream Processing
	Amazon Cloud Services

	Design
	Overview
	Parallel Workflow
	State Storage
	Fault Tolerance

	Evaluation
	Environment
	Performance Metrics
	Performance

	Related Work
	Conclusion
	Biographies
	Zinuo Cai
	Zebin Chen
	Xinglei Chen
	Ruhui Ma
	Haibing Guan
	Rajkumar Buyya


