
The Journal of Systems and Software 155 (2019) 104–129

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

New Trends and Ideas

Holistic resource management for sustainable and reliable cloud

computing: An innovative solution to global challenge

Sukhpal Singh Gill a , b , ∗, Peter Garraghan

a , Vlado Stankovski c , Giuliano Casale

d ,
Ruppa K. Thulasiram

e , Soumya K. Ghosh

f , Kotagiri Ramamohanarao

b , Rajkumar Buyya

b

a School of Computing and Communications, Lancaster University, Lancashire, UK
b Cloud Computing and Distributed Systems (CLOUDS) Laboratory, School of Computing and Information Systems, The University of Melbourne, Melbourne,

Victoria, Australia
c Faculty of Civil and Geodetic Engineering, University of Ljubljana, Ljubljana, Slovenia
d Department of Computing, Imperial College London, London, UK
e Department of Computer Science, University of Manitoba, Manitoba, Canada
f Department of Computer Science and Engineering, Indian Institute of Technology, Kharagpur, India

a r t i c l e i n f o

Article history:

Received 20 February 2019

Revised 12 April 2019

Accepted 13 May 2019

Available online 14 May 2019

Keywords:

Cloud Computing

Energy Consumption

Sustainability

Reliability

Holistic Management

Cloud Datacenters

a b s t r a c t

Minimizing the energy consumption of servers within cloud computing systems is of upmost importance

to cloud providers toward reducing operational costs and enhancing service sustainability by consolidat-

ing services onto fewer active servers. Moreover, providers must also provision high levels of availability

and reliability, hence cloud services are frequently replicated across servers that subsequently increases

server energy consumption and resource overhead. These two objectives can present a potential conflict

within cloud resource management decision making that must balance between service consolidation and

replication to minimize energy consumption whilst maximizing server availability and reliability, respec-

tively. In this paper, we propose a cuckoo optimization-based energy-reliability aware resource schedul-

ing technique (CRUZE) for holistic management of cloud computing resources including servers, networks,

storage, and cooling systems. CRUZE clusters and executes heterogeneous workloads on provisioned cloud

resources and enhances the energy-efficiency and reduces the carbon footprint in datacenters without

adversely affecting cloud service reliability. We evaluate the effectiveness of CRUZE against existing state-

of-the-art solutions using the CloudSim toolkit. Results indicate that our proposed technique is capable

of reducing energy consumption by 20.1% whilst improving reliability and CPU utilization by 17.1% and

15.7% respectively without affecting other Quality of Service parameters.

© 2019 Elsevier Inc. All rights reserved.

f

e

d

s

t

s

s

(

s
1. Introduction

Commercial cloud providers such as Microsoft, Google, and

Amazon heavily depend on datacenters to support the ever-

increasing demand for computational requirements of their ser-

vices. Such demand has subsequently increased operational costs

of running large infrastructures, as well as producing substantial

carbon emissions that negatively impact the environmental sus-

tainability of cloud services (Buyya and Gill, 2018). Existing ef-
∗ Corresponding author at: Cloud Computing and Distributed Systems (CLOUDS)

Laboratory, School of Computing and Information Systems, The University of Mel-

bourne, Melbourne 3010, Victoria, Australia

E-mail addresses: s.s.gill1@lancaster.ac.uk (S.S. Gill), p.garraghan@lancaster.ac.uk

(P. Garraghan), vlado.stankovski@fgg.uni-lj.si (V. Stankovski), g.casale@imperial.ac.uk

(G. Casale), tulsi@cs.umanitoba.ca (R.K. Thulasiram), skg@cse.iitkgp.ac.in (S.K.

Ghosh), kotagiri@unimelb.edu.au (K. Ramamohanarao), rbuyya@unimelb.edu.au (R.

Buyya).

a

s

m

2

e

c

w

t

https://doi.org/10.1016/j.jss.2019.05.025

0164-1212/© 2019 Elsevier Inc. All rights reserved.
orts to tackle this problem primarily focus on minimizing the

nergy consumption of servers via service consolidation to re-

uce the number of active servers and increase datacenter re-

ource utilization (Buyya and Gill, 2018; Gill and Buyya, 2019; Mas-

elic et al., 2015). However, such approaches typically do not con-

ider other core datacenter components, including the network,

torage, and cooling systems, which constitute significant amount

32% approximately) of total Cloud DataCentres (CDC) power con-

umption (Barroso and Clidaras, 2013). Server consolidation un-

ware of the cooling system may increase the number of hot

pots in the datacenter which subsequently increases the require-

ent of cooling capacity and reduces cooling efficiency (Li et al.,

014). Hotspot mitigation is performed via load balancing. How-

ver, load balancing can widely spread communicating Virtual Ma-

hines (VMs) across multiple hosts without considering their pair-

ise network traffic, increasing network cost and energy consump-

ion (Kaur et al., 2018). Thus, to create cloud platforms that are

https://doi.org/10.1016/j.jss.2019.05.025
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2019.05.025&domain=pdf
mailto:s.s.gill1@lancaster.ac.uk
mailto:p.garraghan@lancaster.ac.uk
mailto:vlado.stankovski@fgg.uni-lj.si
mailto:g.casale@imperial.ac.uk
mailto:tulsi@cs.umanitoba.ca
mailto:skg@cse.iitkgp.ac.in
mailto:kotagiri@unimelb.edu.au
mailto:rbuyya@unimelb.edu.au
https://doi.org/10.1016/j.jss.2019.05.025

S.S. Gill, P. Garraghan and V. Stankovski et al. / The Journal of Systems and Software 155 (2019) 104–129 105

e

a

c

B

p

B

a

w

f

L

e

a

o

f

2

s

i

2

e

l

s

i

r

t

s

O

i

(

i

b

e

s

L

w

g

O

o

p

T

c

(

b

t

s

p

a

p

(

t

o

S

m

d

i

s

t

2

t

C

m

w

C

a

p

2

i

e

p

s

d

c

p

c

s

B

m

s

(

a

m

c

a

H

e

f

p

t

m

o

c

i

H

t

o

F

P

i

F

a

c

s

e

a

a

T

e

e

r

2

E

s

s

f

r

b

s

o

w

t

a
nergy efficient, a resource management approach capable of man-

ging all these resources (network, storage, servers, memory and

ooling components) in a holistic manner is required (Gill and

uyya, 2019).

While energy efficiency is critical, cloud providers must also

rovide highly available and reliable cloud services (Gill and

uyya, 2019). However, with the growing adoption of cloud, CDCs

re rapidly expanding in terms of scale and system complexity,

hich has subsequently increased the frequency and diversity of

ailures (Garraghan et al., 2014). These failures range across Service

evel Agreement (SLA) violation, data corruption, loss/premature

xecution termination, degrading cloud service performance and

vailability (Mastelic et al., 2015). In order to address this problem,

ne of the most common practices is to replicate cloud services

requently to minimize the risk of simultaneous failure (Gill et al.,

019). However, replicas require additional resource usage from

ervers within the CDC leading to extra resource usage which

ncreases their respective power consumption (Garraghan et al.,

014). It has been reported that a huge quantity of base-load en-

rgy is consumed even when actual cloud resource usage is very

ow or even idle (Shuja et al., 2016; Sharma et al., 2016). This re-

ults in a potential conflict in resource management decision mak-

ng within the CDC to balance between energy consumption and

eliability (Chang et al., 2017; Taherizadeh et al., 2018). In order

o minimize server power usage, it would be preferable to con-

olidate servers and power down idle machines (Gill et al., 2019).

n the other hand, in order to maximize cloud service availabil-

ty and reliability, replicas across additional machines are required

 Gill and Buyya, 2018b). Therefore, a holistic resource management

s not only required for managing all aforementioned components,

ut must also consider replication and coordination of services to

nable reliable delivery of cloud services in a cost-efficient manner.

Heuristic methods such as evolutionary algorithm are a

uitable candidate to tackle the complexity of this problem.

i et al. (2018a) suggested that scheduling algorithms equipped

ith a Cuckoo Optimization (CO) algorithm can be used in this re-

ard because CO algorithm performs better than Particle Swarm

ptimization (PSO) and Ant Colony Optimization (ACO) in terms

f accuracy, speed and convergence (Yang, 2014) for solving batch

rocess and job scheduling problems (Rajabioun, 2011; Yang, 2014).

he main motivation of this research work is to extend a con-

eptual model proposed in Gill and Buyya (2019), Buyya and Gill

2018) and Gill and Buyya (2018b) to develop a C uckoo optimization

ased efficient R esource U tili Z ation techniqu E called CRUZE for holis-

ic management of all resources (servers, network, storage, cooling

ystems) to improve the energy efficiency and reduce carbon foot-

rint while minimizing service failure within hardware, service,

nd software to maintain required cloud service reliability. Our ap-

roach clusters the workloads based on their Quality of Service

QoS) parameters for provisioning of cloud resources and schedules

he provisioned resources for workload execution using a Cuckoo

ptimization-based scheduling algorithm.

The rest of the article is structured as follows.

ection 2 presents the related work of existing holistic resource

anagement approaches. Section 3 presents the system model and

esign model of CRUZE. Section 4 proposes the resource provision-

ng and scheduling strategy. Section 5 describes the experimental

etup and presents the results and analysis. Section 6 summarizes

he paper and offers future research directions.

. Related work

Holistic management of cloud resources is a challenging

ask due to dynamic requirements of cloud users (Singh and

hana, 2016). The majority of existing works study the energy

anagement of servers alone without omitting other components,
hich consume substantial energy (Natu et al., 2016; Singh and

hana, 2013). This section describes the existing resource man-

gement techniques and their comparison with our proposed ap-

roach.

.1. Energy-aware cloud resource scheduling

Li et al. (2018a) proposed an Energy-Aware Resource Schedul-

ng (EARS) technique to execute workloads within virtual cloud

nvironments. EARS technique models the power and failure

rofiles for CDC and implements them using event-based cloud

imulator, and is an effective in reducing energy cost of cloud

ata center and improving task completion rate, however only

onsiders homogeneous workloads. Similarly, Li et al. (2018b) pro-

osed a VM Scheduling (VMS) technique to reduce energy

onsumption of servers and identifies the effect of energy con-

umption on SLA violation rate to improve user satisfaction.

alis et al. (2018) proposed a Holistic Approach (HA) for manage-

ent of IT infrastructure to reduce execution cost and energy con-

umption. Pérez et al. (2018) proposed a Holistic Workload Scaling

HWS) technique to enable scaling of resources vertically as well

s horizontally simultaneously and aids to reduce latency using

ulti-scaling approach without considering energy consumption of

loud resources. Luo et al. (2015) formulates energy consumption

s a task-core assignment and scheduling problem and proposed a

olistic Energy Optimization Framework (HEOF) to reduce thermal

ffect as well as cooling cost simultaneously and HEOF framework

ocuses on powerful computation capability. Liu et al. (2014) pro-

osed a Server-based Cloud-enabled Architecture (SCA) to improve

he energy-efficiency of different hardware components such as

emory, storage and processors. Furthermore, the performance

f SCA is evaluated using a case study of video tracking appli-

ation and experimental results show that SCA performs better

n terms of memory utilization. Guzek et al. (2013) proposed a

olistic Model for Resource Management (HMRM) in virtualiza-

ion based cloud datacenter to reduce the energy consumption

f different resources such as memory, storage and networking.

errer et al. (2012) proposed a Holistic Approach for Cloud Service

rovisioning (HACSP) to meet predicted and unforeseen changes

n resource requirements dynamically and optimizes energy cost.

eller et al. (2012) proposed a Holistic approach for Energy Man-

gement (HEM) technique for effective management of virtual

loud resources using dynamic web workloads and saves the

ubstantial amount of energy. Sitaram et al. (2015) proposed En-

rgy Efficient Data Center Management (EEDCM) technique under

vailability constraints and outlines the importance of availability

nd designs a hill climbing algorithm to prevent failure zone.

he experimental result shows that EEDCM technique reduces the

nergy consumption by the datacenter, but the trade-off between

nergy consumption and other important QoS parameters such as

eliability, cost and execution time are omitted.

.2. Reliability-aware cloud resource scheduling

Zhou et al., (2016) presented a Cloud Service Reliability

nhancement (CSRE) approach to utilization of network and

torage resources. This approach stores the state of VM using

ervice checkpointing, which is in executing state. Further, node

ailure predicator is designed to optimize the use of network

esources. Li et al., (2016) developed a convergent dispersal

ased multi-cloud storage (CDStore) solution to offer reliable,

ecure and cost-efficient cloud service. The proposed solution

ffers deterministic-based deduplication approach to save net-

ork bandwidth and storage space. Moreover, CDStore uses

wo-stage deduplication to protect the system from malicious

ttacks. Azimzadeh and Biabani (2017) proposed a Multi-Objective

106 S.S. Gill, P. Garraghan and V. Stankovski et al. / The Journal of Systems and Software 155 (2019) 104–129

Table 1

Comparison of CRUZE with existing holistic resource management techniques.

Technique Components of holistic resource management for cloud computing

Sustainability-aware and Reliability-aware Holistic Management

1 2 3 4 5 6 7 8 9 10 11 12 13

EARS (Li et al., 2018a) ✔ ✔ ✔

HA (Balis et al., 2018) ✔ ✔

VMS (Li et al., 2018b) ✔ ✔

HWS (Pérez et al., 2018) ✔

HEOF (Luo et al., 2015) ✔ ✔ ✔ ✔ ✔ ✔

SCA (Liu et al., 2014) ✔

HMRM (Guzek et al., 2013) ✔ ✔

HACSP (Ferrer et al., 2012) ✔

HEM (Feller et al., 2012) ✔ ✔

CSRE (Zhou et al., 2016) ✔ ✔ ✔

CDStore (Li et al., 2016) ✔ ✔

MORS (Azimzadeh and Biabani, 2017) ✔ ✔

AJIT (Poola et al., 2016) ✔ ✔ ✔

HSIA (Qu et al., 2016) ✔ ✔

E-storm (Liu et al., 2017) ✔ ✔

DCLCA (Latiff et al., 2018) ✔ ✔

GTCO (Shahdi-Pashaki et al., 2015) ✔ ✔ ✔

COTC (Sundarrajan et al., 2016) ✔ ✔

CORM (Abbasi and Mohri, 2016) ✔ ✔ ✔

CSATS (Navimipour and Milani, 2015) ✔ ✔

CSMH (Madni et al., 2017) ✔ ✔

EEDCM (Sitaram et al., 2015) ✔

ROCDC (Luo et al., 2016) ✔ ✔

CRUZE (proposed) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Abbreviations: 1 – heterogeneous workloads, 2 – workload clustering, 3 – provisioning based scheduling, 4 – Cuckoo optimization scheduling, 5 –

failures, 6 – application QoS, 7 – capacity planning, 8 – energy management, 9 – thermal-aware scheduling, 10 – cooling, 11 – virtualization, 12 –

renewable energy and 13 – waste heat utilization.

l

p

S

T

p

o

C

a

d

c

b

a

n

s

v

w

H

o

2

C

s

c

2

t

i

t

o

i

m

H

r

N
Resource Scheduling (MORS) approach to increase the reliability

of cloud service and optimize the execution time. Further, authors

identify a trade-off between reliability and execution time for

efficient execution of HPC (High Performance Computing) work-

loads. Poola et al. (2016) proposed an Adaptive and Just-In-Time

(AJIT) scheduling approach using spot and on-demand instances

to provide fault management mechanism. This approach uses

resource consolidation to optimize execution time and cost and

experimental results indicates that AJIT is efficient for execution

of deadline-oriented workloads. Qu et al. (2016) proposed a Het-

erogeneous Spot Instances-based Auto-scaling (HSIA) approach to

execute web applications in a reliable manager. Further, HSIA ap-

proach designed a fault tolerant system to improve the availability

and reduce the execution cost and response time of cloud service.

Liu et al. (2017) proposed a replication-based state management

(E-Storm) approach actively maintains multiple state backups on

different VMs during the execution of real-world and synthetic

streaming applications. The performance of E-Storm is evaluated

against checkpointing method and experimental results indicates

that E-Storm achieves effective results in terms of latency and

throughput. Shafie et al., (2018) proposed a Dynamic Clustering

League Championship Approach (DCLCA) to minimize fault re-

duction in task failure during resource scheduling for workload

execution. Luo et al. (2016) proposed a Resource Optimization

method for Cloud Data Center (ROCDC), which designs a concep-

tual model to optimize the performance parameters reliability and

energy while scheduling resources. However, this approach was

not validated via simulation or experimentation.

2.3. Cuckoo optimization based energy-aware cloud resource

scheduling

Shahdi-Pashaki et al. (2015) proposed a Group Technology-

based model and Cuckoo Optimization (GTCO) algorithm to al-

locate resources for effective mapping of VMs to cloud work-
oads. GTCO reduces energy cost during execution of VMs and

erforms better than round robin based resource scheduling.

undarrajan et al. (2016) proposed a Cuckoo Optimization based

ask Scheduling (COTC) algorithm to schedule the tasks in cloud

rocessing and improves the energy utilization for the execution

f homogeneous workloads. Abbasi and Mohri, (2016) proposed a

uckoo Optimization based Resource Management (CORM) mech-

nism for task scheduling, which improves load balancing to re-

uce energy cost. CORM improves energy-efficiency during exe-

ution of cloud resources and performs better than round robin

ased resource scheduling. Navimipour and Milani (2015) proposed

 Cuckoo Search Algorithm based Task Scheduling (CSATS) tech-

ique for effective utilization of cloud resources. Authors just mea-

ured the fitness value (execution time) of CSATS with different

alues of probability to find the cloud resource for execution of

orkloads. Madni et al. (2017) proposed a Cuckoo Search Meta-

euristic (CSMH) algorithm, which optimizes energy consumption

f cloud workloads. The performance of COTC (Sundarrajan et al.,

016) and CSMH (Madni et al., 2017) have been evaluated using

loudSim (Calheiros et al., 2011) and both reduces energy cost of

ervers without focusing on other components of the cloud data-

enter.

.4. Comparison of CRUZE with existing resource scheduling

echniques

Table 1 compares our proposed technique (CRUZE) with ex-

sting resource scheduling approaches discussed above. We iden-

ified that existing approaches for holistic resource management

nly consider one or two components simultaneously. The major-

ty of existing work schedule resources for the execution of ho-

ogeneous workloads while others like EARS (Li et al., 2018a),

EOF (Luo et al., 2015) and AJIT (Poola et al., 2016) schedule

esources for the execution of heterogeneous workloads as well.

one of the existing works considers clustering of workloads

S.S. Gill, P. Garraghan and V. Stankovski et al. / The Journal of Systems and Software 155 (2019) 104–129 107

Fig. 1. System model.

f

i

t

P

(

a

f

s

a

M

(

t

m

a

s

a

c

3

(

n

c

or resource provisioning. Provisioning based resource schedul-

ng is only considered in CSRE (Zhou et al., 2016). Cuckoo Op-

imization (CO) based scheduling is performed in GTCO (Shahdi-

ashaki et al., 2015), COTC (Sundarrajan et al., 2016), CORM

 Abbasi and Mohri, 2016), CSATS (Navimipour and Milani, 2015)

nd CSMH (Madni et al., 2017), but scheduled resources only

or homogenous cloud workload without any provisioning of re-

ources. GTCO (Shahdi-Pashaki et al., 2015) optimizes energy cost

nd latency but COTC (Sundarrajan et al., 2016), CORM (Abbasi and

ohri, 2016), CSATS (Navimipour and Milani, 2015) and CSMH

 Madni et al., 2017) only optimizes energy cost and execution

ime. This is the first research paper which focuses on holistic

anagement of all CDC components toward providing reliable

nd sustainable cloud services. The proposed technique (CRUZE)

chedules the provisioned resources for the execution of clustered

nd heterogeneous workloads to enable reliable and sustainable

loud services.

. System model

As our proposed approach operates within a holistic CDC

 Gill and Buyya, 2019), we present and describe all core compo-

ents within the system as shown in Fig. 1. Our approach considers

omponents within all levels of cloud service provisioning.

1. Software as a Service (SaaS): This layer handles the incoming

user workloads (batch style or interactive) and forward those
workloads (requests or user sessions) to workload manager as

discussed in Section 4.1 . Based on their QoS requirements such

as deadlines and budget constraints, workload manager main-

tains the queue of workloads in a specific order based on their

priorities.

2. Platform as a Service (PaaS) : This layer deploys a controller to

handle the different functions of the system. Controller sched-

ules the provisioned cloud resources efficiently with three main

objectives: 1) maximize resource utilization, 2) minimize en-

ergy consumption and 3) improve the reliability and sustain-

ability of cloud datacenters. Further, a controller (middleware)

has five sub modules: cooling manager, energy manager, fault

manager, VM/resource manager and workload manager and

roles of sub modules is described below:

a) Workload manager maintains the queue of arriving user

workloads from the application manager and recognizes

their QoS constraints and forward the QoS information to

the next module i.e. VM/resource manager for provisioning

and scheduling of resources.

b) VM/resource manager schedules the provisioned resources

for their execution using virtual or physical machines based

on QoS requirements of workload.

c) Fault manager performs fault detection and correction with

the minimal performance degradation. We have consid-

ered three types of faults for this research work: VM cre-

ation failures, host failures (Processing Elements failure and

108 S.S. Gill, P. Garraghan and V. Stankovski et al. / The Journal of Systems and Software 155 (2019) 104–129

w

w

u

E

w

p

o

u

E

e

w

E

(

p

u

i

i

E

a

i

R

w

r

r

E

E

w

u

i

l

w

w

g

t

F

t

λ
i =1

memory failure) and high-level failures like cloudlets fail-

ures (which are caused by any networking problem)

(Gill and Buyya, 2018b). FIM-SIM (Nita et al., 2014) is inte-

grated with CloudSim toolkit (Calheiros et al., 2011) to sim-

ulate failures as discussed in Section 5 .

d) Data Center (DC) Manager acts as a broker to handle other

modules such as cooling manager and energy manager for

cooling and energy management respectively.

The working of controller (CRUZE) is discussed in Section 4 in

detail.

3. Infrastructure as a Service (IaaS): IaaS layer comprises of infor-

mation related to cloud infrastructure such as VMs and CDCs.

Furthermore, the virtualization layer enables workload balanc-

ing via VM migration. The variations of the temperature of

different VMs running at different cores is measured, moni-

tored and controlled by proactive temperature-aware scheduler.

Power Management Unit (PMU) is deployed to provide and con-

trol the power for different components of cloud data centers.

Check-pointing mechanism is provided by Dynamic Random-

Access Memory (DRAM) by storing the current states of VMs

(Gill et al., 2019). Thermal sensors monitor the value of tem-

perature and forward to the Thermal profiling and monitoring

module to analyze the temperature variations of cloud datacen-

ters. When system generates thermal alert then heat controller

takes a required action to control the temperature if it is higher

than its threshold value and maintains the performance of dat-

acenter. Uninterruptible Power Supply (UPS) is deployed to con-

tinue the power in case of power failure from main sources.

For cooling management, the district heating management uses

water economizer, outside air economizer and chiller plant to

control the temperature of CDC. Energy manager manages the

energy produced from renewable and non-renewable sources.

Sustainable CDCs focuses more on renewable energy sources

(solar and wind) (Gill and Buyya, 2019; Guitart, 2017). To pro-

vide reliable services, CDC can prefer grid energy for the exe-

cution of deadline-aware workloads. Automatic Transfer Switch

(ATS) manages the electricity producing from renewable as well

as non-renewable sources. Moreover, Power Distribution Unit

(PDU) transfers the energy to all the devices of cloud datacen-

ters and cooling components.

3.1. Design models

We have used following design models for holistic management

of cloud resources:

a) Energy Model : The energy model is developed on the basis

that resource utilization has a linear relationship with energy

consumption (Li et al., 2018a; Balis et al., 2018; Gill and Buyya,

2018; Gill et al., 2019; Singh and Chana, 2016; Möbius et al.,

2014). Energy Consumption (E) of a CDC can be expressed as

Eq. (1) :

E = E Processor + E Storage + E Memory + E Network + E Cooling + E Extra (1)

E Processor represents the processor’s energy consumption, which

is calculated using Eq. (2) :

E Processor =

r= cores ∑

r=1

(
E dynamic + E SC + E Leakage + E idle

)
(2)

where E dynamic represents dynamic energy consumption and cal-
culated using Eq. (3) , E SC represents short-circuit energy consump-

tion, E Leakage represents power loss due to transistor leakage cur-

rent and E idle represents the energy consumption when processor

component is idle.

E dynamic = C V

2 f (3)
here C is capacitance, f is frequency, and V is voltage.

E Storage represents the energy consumption of storage device,

hich performs data read and write operations and it is calculated

sing Eq. (4) :

 Storage = E ReadOperation + E WriteOperation + E idle (4)

here E idle represents the energy consumption when storage com-

onent is idle.

E Memory represents the energy consumption of the main mem-

ry (RAM/DRAM) and cache memory (SRAM), which is calculated

sing Eq. (5) :

 Memory = E SRAM

+ E DRAM

(5)

E Network represents the energy consumption of networking

quipment such as routers, switches and gateways, LAN cards,

hich is calculated using Eq. (6) :

 Network = E Router + E Gateway + E LANcard + E Switch (6)

E Cooling represents the energy is consumed by cooling devices

air conditioners (AC), compressors and fans) to maintain the tem-

erature of cloud datacenter (Li et al., 2018a), which is calculated

sing Eq. (7) .

E Cooling = E AC + E Compressor + E F an (7)

E Extra represents the energy consumption of other parts, includ-

ng the current conversion loss and others, which is calculated us-

ng Eq. (8) :

 Extra = E Motherboard +

F ∑

f=0

E connector, f (8)

where E Motherboard is energy consumed by motherboard (s) and
F ∑

f=0

E connector, f is energy consumed by a connector (port) running

t the frequency f .

For a resource r k at given time t , the resource utilization RESU t, k

s defined as (Eq. 9):

ES U t,k =

m ∑

i =1

r u t,k,i (9)

here m is the number of cloud workloads running at time t,

u t, k, i is the resource (VMs) usage of workload w i on resource

 k at given time t . The actual energy consumption (E consumption) is

CON t, k of a resource r k at given time t is defined as (Eq. 10):

 consumption = E CO N t,k = (E max − E min) × RE S U t,k + E min (10)

here E max is the energy consumption at the peak load (or 100%

tilization) and E min is the minimum consumption of energy in the

dle/active mode (or as low as 1% utilization), which can be calcu-

ated using Eq. (1) through profiling.

b) Reliability model: Reliability of cloud services is the ability

to provision correct service (Gill and Buyya, 2018b; Gill et al.,

2019), and is calculated as (Eq. 11):

R serv ice = e −λt (11)

here t is time for the resource to deal with its request for any

orkload execution and λ is the failure rate of the resource at the

iven time, which is calculated using Eq. (13) .

The list of available SLAs = < m 1 , m 2 …………….. m n > , where n is

he total number of SLAs.

 ailure (m) =

{
1 , m is not v iolated
0 , m is v iolated,

(12)

Failure rate (λ) is computed as a ratio of the summation of all

he SLA violated to the total number of SLAs (Gill et al., 2019).

=

n ∑

(
Failure (m i)

n

)
(13)

S.S. Gill, P. Garraghan and V. Stankovski et al. / The Journal of Systems and Software 155 (2019) 104–129 109

M
ry B

y

c

D

D

p

N

w

(

(

i

o

w

t

r

R

a

w

m

p

d

t

p

b

e

E

r

2

c

f

a

w

s

4

w

c

r

i

Q

G

o

e

F

s

i

o

s

t

o

c

w

c

v

4

q

s

t

b

f

2

i
c) Capacity planning model: The capacity model is defined in

terms of memory utilization, disk utilization and network uti-

lization at given time t (Kouki and Ledoux, 2012). The formula

for calculating memory utilization (M Utilization) in percentage is

as follows [Eq. 14] :

 Ut ilizat ion =

Total Physical Memory − (Memory Free + Memo

Total Physical Memor

The formula for calculating disk utilization (D Utilization) in per-

entage is as follows (Eq. 16):

 Usage =

T otal Used

T otal HD size
× 100 (15)

 Ut ilizat ion =

Storage Al l ocat ion Unit s × Storage Used

Storage Al l ocat ion Unit s × Storage Size
× 100

(16)

The formula for calculating network utilization (N Utilization) in

ercentage is as follows (Eq. 17):

 Ut ilizat ion =

data bits

band wid th × interv al
× 100 (17)

d) Temperature model: We used Computer Room Air Condition-

ing (CRAC) model and RC (where R and C are thermal resistance

(k/w) and heat capacity (j/k) of the host respectively) thermal

model (Moore et al., 2005; Zhang and Chatha, 2007; Qinghui

et al., 2008; Lazic et al., 2018) to design temperature model for

calculation of datacenter temperature (Datacenter Temp). The fol-

lowing formula is used to calculate the temperature of datacen-

ter (Eq. 18).

Datacente r Temp = T em p inlet +

n ∑

i =1

(
T em p CPU i

n

)
+ T initial ×e −RC

(18)

here CRAC model is used to calculate inlet temperature

 Temp inlet) and RC model is used to calculate CPU temperature

 Temp CPU). T initial is the initial temperature of the CPU. 1 ≤ i ≤ n, n

s the number of CPUs.

e) Renewable energy model: A renewable energy model

(Tschudi et al., 2010) is used in terms of Energy Reuse Ef-

fectiveness (ERE) and Eq. (19) is used to calculate its value.

ERE =

E − Energ y Reused

E
(19)

The value of E is calculated using Eq. (1) . Energy Reused is amount

f energy reused by different IT equipment.

f) Waste heat utilization model: The district heating man-

agement based waste heat utilization model (Karellas and

Braimakis, 2016) is used in terms of recirculation ratio (R R) and

it is defined as the following (Eq. 20):

R R =

W m

W s
(20)

here W m

= mass flow rate of the water entering the circula-

ion system, kilograms per second (kg/s) and W s = mass flow

ate of the steam generated in the circulation system, kg/s.

esource manager utilizes the waste heat to generate renew-

ble energy to reduce electricity costs and carbon emissions,

hich further improves the sustainability of CDC in an efficient

anner.
uffers + Cache Memory) × 100 (14)

g) Cooling management model: A Water based Cooling Manage-

ment Model (Liu et al., 2012) is used in terms of Datacenter

Cooling System (DCS) Efficiency or cooling effectiveness and it

is defined as the following (Eq. 21):

DCS Efficiency = α
Hea t Remov ed (t)

ENC N Cooling

(21)

α = T em p ExhaustingAir − T em p OutsideAir (22)

Heat Removed (t) is calculated as the heat absorbed by the heat

ump per unit time t and ENCN Cooling is work done by the cooling

evices (compressor, air conditioner and fan) of the heat pump to

ransfer the thermal energy. Where α is weight to prioritize com-

onents of the DCS Efficiency and it is the temperature difference

etween outside air temperature and the temperature of the (hot)

xhausting air of CRAC model (Moore et al., 2005) as specified in

q. (22) . Outside air temperature is the temperature of data center

oom (Zhang and Chatha K, 2007; Qinghui et al., 2008; Lazic et al.,

018). The exhausting air is exhausted from server rack, which

ontains server fans, air conditioners and compressors for smooth

unctioning of CDC (Liu et al., 2012). Different from the outside

ir cooling, the chiller cooling effectiveness does not change much

ith temperature and the variation over different IT load is much

maller than that under outside air cooling.

. Resource provisioning and scheduling

It is very challenging to schedule provisioned resources for

orkload execution and maintain reliability and sustainability of

loud service simultaneously (Li et al., 2018a; Guitart, 2017). Cloud

esource scheduling is a tedious task due to the problem of find-

ng the best match of resource-workload pair based on the user

oS requirements (Singh and Chana, 2015; Gill and Buyya, 2018;

ill et al., 2019). The problem can be expressed as: mapping a set

f independent cloud workloads { w 1 , w 2 , w 3 , . . ., w m

} to a set of het-

rogeneous and dynamic resources { r 1 , r 2 , r 3 , . . ., r n } has been taken.

or continuous problem, R = { r k | 1 ≤ k ≤ n} is the collection of re-

ources and n is the total number of resources. W = { w i |1 ≤ i ≤ m}

s the collection of cloud workloads and m is the total number

f cloud workloads. Fig. 2 shows the resource provisioning and

cheduling mechanism for execution of user workloads, which de-

ermines the most suited resources for a given workload. CRUZE

perates by performing the following steps: 1) analyzes workload

haracteristics with respective QoS requirements, 2) categorizes

orkload based on their common QoS requirements, 3) provisions

loud resources for categorized workloads and 4) schedule the pro-

isioned resources for workload execution.

.1. Clustering of workloads

Table 2 lists the various types of workload and their QoS re-

uirements (Gill and Buyya, 2018; Gill et al., 2019), which are con-

idered for this research work.

Further, k-means based clustering algorithm is used for clus-

ering the workloads for execution on different set of resources

ecause k-means clustering has been demonstrating to be an ef-

ective means for cloud workload categorization (Moreno et al.,

014). The process of workload clustering using k-means cluster-

ng algorithm has been described in previous research work in

110 S.S. Gill, P. Garraghan and V. Stankovski et al. / The Journal of Systems and Software 155 (2019) 104–129

Fig. 2. Architecture of resource management in CRUZE.

Table 2

Cloud workloads and their key QoS requirements.

Workload name QoS requirements

Technological computing Computing capacity

Websites High availability, High network bandwidth and Reliable storage

E-Commerce Customizability and Variable computing load

Graphics Oriented Visibility, Data backup, Latency and Network bandwidth

Backup and Storage Services Persistence and Reliability

Endeavour Software Correctness, High availability and Security

Productivity Applications Security, Data backup, Latency and Network bandwidth

Critical Internet Applications Usability, Serviceability and High availability

Mobile Computing Services Portability, Reliability and High availability

Software/Project Development and Testing Testing time, Flexibility and User self-service rate

Central Financial Services Integrity, Changeability, High availability and Security

Online Transaction Processing Usability, Internet accessibility, High availability and Security

Performance Testing SLA Violation Rate, Resource Utilization, Energy, Cost and Time

Table 3

K-means based clustering of workloads.

Cluster Cluster name Workloads

C4 Administration Graphics oriented, Software/Project

development and testing, Productivity

applications, Central financial services, Online

transaction processing and endeavour software

C3 Communication Mobile computing services, Critical internet

applications and websites

C2 Storage Backup and storage services and E-commerce

C1 Compute Performance testing and technical computing

4

a

i

a

s

a

o

a

a

e

e

F

c

l

s

t

P

s

o

p

s

s

c

a
detail (Singh and Chana, 2015). Final set of workloads are shown

in Table 3 .

4.2. Resource provisioning

The resources are provisioned for clustered workload us-

ing a resource provisioning technique i.e. Q-aware (Singh and

Chana, 2015) based on the requirement of workloads of differ-

ent clusters as described in Table 3 . After the provisioning of re-

sources, workloads are submitted to resource scheduler. Then, the

resource scheduler will ask to submit the workload for resources

provisioned. After this, the resource scheduler returns results to

the corresponding cloud user, which contains the resource infor-

mation (Singh and Chana, 2015).
.3. Cuckoo optimization based resource scheduling algorithm

Our proposed scheduling algorithm attempts to minimize over-

ll cloud energy consumption whilst maximizing system reliabil-

ty. Attaining these two objectives together is typically considered

 trade-off; consolidating VMs onto fewer active servers minimizes

ystem energy consumption, server failure can affect multiple VMs

nd reduce system reliability. In contrast, increasing the number

f VM replicas maximizes system reliability, however also incurs

dditional energy costs due to greater computation requirements

nd active servers. To overcome this impact, a trade-off between

nergy consumption and reliability is required to provide cost-

fficient cloud services. Specifically, whilst Dynamic Voltage and

requency Scaling (DVFS) based energy management techniques

an reduce energy consumption, response time and service de-

ay are increased due to the switching of resources between high

caling and low scaling modes. Furthermore, reliability of the sys-

em component is also affected by excessive turning on/off servers.

ower modulation decreases the reliability of server components

uch as storage devices, memory etc. Therefore, there is a need

f new energy-aware resource management techniques to reduce

ower consumption whilst incurring minimal impact upon cloud

ervice reliability (Sharma et al., 2016).

Cuckoo Optimization (CO) algorithm is a based resource

cheduling technique is designed for execution of user workload

onsidering both energy consumption and reliability. The goal of

n objective function is to minimize system energy consumption

S.S. Gill, P. Garraghan and V. Stankovski et al. / The Journal of Systems and Software 155 (2019) 104–129 111

a

w

s

F

w

n

R

t

m

m

(

o

i

s

t

o

s

c

t

r

t

a

r

t

t

d

e

t

t

a

w

i

s

s

R

w

v

o

e

u

r

W

s

o

r

d

r

o

t

T

t

t

G

r

l

t

i

b

a

r

t

r

s

t

n

r

r

(

n

d

i

b

e

t

t

s

t

t

s

i

t
nd maximize server reliability simultaneously for finishing all n

orkloads. We define fitness function (F) in terms of energy con-

umption and reliability as specified in Eq. (23) .

 = θ E consumption + δ R serv ice (23)

here 0 ≤ θ < 1 and 0 ≤ δ < 1 are weights to prioritize compo-

ents of the fitness function. Energy consumption (E consumption) and

eliability (R service) is calculated using Eqs. (10) and (11) respec-

ively. This objective function successfully captures the compro-

ise among QoS parameters as specified in Eq. (23) . Cuckoo Opti-

ization (CO) algorithm is motivated by the life of the cuckoo bird

 Rajabioun, 2011) as it adapts the features of a cuckoo and process

f laying eggs. CO algorithm has both local and global search abil-

ties and the performance of the CO algorithm has been demon-

trated to be more effective in comparison to PSO and ACO in

erms of accuracy, speed and convergence (Deb, 2019) for solving

ptimization problems such as batch process scheduling and job

cheduling (Rajabioun, 2011; Yang, 2014). The mapping and exe-

ution of the workloads on suitable cloud resources is recognized

o be an NP-complete problem and there is a need for novel algo-

ithm for resource scheduling with maximum reliability and sus-

ainability of cloud services (Li et al., 2018a). We have selected CO

lgorithm for scheduling of provisioned resources due to following

easons: a) capability to schedule resources for workload execu-

ion automatically, b) relatively straight forward integration with

raditional optimization techniques, and c) easy modification in a

ynamic cloud environment. Resource Utilization is a ratio of ex-

cution time of a workload executed by a particular resource to

otal uptime of that resource and it is specified in Eq. (24) . The to-

al uptime of resource is the amount of time that a resource from

 resource set is available for execution of workloads.

R U =

n ∑

i =1

(
execut ion t ime of a workload executed on i th resource

total uptime of i th resource

)

(24)

here n is the no. of resources. A resource set consist of number of

nstances. Eq. (25) shows i th resource (R i) contains instances (I) :

R i = [I i 1 , I i 2 , I iX] , where I i 1 , I i 2 , I iX

are instances of i t h resource and x ≤ 50 (25)

The value of resource utilization depends on the number of in-

tances of that resource are using to execute the workload. Re-

ource utilization for i th resource (R i) is shown in Eq. (26) .

 U i =

x ∑

a =1

(Execution T ime of W orkload on a th resource)

x ∑

a =1

(total uptime of a th resource)

(26)

here x is the number of instances and we have assumed the

alue of x ≤ 50 for this research work. Fig. 3 shows the flowchart

f CO algorithm based resource scheduling. Similar to the other

volutionary algorithms, this algorithm starts with an initial pop-

lation. In this research work, we have modified the CO algo-

ithm based on the requirements of cloud resource scheduling.

e have considered as Mature cuckoos (existing provisioned re-

ources) and their Eggs (new instances). Based on different values

f resource utilization (R U), initial population is considered as a

esource set and different resources are sorted in decreasing or-

er (R U 1 ≥ R U 2 ≥ . . . ≥ R U n). There are new instances of those

esources to be added to a specific resource for future execution

f workloads and these instances will become part of resource af-

er producing required performance (E consumpton < TV E && R Service >

 V), where T V is a threshold value for energy and TV is a
R E R
hreshold value for reliability (which are decided based on the his-

oric data of past execution of workloads (Singh and Chana, 2015;

ill et al., 2019)). The more number of instances are adding to a

esource pool, the more profit is gained (in terms of resource uti-

ization). Therefore, the improvement in resource utilization will be

he definition that CO algorithm intends to optimize.

The main objective of CO the algorithm in this research work

s to increase utilization of resources by selecting best resource

ased on their fitness value. Cuckoo search finds the most suit-

ble resource to create more instances in order to maximize their

esource utilization. After new instances performing as required,

hey come together to make new resources. Each instance has its

esource to execute workloads. The best instance among all the in-

tances will be the destination for the workloads for their execu-

ion. Then they move toward this best resource. They will inhabit

ear the best resource. Considering the number of instances each

esource has and the resource’s distance to the goal point (best

esource), some range of resource (in terms of Egg Laying Radius

ELR)) is dedicated to it, and is calculated using Eq. (33) . There is

o obvious metric on the space of resource sets, as opposed to n -

imensional space. The next step is that a resource begins to create

nstances in a stochastic manner inside the resource range, defined

y the value of ELR. This process lasts until the best resource with

xtreme value of profit (in terms of resource utilization) is ob-

ained and most of the instances of resource are gathered around

he same position.

The following are important functions of CO based resource

cheduling algorithm:

a) Initialize resource set : Cuckoo Habitat as a resource set

(Resource Set) is considered in CO based resource scheduling

algorithm. The resource set is an array of 1 × q var in q var -

dimensional optimization problem, the resource set is demon-

strated as follows Eq. (26) . Resource set contains different num-

ber of resources.

Resourc e Set = [R 1 , R 2 , R q v ar] , where R 1 ,

R 2 , R q v ar
are resources (27)

b) Initialize instance set of resource : Furthermore, every resource

contains instances (I) as shown in Eq. (28) .

R q v ar
=

[
I q v ar 1 , I q v ar 2 , I q v ar X

]
, where I q v ar 1 ,

I q v ar 2 , I q v ar X are instatnces and x ≤ 50

(28)

where x is the number of instances and we have assumed the

value of x ≤ 50 for this research work. I q v ar i ∈ {0, 1}, where

1 ≤ i ≤ 50 . The value 1 state that the particular instance is ini-

tialized and 0 represent the elimination of that instance from

the final set.

c) Determine profit: The profit of a resource set is ob-

tained by evaluation of profit function at a resource set

(R 1 , R 2 , R m

). So, profit function is shown in Eq.

(29) :

Profit = R U (Resourc e Set) = R U (R 1 , R 2 , R q v ar) (29)

Profit = R U ((I 11 , I 12 , I 1 X) ,

(I 21 , I 22 , I 2 X) ,

(I q v ar 1 , I q v ar 2 , I q v ar X)) (30)

Maximize the profit in terms of cost (− c t) for cost optimiza-

ion of resource scheduling. To apply the CO algorithm to solve

he minimization problems, it is sufficient to multiply the minus

ign by cost function. A negative sign means that an improvement

n the respective resource utilization results in a reduced cost. If

he resource utilization reduces, then it results in an increased cost

112 S.S. Gill, P. Garraghan and V. Stankovski et al. / The Journal of Systems and Software 155 (2019) 104–129

Fig. 3. The working of CO based resource scheduling algorithm.

m

a

d

i

(because negative times negative results in a positive). The magni-

tude of the change is given by the value of the cost. The sign gives

the direction of the change.

Profit = −Cost (Resourc e Set) = − c t (R 1 , R 2 , R q v ar)

(31)
Profit = − c t ((I 11 , I 12 , I 1 X) ,

(I 21 , I 22 , I 2 X) ,

(I q v ar 1 , I q v ar 2 , I q v ar X)) (32)
To begin the optimization algorithm, a candidate Resource set

atrix of size q pop × q var is created, where q pop is the value of

n initial population considered in a resource set. Then some ran-

omly produced number of instances is supposed for each of these

nitial resource sets.

d) Create instance(s): In this research work, each resource creates

1 to 50 instances. These values are used as the upper and

lower limits of instance creation to each resource set at differ-

ent iterations. In CO algorithm, instances are creating within a

S.S. Gill, P. Garraghan and V. Stankovski et al. / The Journal of Systems and Software 155 (2019) 104–129 113

Fig. 4. Resource creating their instances within the region defined by ELR.

E
t icul a

sourc

l

p

a

p

p

s

s

b

t

i

d

o

t

s

a

(

r

u

d

R

t

t

s

w

e

p

w

v

w

t

s

i

i

l

o

i

b

a

g

3

w

t

5

C

s

t

t

B

(

t

p

maximum distance from their resource set and this maximum

range is known as Egg Laying Radius (ELR). Based on the ELR

value, every resource generates instances as shown in Fig. 4 .

In a resource, there are two types of instances: stable and un-

stable. Stable instances are those which have maximum value

in terms of resource utilization and fitness value (Eq. 23). Fur-

ther, stable instance has also a capability to execute at least cer-

tain number of workloads. Otherwise, it is called as unstable

instance.

e) Calculate ELR: ELR is defined as the ratio of number of instances

of a current resource are executing a particular workload to the

total number of active instances of that resource and it is de-

scribed in Eq. (Kouki and Ledoux, 2012).

LR = μ ×
(

number of instances of i th resource execut ing a par

tot al number of acti v e inst ances of i th re

In an optimization problem with upper limit of var U and lower

imit of var L for variables, each resource set has an ELR, which is

roportional to the total number of instances of a resource set and

lso variable (var) limits of var U and var L . μ is an integer, sup-

osed to handle maximum value of ELR.

f) Instance selection : CO based resource scheduling algorithm (i)

finds the number of unstable instances, (ii) selects the resource

with minimum value of unstable instances, and (iii) create in-

stances of selected resource to execute set of workloads. In-

stance is selected based on its Fitness Value (F), calculated us-

ing Eq. (33) and start execution of workloads.

g) Monitor performance: The performance of workload execution

is monitored continuously and checks the instance requirement

(whether the provided instances are sufficient for execution of

current set of cloud workloads). The more number of instances

are provided to continue execution if provided instances are

less than required instances. It calculates the value of energy

consumption and reliability. The value of energy consumption

(E consumption) associated with it should be less than Threshold

Value (TV E) and the value of reliability (R Service) associated with

it should be more than Threshold Value (TV R) for successful

execution of workloads. Otherwise, it declares the current in-
r workl oad

e

)
× (v a r U − v a r L) (33)

stance as an unstable, eliminates unstable instance and add

new instance using following steps: a) select another resource

with maximum value of resource utilization, b) generate new

instances of resource inside their corresponding ELR, c) evalu-

ate the profit value of instances and d) choose instance which

has higher profit value. The performance is monitored continu-

ously until all the workloads are not executed.

The main steps of CO based resource scheduling algorithm are

resented as a pseudo-code in Algorithm 1 .

Initially, provisioned resources as an input for scheduling of re-

ources to execute cloud workloads, and both workload and re-

ource set contains integer values for our technique. Firstly, CO

ased resource scheduling algorithm initializes the resources. Fur-

her, it evaluates the resource utilization of all the resources us-

ng Eq. (24) to determine the profit and sorts the resources in

ecreasing order (R U 1 ≥ R U 2 ≥ . . . ≥ R U n) based on their value

f resource utilization. Then, it selects the best resource based on

he maximum value of resource utilization (R U). Further, it creates

ome number of instances [I 1 , I 2 , I X] for every resource

nd evaluates the value of the ELR for each resource using Eq.

33) . Moreover, each resource generates instances inside their cor-

esponding ELR and evaluate the Fitness Value (F) for all instances

sing Eq. (Shahdi-Pashaki et al., 2015) and determine the best in-

ividual with the best fitness value (which has maximum value of

 U and the value of energy consumption associated with it is less

han a threshold value and the value of reliability is more than its

hreshold value). Further, CO based resource scheduling algorithm

tarts execution of workloads and it checks the execution status of

orkloads. If all the workloads are executed successfully then ex-

cution stops otherwise it continues execution of workloads. The

erformance is monitored continuously during execution of cloud

orkloads. It checks the instance requirement (whether the pro-

ided instances are sufficient for execution of current set of cloud

orkloads). The more number of instances are provided to con-

inue execution if provided instances are less than required in-

tances. It calculates the value of energy consumption and reliabil-

ty. The value of energy consumption (E consumption) associated with

t should be less than Threshold Value (TV E) and the value of re-

iability (R Service) associated with it should be more than Thresh-

ld Value (TV R) for successful execution of workloads. Otherwise,

t declares the current instance as an unstable, eliminates unsta-

le instance and add new instance using following steps: 1) select

nother resource with maximum value of resource utilization, 2)

enerate new instances of resource inside their corresponding ELR,

) evaluate the profit value of instances and 4) choose instance

hich has higher profit value. The performance is monitored con-

inuously until all the workloads are not executed.

. Performance evaluation

We modeled and simulated a cloud environment using

loudSim (Calheiros et al., 2011), a prominent cloud computing

imulation framework. Fig. 5 shows the interaction of different en-

ities for simulation. Table 4 presents the resource configuration of

he simulation as we used in our previous research work (Gill and

uyya, 2018; Gill et al., 2019). We used three Physical Machines

PMs) with different number of virtual nodes (6, 4 and 2) and vir-

ual nodes are further divided into instances called Execution Com-

onents (ECs).

114 S.S. Gill, P. Garraghan and V. Stankovski et al. / The Journal of Systems and Software 155 (2019) 104–129

Algorithm 1

Cuckoo optimization based resource scheduling algorithm.

Input: Set of Provisioned Resources

Set of Workloads

Output: Execute Workloads

1. Start

2. Initialize Resource Set [R 1 , R 2 , R q v ar
]

3. Evaluate Resource Utilization (R U) using Eq. (24) for every resource to determine its Profit

4. Rank the Resources (R U 1 ≥ R U 2 ≥ . . . ≥ R U n) based on R U
5. Select Best Resource with maximum R U
6. Create instances of that resource R q v ar

= [I 1 , I 2 , I X]

7. Evaluate ELR for each resource using Eq. (33)

8. Each resource generates instances inside their corresponding ELR

9. Evaluate the Fitness Value (F) for all instances using Eq. (23)

10. Choose instance which has high F

11. Execute Workloads using selected instance of resource

12. if (All Workloads Executed Successfully == FALSE) then

13. While do

14. Continue Execution

15. Monitor Performance

16. if (Instances Required ≥ Instances Provided) then

17. While do

18. Add New Stable Instance

19. Calculate E consumption and R Srtvice

20. if (E consumption < TV E) then

21. if (R Service > TV R) then

22. break

23. else

24. Declare Current Instance is Unstable

25. Remove Unstable Instance

26. continue

27. else

28. continue

29. else

30. continue

31. else Stop

Fig. 5. Interaction of various entities in the simulated cloud environment.

Table 4

Configuration details.

Resource_Id Configuration Specifications Core

Operating

system Number of virtual

nodes

Number

of ECs

Price (C$/EC

time unit)

R1 Intel Core 2 Duo – 2.4 GHz 6 GB RAM and 320 GB HDD 2 Windows 6 (1 GB and 50 GB) 18 2

R2 Intel Core i5-2310- 2.9GHz 4 GB RAM and 160 GB HDD 2 Linux 4 (1 GB and 40 GB) 12 3

R3 Intel XEON E 52407-2.2 GHz 2 GB RAM and 160 GB HDD 2 Linux 2 (1 GB and 60GB) 6 4

a

C

i

C

h

d

w

Every EC contains their own cost of execution and it is mea-

sured with unit (C$/EC time unit (Sec)). EC measures cost per time

unit in Cloud dollars (C$).

We have integrated temperature and cooling manage-

ment model (Moore et al., 2005), renewable energy model

(Tschudi et al., 2010), waste heat management model (Karellas and

Braimakis, 2016), security manager (Gill and Buyya, 2018c)
nd Fault Injection Module (FIM-SIM) (Nita et al., 2014) to the

loudSim toolkit for simulation as shown in Fig. 6 . We have

ntegrated FIM-SIM (Nita et al., 2014) for fault management in

loudSim toolkit to simulate failures (VM creation failures and

ost failures) as discussed in Case-1 of Section 5.3 . The detailed

escription about experimental setup is given in previous research

ork (Gill and Buyya, 2018; Gill et al., 2019).

S.S. Gill, P. Garraghan and V. Stankovski et al. / The Journal of Systems and Software 155 (2019) 104–129 115

Fig. 6. Design description using class diagram.

c

s

l

l

G

P

t

d

i

(

t

B

p

m

2

B

e

e

(

c

e

C

5

t

i

a

e

C

r

fi

f

r

s

a

i

h

a

e

c

W

a

5

o

d

s

2

m

o

2

e

l

(

n

For the execution of workloads in our experiments, we have

hosen varied computational settings on top of heterogeneous re-

ources. The variety comes in the number of cores at the CPU-

evel, the page levels of the main memory, switches at the network

evel and disk space at the storage level (Calheiros et al., 2011;

rozev and Buyya, 2013; Lebre et al., 2015). Cores is the number of

rocessing Element’s (PE) required by the Cloudlet. Table 5 shows

he simulation parameters utilized in the various experiments un-

ertaken by this research work, also as identified from the ex-

sting empirical studies and literature such as fault management

 Li et al., 2018a; Gill and Buyya, 2018; Gill et al., 2019), applica-

ion’s QoS (Gill and Buyya, 2018a; Gill and Buyya, 2018b; Gill and

uyya, 2018c; Gill et al., 2019; Singh and Chana, 2016), capacity

lanning (Kouki and Ledoux, 2012; Qinghui et al., 2008), energy

anagement (Li et al., 2018a; Balis et al., 2018; Gill and Buyya,

018b; Singh and Chana, 2016), waste heat utilization (Karellas and

raimakis, 2016; Qinghui et al., 2008), renewable energy (Tschudi

t al., 2010; Liu et al., 2012), virtualization (Li et al., 2018a; Balis

t al., 2018; Singh and Chana, 2016), thermal-aware scheduling

 Moore et al., 2005; Lazic et al., 2018; Möbius et al., 2014) and

ooling management (Liu et al., 2012; Qinghui et al., 2008; Lazic

t al., 2018; Möbius et al., 2014). Experimental setup incorporated

loudSim to produce and retrieve simulation results.

.1. Workload

For performance evaluation, we have selected four different

ypes of cloud workload from every cluster of workloads as given

n Table 3 . Table 6 shows the different cloud workloads, which

re considered to evaluate the performance of CRUZE. To find the

xperiment statistics, 50 0-30 0 0 different workloads are executed.
RUZE processes different workloads using the different number of

esources to evaluate its performance with different resource con-

guration.

We selected the Poisson Distribution (Singh and Chana, 2015)

or workload submission in this research work due to following

easons: 1) evaluating the performance of workload execution for

pecific interval of time and 2) every workload is independent of

ll other workloads (number of workloads are arriving in first hour

s independent of the number of workloads arriving in any other

our).

CRUZE also maintains the details of every executed workload

nd stores into workload database, which can be used to test the

fficiency of CRUZE in future. For experimental results, we exe-

uted four different workloads [(i) Storage and Backup Data, (ii)

ebsites, (iii) Performance Testing and (iv) Software Development

nd Testing] with the same experimental setup.

.2. Baseline resource scheduling approaches

In order to evaluate our approach, we have selected three state-

f-the-art resource scheduling approaches from the literature (as

iscussed in Section 2). We have selected most relevant and recent

imilar work such as HMRM (Guzek et al., 2013), CSRE (Zhou et al.,

016) and CSMH (Madni et al., 2017) to evaluate the perfor-

ance of our proposed approach. The other reasons of selection

f these existing scheduling approaches are: HMRM (Guzek et al.,

013) manages cloud resources holistically by focusing on the en-

rgy consumption and CSRE (Zhou et al., 2016) executes work-

oads by improving the reliability of cloud service, while CSMH

 Madni et al., 2017) schedule resources in an energy-efficient man-

er using Cuckoo search meta-heuristic algorithm.

116 S.S. Gill, P. Garraghan and V. Stankovski et al. / The Journal of Systems and Software 155 (2019) 104–129

Table 5

Simulation Parameters and their values.

Parameter Value

Number of VMs (n) 36

Number of cloudlets (Workloads) 30 0 0

Bandwidth 10 0 0–30 0 0 B/S

CPU MIPS 20 0 0

Size of cloud workload 10 0 0 0 + (10%–30%) MB

Number of PEs per machine 1

PE ratings 10 0-40 0 0 MIPS

Cost per cloud workload 3 C$–5 C$

Memory size 2048-12576 MB

File size 300 + (15%–40%) MB

Cloud workload output size 300 + (15%–50%) MB

CPU temperature 10-27 °C
Inlet temperature 15-40 °C
W m = mass flow rate of the water entering the circulation system 0.08-0.024 kg/s

W s = mass flow rate of the steam generated in the circulation system 0.03-0.134 kg/s

Power (KW) 108-273 KW

Latency 20-90 Seconds

Heat Removed 10 0-1,0 0 0 Joules/Second

Cache memory size 4 MB – 16 MB

Energy reused 40 – 85%

Power consumption by processor 130W – 240W

Power consumption by cooling devices 400 W – 900W

Power Consumption by RAM 10W – 30W

Power consumption by storage 35W – 110W

Power consumption by network 70W-180W

Power consumption by extra components 2W-25W

Equipment cost (E i) 4-30 C$

Support contract cost (S i) 5-15 C$

Administrative costs (A i) 15-50 C$

Power cost per month (P i) 12-30 C$

Rack cost per month (R i) 3-12 C$

Communication cost (C i) 2-17 C$

Table 6

Details of cloud workloads.

Workload Cluster Description

Performance testing Compute (C1) CRUZE processes and converts an image file

(713 MB) to PNG format from JPG format. The

change of a one JPG file into PNG is taken as a

workload (in the form of Cloudlet).

Storage and backup data Storage (C2) Store a huge chunk of data (5 TB) and

generates a backup of data is considered as a

workload.

Websites Communication (C3) A large number of users are accessing a

website of university during Admission Period

is considered as a workload.

Software development and testing Administration (C4) Development and testing of an Agri-Info

Software to find out the productivity of a crop

is considered as a workload (Gill et al., 2017).

m

a

c

s

e

s

5

i

f

w
1) HMRM (Guzek et al., 2013) : Holistic Model for Resource

Management (HMRM) approach is designed for virtual cloud

environment to reduce energy consumption of different compo-

nents of cloud datacenters such as storage and network with-

out focusing on memory, processors, cooling systems. HMRM

executes only homogeneous cloud workloads.

2) CSRE (Zhou et al., 2016) : Cloud Service Reliability Enhance-

ment (CSRE) approach is developed to improve the storage

and network resource utilization during execution of workloads.

CSRE uses service checkpoint to store the state of all the VMs,

which are currently processing user workloads. Further, a node

failure predicator is developed to reduce the network resource

consumption. CSRE executes only homogeneous workloads and

considers only two types of resources such as storage and net-

work without focusing on memory, processors, cooling systems.

3) CSMH (Madni et al., 2017) : Cuckoo Search Meta-Heuristic

(CSMH) algorithm based resource scheduling approach is de-

signed to optimize the energy consumption of cloud resources
(processors only) for execution of homogeneous workloads

without focusing on other resources such as networks, mem-

ory, storage, cooling systems.

Our proposed approach (CRUZE) focuses on holistic manage-

ent of all resources (including servers, networks, memory, stor-

ge, cooling systems) to provide reliable as well as sustainable

loud services simultaneously, which schedules the provisioned re-

ources using evolutionary algorithm (Cuckoo Optimization) for the

xecution of clustered and heterogeneous workloads within their

pecified deadline, budget and other important QoS parameters.

.3. Experimental results

All the experiments utilized four different workloads described

n Table 6 . The various parameters are used to evaluate the per-

ormance of proposed approach for holistic resource management,

hich comprises of different categories such as fault management,

S.S. Gill, P. Garraghan and V. Stankovski et al. / The Journal of Systems and Software 155 (2019) 104–129 117

Table 7

Entitles of FIM-SIM and their functionalities.

FaultInjector FaultEvent FaultHandlerDatacenter

• Extends the SimEntity class • Extends the SimEvent class • Extends the Datacenter class
• Starts at simulation startup along with the other

entities from the system

• Describes a fault event: source, destination, time

and type; – tag type: HOST FAILURE, CLOUDLET

FAILURE, CREATE VM FAILURE

• Processes fault events sent by the FaultGenerator

• Responsible for inserting fault events at random

moments of time

• Updates the cloudlet execution/status according

to the fault event type
• The random generation of moments of time is

based on a statistical distribution (We used

Weibull Distribution (Gill et al., 2019) for this

research work.)

• Created in the Fault Injection Module. •Handles VM migration; – since host and VM are

static entities, all its state modification should be

processed by the datacenter.

a

h

s

c

m

f

m

f

b

f

n

t

F

t

c

2

t

h

N

d

(

t

w

t

d

t

2

h

a

b

c

c

e

d

(

c

t

s

c

w

s

a

W

i

e

d

e

r

d

t

p

C

r

d

C

a

1

s

C

c

l

o

i

r

m

s

m

s

(

l

C

w

v

p

c

f

a

i

C

w

p

t

b

a

(

(

E

W

m

o

w

i

a

1
pplication’s QoS, capacity planning, energy management, waste

eat utilization, renewable energy, virtualization, thermal-aware

cheduling and cooling management. The temporal evaluations are

onducted in a time period of 12 hours with 30 0 0 workloads sub-

itted. The performance of CRUZE is evaluated using following dif-

erent test cases:

Case 1 – Fault management: We have evaluated the perfor-

ance of CRUZE in terms of reliability and fault detection rate for

ault tolerance and used Eq. (11) to measure the value of relia-

ility. Fault detection rate is defined as the ratio of number of

aults/failures (hardware, software, network) detected to the total

umber of faults/failures in the system (Gill et al., 2019). Fault De-

ection Rate (FDR) is calculated using Eq. (34) .

DR =

Number of Faults Detected

Total number of Faults
(34)

Faults can be a network, software or hardware, which is de-

ected based on the violation of SLA. The Software faults/failures

an be occurred due to following reasons: 1) lesser storage space,

) resource unavailability, 3) deadlocks and 4) unhandled excep-

ions. The reasons of hardware faults/failures can be problems in

ardware parts such as hard disk, primary memory and processor.

etwork error can be breakage of network, scalability or physical

amage.

FIM-SIM: We have integrated Fault Injection Module (FIM-SIM)

 Nita et al., 2014; Gill et al., 2019) to inject faults automatically

o test the reliability of CRUZE as shown in Fig. 6 . FIM-SIM is

orking based on event-driven models and injects faults into

he CloudSim (Calheiros et al., 2011) using different statistical

istributions at runtime. A Weibull Distribution is used in order

o model failures characteristics when injecting faults (Gill et al.,

019). We injected three types of faults: VM creation failures,

ost failures (Processing Elements failure and memory failure)

nd high-level failures like cloudlets failures (which are caused

y any networking problem that CloudSim (Calheiros et al., 2011)

annot handle). The entities in CloudSim (Calheiros et al., 2011)

ommunicate through messages. Since host and VM are static

ntities, each change in their state should be realized by the

atacenter. The broker, based on the simulation configuration

number of cloudlets and their specification) will request the VM

reation, cloudlet scheduling and it will wait to be informed by

he datacenter when the cloudlets completion is realized. We have

imulated VM creation failures, host failures (hardware failure) and

loudlets failures (network failure) by creating fault injector thread,

hich sends the failure event based on the following command:

endNow(dataCenter.getId(), FaultEventTags.HOST_FAILURE, host);

nd it generates the events based on statistical distribution using

eibull Distribution (Gill et al., 2019). The Fault Tolerance Module

s extending the CloudSim core functions (see Fig. 6) with three

ntities (FaultInjector, FaultEvent and FaultHandlerDatacenter) as

escribed in Table 7 .

CRUZE uses the concept of Carburizer (Gill et al., 2018; Gill

t al., 2019) to perform process of hardware hardening, which
educes the frequency of faults/failures. CRUZE replaces the new

river (harden driver) with original in case of fault and update

he database regarding new faults to avoid future faults, which im-

roves the fault detection rate in CRUZE as compared to HMRM,

SRE and CSMH. Fig. 7 (a) shows the variation of fault detection

ate for CRUZE, HMRM, CSRE and CSMH. Fault detection rate is

ecreasing as number of workloads increases for CRUZE, HMRM,

SRE and CSMH, but CRUZE performs better than HMRM, CSRE

nd CSMH. The average value of fault detection rate in CRUZE is

9.99%, 21.14% and 22.45% more than HMRM, CSRE and CSMH re-

pectively. Dynamic Random-Access Memory (DRAM) provides the

heck-pointing mechanism to store the current states of VMs in

ase of failure (Gill et al., 2019). Fig. 7 (b) shows the variation of re-

iability for CRUZE, HMRM, CSRE and CSMH with different number

f workloads (50 0-30 0 0). The average value of reliability in CRUZE

s 19.07%, 19.75% and 20.98% more than HMRM, CSRE and CSMH

espectively.

Case 2 - Application QoS : We have considered three perfor-

ance parameters for application’s QoS : execution cost, time and

ecurity (Gill et al., 2018). Execution cost is defined as the total

oney that can be spent in one hour to execute the application

uccessfully and execution cost is measured in Cloud Dollars (C$)

 Gill and Buyya, 2019). We have used following formula to calcu-

ate Execution Cost (C) (Eq. 35).

 = E t × P rice (35)

here “price” of a resource is calculated using Table 4 and the

alue of E t is calculated using Eq. (36) . Fig. 7 (c) shows the com-

arison of CRUZE, HMRM, CSRE and CSMH in terms of execution

ost and cost is increasing with increase in number of workloads

or CRUZE, HMRM, CSRE and CSMH, but CRUZE consumes less cost

s compared to HMRM, CSRE and CSMH. The average value of cost

n CRUZE is 14.41%, 14.91% and 15.46% less than HMRM, CSRE and

SMH respectively.

In resource scheduler, CRUZE considers the impact of other

orkloads on current workload during execution. CRUZE schedules

rovisioned resources using Q-aware (Gill et al., 2018), which clus-

ers the workloads and execute within their specified deadline and

udget. Execution time is the amount of time required to execute

pplication successfully and execution time is measured in Seconds

 Gill and Buyya, 2019). Eq. (36) is used to calculate Execution Time

 E t).

 t =

m ∑

i =1

(
W C i − W S i

m

)
+ �t i (36)

here WC i is workload completion time and WS i is workload sub-

ission time, �t i is time to restart the node and m is the number

f workloads. Fig. 7 (d) shows the variation of an execution time

ith different number of workloads and time is increasing with

ncrease in number of workloads for both CRUZE, HMRM, CSRE

nd CSMH. The average value of execution time in CRUZE is 9.96%,

0.35% and 12.11% less than HMRM, CSRE and CSMH respectively

118 S.S. Gill, P. Garraghan and V. Stankovski et al. / The Journal of Systems and Software 155 (2019) 104–129

Fig. 7. Comparison of algorithms: (a) Fault detection rate, (b) Reliability, (c) Execution cost, (d) Execution time, (e) Intrusion detection rate, (f) Network bandwidth, (g) SLA

violation rate, (h) Availability, (i) Resource contention. Note: We have considered 36 resources for these results.

2

C

B

t

i

n

t

o

r

2

o

t

i

t

n

C

i

r

r

o

t

b

t

i

a

t

p

o

t
because CRUZE tracks the resource states automatically for effec-

tive decisions. Security is an ability of the computing system to

protect the system from malicious attacks and measured in terms

of Intrusion Detection Rate (IDR) (Gill and Buyya, 2018c). IDR is

described in Eq. (37) , which is the ratio of total number of true

positives to the total number of intrusions.

I DR =

T otal N umber of T rue P ositi v es

T otal Number of Intrusions
(37)

IDR considers the number of detected and blocked attacks.

CRUZE deploys security agents on different computing systems,

which trace unknown attacks (using an anomaly-based detector)

and known attacks (using a signature-based detector). It cap-

tures new anomalies based on existing data stored in the central

database (SNORT DB). CRUZE captures and detects anomalies us-

ing the Intrusion Detection System and labels it as anomalous or

normal traffic data by comparing its signatures with the signatures

of known attacks (Gill and Buyya, 2018c). A State Vector Machine-

based security agent detects the new anomalies and stores the in-

formation into the database to maintain a log about attacks. CRUZE

protects from security attacks: DDoS (HTTP Flood and Zero-Day At-

tack), Probing (NMAP and Ports sweep), U2R (Buffer Overflow and

Rootkits), R2L (IMAP, Guess password and SPY) and DoS (Teardrop,

SYN Flood, LAND and Smurf) as discussed in previous research

work (Gill and Buyya, 2018c). Fig. 7 (e) shows the comparison of

CRUZE, HMRM, CSRE and CSMH in terms of intrusion detection

rate with different number of workloads. The value of intrusion

detection rate is increasing with increase in number of workloads,

but CRUZE performs better than HMRM, CSRE and CSMH. The

value of intrusion detection rate in CRUZE is 19.20%, 21.45% and
0.86% more than HMRM, CSRE and CSMH respectively, because

RUZE uses an anomaly detector component i.e. SNORT (Gill and

uyya, 2018c). It is a signature based system to detect known at-

acks automatically and stores the signature of attack into database

f attack is unknown.

We have measured other important QoS parameters such as

etwork bandwidth, SLA violation rate, availability, resource con-

ention to test the performance of CRUZE with different number

f workloads and formulas to calculate the value of these QoS pa-

ameters is described in previous research work (Singh and Chana,

015; Gill et al., 2018; Gill et al., 2019). Fig. 7 (f) shows the value

f network bandwidth in CRUZE is 14.44%, 16.31% and 18.73% less

han HMRM, CSRE and CSMH respectively. This is because, CRUZE

dentifies the network faults automatically and it also prevents sys-

em from security attacks as discussed above, which improves the

etwork bandwidth of CRUZE as compared to HMRM, CSRE and

SMH. Fig. 7 (g) shows the value of SLA violation rate in CRUZE

s 23.68%, 24.42% and 27.45% less than HMRM, CSRE and CSMH

espectively. This is because, CRUZE uses admission control and

eserve resources for execution of workloads in advance based

n their QoS requirements specified in the SLA document. Fur-

her, CRUZE outperforms as it regulates the resources at runtime

ased on the user’s new QoS requirements during its execution

o avoid SLA violation. Fig. 7 (h) shows the value of availability

n CRUZE is 12.45%, 13.91% and 15.34% more than HMRM, CSRE

nd CSMH respectively. This is expected as the recovering faulty

ask manages the faults efficiently in CRUZE, which further im-

roves the availability of cloud services. Fig. 7 (i) shows the value

f resource contention in CRUZE is 17.56%, 18.79% and 19.42% less

han HMRM, CSRE and CSMH respectively. This is expected as the

S.S. Gill, P. Garraghan and V. Stankovski et al. / The Journal of Systems and Software 155 (2019) 104–129 119

Fig. 8. Comparison of algorithms: (a) Memory utilization, (b) Disk utilization, (c) Network utilization. Note: We have considered 36 resources for these results.

w

p

o

p

i

a

t

(

a

p

(

t

a

m

2

s

c

s

o

H

a

i

r

t

t

l

e

t

a

c

w

F

f

n

m

a

s

s

b

i

C

l

w

c

o

v

d

T

l

C

u

b

t

s

V

2

V

W

c

c

p

m

c

C

o

t

fi

c

r

o

m

n

(

t

s

e

T

a

c

n

e

s

a

f

R

(

o

T

s

a

m

u

Q

t

o

l
orkload execution is done using CRUZE, which is based on QoS

arameters based resource provisioning policy (Q-aware). Based

n deadline and priority of workload, clustering of workloads is

erformed, and resources are provisioned for effective schedul-

ng. This is also because of the low variation in execution time

cross various resources as the resource list that is obtained from

he resource provisioning unit is already filtered using Q-aware

 Singh and Chana, 2015).

Case 3 – Capacity planning: We have considered memory, disk

nd network utilization as a performance parameter for capacity

lanning and it is measured in percentage (%) using Eqs. (14) and

16) and Eq. (17) respectively. Fig. 8 (a) shows the memory utiliza-

ion during workload execution for CRUZE, HMRM, CSRE and CSMH

nd CRUZE executes the same number of workloads with better

emory utilization. The value of memory utilization in CRUZE is

4.78%, 25.45% and 25.91% more than HMRM, CSRE and CSMH re-

pectively. Fig. 8 (b) shows the disk utilization during workload exe-

ution for CRUZE, HMRM, CSRE and CSMH and CRUZE executes the

ame number of workloads with better disk utilization. The value

f disk utilization in CRUZE is 18%, 18.5% and 19.18% more than

MRM, CSRE and CSMH respectively. CRUZE gives higher memory

nd disk utilization as the algorithm consumes resources dynam-

cally based on the requirement of current workloads and unused

esources are scaled back to the resource pool. CRUZE keeps only

he required number of resources active, thus increasing its utiliza-

ion efficiency. Fig. 8 (c) shows the network utilization during work-

oad execution for CRUZE, HMRM, CSRE and CSMH and CRUZE ex-

cutes the same number of workloads with better network utiliza-

ion. The value of network utilization in CRUZE is 12.77%, 11.68%

nd 12.25% more than HMRM, CSRE and CSMH respectively be-

ause CRUZE performs data transmission with the least packet loss

hen network utilization reaches at its higher value. CRUZE has

IM-SIM based fault manager (as discussed in Case-1) to detect

aults at runtime, which further reduces the occurrence of same

etwork faults in future and it improves network utilization.

Case 4 – Energy management : We have evaluated the perfor-

ance of CRUZE in terms of energy consumption for energy man-

gement and used Eq. (10) to measure the value of energy con-

umption, which is measured in kilo Watt hour (kWh). Fig. 9 (a)

hows the variation of energy consumption with different num-

er of workloads and the average value of energy consumption

n CRUZE is 17.35%, 18.71% and 20.10% less than HMRM, CSRE and

SMH respectively. This is because CRUZE executes clustered work-

oads instead of individual workloads, which minimizes the net-

ork traffic and number of switches and further reduces energy

onsumption.

Case 5 – Virtualization : We have evaluated the performance

f CRUZE in terms of CPU utilization and VM Co-Location Cost for

irtualization. Fig. 9 (b) shows the variation of CPU utilization with

ifferent number of workloads for CRUZE, HMRM, CSRE and CSMH.

he experimental result show that the average value of CPU uti-

ization in CRUZE is 11.12%, 14.45% and 15.69% more than HMRM,
SRE and CSMH respectively because best resources are identified

sing resource provisioning technique for scheduling. Provisioning

ased scheduling of resources consumes slightly more time ini-

ially and then it avoids underutilization and overutilization of re-

ources during scheduling. VM Co-Location Cost is the total cost of

M migration from one cloud datacenter to another (Oxley et al.,

018; Youn et al., 2017) and it is calculated using Eq. (38) .

 M CoLocation Cost =

n ∑

i =1

(E i + S i + A i + P i + R i + C i) (38)

here E i is Equipment cost (installation cost), S i is Support contract

ost (maintenance cost per month), A i is Administrative costs (in-

ludes server, storage, network cost per month), P i is Power cost

er month (to run CDC), R i is Rack cost per month, C i is com-

unication cost and n is the number of VMs. Fig. 9 (c) shows the

omparison of VM Co-Location Cost for CRUZE, HMRM, CSRE and

SMH to execute different number workloads. The average value

f VM Co-Location Cost in CRUZE is 6.25%, 6.91% and 7.15% less

han HMRM, CSRE and CSMH respectively because CRUZE identi-

es the nearest CDC, which consumes more renewable energy as

ompared to other CDCs. The migration of VM to nearest CDC also

educes the communication cost, which further optimize the value

f VM Co-Location Cost.

Case 6 – Renewable energy : We have evaluated the perfor-

ance of CRUZE in terms of Energy Reuse Effectiveness for re-

ewable energy. Energy Reuse Effectiveness is the ratio of energy

reused) consumed by Cooling, Lighting and IT devices to the to-

al energy consumed by IT devices (Tschudi et al., 2010) and de-

cribed in Eq. (19) . Fig. 9 (d) shows the amount of renewable en-

rgy reused during the execution of different number of workloads.

he value of energy reuse effectiveness in CRUZE is 17.56%, 19.45%

nd 20.99% greater than HMRM, CSRE and CSMH respectively be-

ause CRUZE mainly selects the CDC which are utilizing more re-

ewable energy as compared to grid energy. CRUZE manages the

nergy produced from renewable and non-renewable sources and

ustainable CDCs focuses more on renewable energy sources (solar

nd wind). To provide reliable services, CDC can prefer grid energy

or the execution of deadline-aware workloads.

Case 7 –Thermal-aware scheduling: We used Computer

oom Air Conditioning (CRAC) model based temperature model

 Moore et al., 2005) to test the performance of CRUZE in terms

f datacenter temperature for thermal-aware scheduling. Datacenter

emperature is the operating temperature of CDC and it is mea-

ured in degree Celsius (°C) as described in Eq. (20) . The vari-

tions of the temperature of different hosts (PMs) is measured,

onitored and controlled by proactive temperature-aware sched-

ler. We used an analytical model (Zhang and Chatha K, 2007;

inghui et al., 2008; Lazic et al., 2018) for the CRAC to measure

he temperature of different PMs. Fig. 9 (e) shows the comparison

f datacenter (CDC) temperature with different number of work-

oads. The average value of temperature in CRUZE is 13.76%, 14.91%

120 S.S. Gill, P. Garraghan and V. Stankovski et al. / The Journal of Systems and Software 155 (2019) 104–129

Fig. 9. Performance of different scheduling algorithms: (a) Energy consumption, (b) CPU utilization, (c) VM co-location cost, (d) Energy reuse effectiveness, (e) Datacenter

temperature, (f) Recirculation ratio. Note: We have considered 36 resources for these results.

Fig. 10. DCS efficiency vs. number of workloads.

Fig. 11. Cooling energy vs. number of workloads.

5

w

d

l

o

H

F

f

t
and 15.30% less than HMRM, CSRE and CSMH respectively. This

is because CRUZE optimizes the resource utilization, avoids un-

derloading and overloading of resources and uses minimum en-

ergy consumption by reducing the number of components such

as number of switches, adapters etc. The other reasons of opti-

mized temperature are effective CRAC-based cooling management

(Moore et al., 2005) and dynamic capacity planning for workload

execution. CRUZE automatically switched-off the idle resources in

CDC, which also reduces the heat and temperature.

Case 8 – Waste heat utilization : We have evaluated the per-

formance of CRUZE in terms of Recirculation Ratio. Recirculation

Ratio is the amount of waste-water that flows through the ad-

vanced pretreatment component divided by the amount of waste-

water that is sent to the final treatment and dispersal compo-

nent (Karellas and Braimakis, 2016) and it is described in Eq. (20) .

Fig. 9 (f) shows the value of recirculation ratio for CRUZE, HMRM,

CSRE and CSMH during the execution of workloads and the aver-

age value of recirculation ratio in CRUZE is 3.42%, 4.77% and 4.97%

more than HMRM, CSRE and CSMH respectively. CRUZE performs

effective than HMRM, CSRE and CSMH because CRUZE has capabil-

ity to reuse waste heat in district heating, which further reduces

the cost of utilization of waste heat.

Case 9 – Cooling management : We have evaluated the perfor-

mance of CRUZE in terms of Datacenter Cooling System (DCS) Effi-

ciency. DCS Efficiency is the amount of cooling capacity to remove

heat per unit of energy it consumes to maintain the cooling of CDC

(Liu et al., 2012) and is described in Eq. (21) . For cooling man-

agement, the district heating management uses water economizer,

outside air economizer and chiller plant to control the tempera-

ture of CDC. Fig. 10 shows the variation of DCS Efficiency with ex-

ecution of different number of workloads for CRUZE, HMRM, CSRE

and CSMH. The average value of DCS Efficiency in CRUZE is 9.98%,

10.23% and 11.56% more than HMRM, CSRE and CSMH respectively

because CRUZE uses district heating management module for ef-

fective management of cooling. Fig. 11 shows the variation of cool-

ing energy (Eq. 7) with the execution of different number of work-

loads for CRUZE, HMRM, CSRE and CSMH. The average value of

cooling energy in CRUZE is 15.66%, 18.31% and 22.65% less than

HMRM, CSRE and CSMH respectively because CRUZE dynamically

switched-on/off the cooling components for different workload in-

tensity, which further reduces the cooling power. Note: We have
considered 36 resources for these results. a
.3.1. Comparison of algorithms for different time intervals

We have compared the performance of proposed algorithm

ith existing algorithms for different time intervals. Fig. 12 (a)

emonstrates that memory utilization during execution of work-

oads for CRUZE, HMRM, CSRE and CSMH and the value of mem-

ry utilization in CRUZE is 27.77%, 28.11% and 29.12% more than

MRM, CSRE and CSMH respectively for different time period.

ig. 12 (b) shows the variation of energy consumption with dif-

erent time interval and the average value of energy consump-

ion in CRUZE is 14.46%, 15.35% and 18.86% less than HMRM, CSRE

nd CSMH respectively. Fig. 12 (c) demonstrates the variation of

S.S. Gill, P. Garraghan and V. Stankovski et al. / The Journal of Systems and Software 155 (2019) 104–129 121

Fig. 12. Comparison of algorithms for different time intervals: (a) Memory utilization, (b) Energy consumption, (c) CPU utilization, (d) Datacenter temperature, (e) DCS

efficiency, (f) Reliability, (g) Execution time, (h) Execution cost, (i) SLA violation rate.

C

s

a

m

t

p

t

f

i

i

u

m

m

b

f

o

p

f

i

s

f

T

1

s

f

C

C

t

t

a

t

i

1

F

s

e

3

h

s

5

b

W

a

c

e

u

W

s

C

i

C

v

c
PU utilization with different number of workloads for different

cheduling techniques. The experimental result show that the aver-

ge value of CPU utilization in CRUZE is 12.55%, 13.91% and 14.04%

ore than HMRM, CSRE and CSMH respectively. This is expected as

he workload execution is performed based on QoS-aware resource

rovisioning policy (Q-aware). Based on deadline of workload, clus-

ering of workloads is performed, and resources are provisioned

or effective scheduling. This is also because of the low variation

n execution time across various resources as the resource list that

s obtained from the resource provisioning unit is already filtered

sing Q-aware (Singh and Chana, 2015). Based on QoS require-

ents of a specific workload, resource provisioning consumes little

ore time to find out the best resources (Singh and Chana, 2015),

ut later it increases the overall performance of CRUZE. There-

ore, underutilization and overutilization of CPU will be assuaged

r avoided, which reduces the further queuing time. Fig. 12 (d)

resents the comparison of datacenter (CDC) temperature for dif-

erent time intervals. The average value of temperature in CRUZE

s 8.46%, 10.45% and 13.33% less than HMRM, CSRE and CSMH re-

pectively. Fig. 12 (e) shows the variation of DCS Efficiency for dif-

erent resource scheduling approaches with different time interval.

he average value of DCS Efficiency in CRUZE is 11.46%, 12.75% and

3.01% more than HMRM, CSRE and CSMH respectively. Fig. 12 (f)

hows the variation of reliability for different algorithms with dif-

erent value of time interval. The average value of reliability in

RUZE is 9.21%, 9.99% and 10.21% more than HMRM, CSRE and

SMH respectively. Fig. 12 (g) presents the comparison of execution

ime for different time intervals. The average value of execution

ime in CRUZE is 17.65%, 18.95% and 19.63% less than HMRM, CSRE
nd CSMH respectively. Fig. 12 (h) shows the variation of execu-

ion cost for resource management approaches with different time

nterval. The average value of execution cost in CRUZE is 15.89%,

7.72% and 19.81% less than HMRM, CSRE and CSMH respectively.

ig. 12 (i) shows the variation of SLA violation rate for different re-

ource scheduling algorithms with different time interval. The av-

rage value of SLA violation rate in CRUZE is 24.35%, 27.29% and

1.42% less than HMRM, CSRE and CSMH respectively. Note: We

ave considered 36 resources and 30 0 0 workloads for these re-

ults.

.3.2. Trade-off among different performance parameters

Fig. 13 shows the trade-off among energy consumption, relia-

ility and CPU utilization for execution of workloads using CRUZE.

ith increasing energy consumption, the value of CPU utilization

nd reliability is decreasing while reliability of cloud service is in-

reasing with increase in CPU utilization. It is clearly shown that

nergy consumption is inversely proportional to reliability and CPU

tilization, while reliability is proportional to CPU utilization. Note:

e have considered 36 resources and 30 0 0 workloads for these re-

ults.

Fig. 14 (a) shows the variation of intrusion detection rate for

RUZE, HMRM, CSRE and CSMH. The value of reliability is increas-

ng as Intrusion detection rate increases for all the approaches, but

RUZE performs better than HMRM, CSRE and CSMH. The average

alue of Intrusion detection rate in CRUZE is 70%.

Latency (L) is defined as a difference between expected exe-

ution time and actual execution time. We have used following

122 S.S. Gill, P. Garraghan and V. Stankovski et al. / The Journal of Systems and Software 155 (2019) 104–129

Fig. 13. Trade-off among energy consumption, reliability and CPU utilization.

Table 8

A 10 × 6 subset of the ETC matrix.

Workloads r 1 r 2 r 3 r 4 r 5 r 6

w 1 212.14 341.44 336.65 109.66 150.46 185.58

w 2 152.61 178.26 149.78 114.26 198.92 148.69

w 3 147.23 190.23 180.26 121.65 141.65 152.69

w 4 103.62 159.63 192.85 107.69 139.89 139.36

w 5 178.65 171.35 201.05 127.65 169.36 201.66

w 6 193.62 142.65 205.36 132.26 188.33 207.72

w 7 187.24 138.23 217.58 147.69 112.39 210.98

w 8 124.13 110.65 212.39 141.26 135.88 169.35

w 9 138.56 123.65 170.26 181.65 116.61 142.87

a

C

(

i

a

1

s

T

d

b

d

t

s

i

T

i

C

e

r

t

h

e

1

s

d

t

a

i

t

e

o

c

p

c

a

t

c

f

e

e

d

H

e

e

i

1

5

e

o

a

t

t

t

h

p

a

a

(

i

b

t

t
formula to calculate Latency (Eq. 39):

L =

n ∑

i =1

(E xpected E xecut ion T im e i − Act ual Execut ion T im e i)

(39)

Where n is number of workloads. The value of [Number of

workloads × number on resources] for every workload on re-

sources is calculated from Expectable Time to Compute (ETC) ma-

trix (Gill et al., 2019). Columns of ETC matrix demonstrate the es-

timated execution time for a specific workload while rows on ETC

matrix demonstrate the execution time of a workload on every re-

source. In this research work, the ETC benchmark simulation model

is used, which has been introduced in (Braun et al., 2001) to ad-

dress the problem of resource scheduling. The expected execution

time of the workloads can be derived from workload task length

or historical trace data (Gill et al., 2019). A high variation in exe-

cution time of the same workload is generated using the gamma

distribution method. In the gamma distribution method, a mean

workload execution time and coefficient of variation are used to

generate ETC matrix (Ali et al., 20 0 0). Table 8 shows a 10 × 6 sub-

set of the ETC matrix and results provided in this research work

used the matrix of size 90 × 36. These are then used to find out

the best resource to execute workload with minimum time.

Fig. 14 (b) shows the variation of SLA violation rate for CRUZE,

HMRM, CSRE and CSMH with different values of latency. The value

of SLA violation rate is increasing as latency increases for all the

algorithms, but CRUZE performs better than other algorithms. The

average value of SLA violation rate is 67%, which is quite less

than HMRM, CSRE and CSMH. Fig. 14 (c) shows the variation of

latency for CRUZE, HMRM, CSRE and CSMH with different value

of fault detection rate. Latency is increasing as the value of fault

detection rate decreases for all resource scheduling techniques, but

CRUZE performs better than other techniques. The average value

of latency in CRUZE is 8.32%, 8.49% and 9.31% less than HMRM,

CSRE and CSMH respectively. The reduction in failure rate, latency
nd improvement in fault detection rate increases the reliability in

RUZE.

Fig. 14 (d) shows the impact of network bandwidth

bits/seconds) on reliability. The value of reliability is increas-

ng as network bandwidth increases for all the approaches, but the

verage value of network bandwidth in CRUZE is 9.26%, 10.55% and

1.62% less than HMRM, CSRE and CSMH respectively. Fig. 14 (e)

hows the impact of datacenter temperature (°C) on reliability.

he value of reliability is increasing as datacenter temperature

ecreases for CRUZE, HMRM, CSRE and CSMH, but CRUZE gives

etter results as compared to other algorithms. The value of

atacenter temperature is 13 °C in CRUZE at 95% reliability and

he average value of temperature is 21 °C in CRUZE. Fig. 14 (f)

hows the variation of energy consumption for different schedul-

ng techniques with different value of intrusion detection rate.

he value of energy consumption is increasing as the value of

ntrusion detection rate decreases for CRUZE, HMRM, CSRE and

SMH, but CRUZE gives better results and the average value of

nergy consumption in CRUZE is 79.5 kWh.

Fig. 14 (g) shows the trade-off between energy consumption and

eliability for all the algorithms and the value of energy consump-

ion is increasing as the value of reliability increases, but CRUZE

as better outcome as compared to existing algorithms. The av-

rage value of energy consumption in CRUZE is 7.47%, 9.42% and

0.95% less than HMRM, CSRE and CSMH respectively. Fig. 14 (h)

hows the impact of execution time on energy consumption for

ifferent scheduling algorithms and the value of energy consump-

ion is decreasing as the value of execution time increases for all

pproaches, but CRUZE consumes less energy as compared to exist-

ng techniques. Fig. 14 (i) shows the variation of energy consump-

ion for CRUZE, HMRM, CSRE and CSMH with different value of ex-

cution cost. The value of execution cost is increasing as the value

f energy consumption increases and the average value of energy

onsumption in CRUZE is 64 kWh approximately. Overall CRUZE

erforms better than other techniques. The variation of energy

onsumption with different value of latency is shown in Fig. 14 (j)

nd it measures the impact of latency on energy consumption and

he consumption of energy is increasing as the value of latency de-

reases for all the resource scheduling approaches, but CRUZE per-

orms better than others. Fig. 14 (k) shows the trade-off between

nergy consumption and SLA violation rate and the value of en-

rgy consumption is increasing as the value of SLA violation rate

ecreases for all the approaches, but CRUZE performs better than

MRM, CSRE and CSMH. The impact of network bandwidth on en-

rgy consumption is measured in Fig. 14 (l) and the value of en-

rgy consumption is increasing as the value of network bandwidth

ncreases. The value of network bandwidth in CRUZE is 16.68%,

7.35% and 17.99% less than HMRM, CSRE and CSMH respectively.

.3.3. Straggler analysis

Due to the increased complexity of modern large-CDCs, certain

merging phenomena, which can directly affect the performance

f these systems occur (Garraghan et al., 2016). This is also known

s the Long Tail Problem, or the scenario where a small number of

ask stragglers, negatively affect the time of the workload comple-

ion. Task stragglers can occur within any highly parallelized sys-

em, which processes workloads consisting of multiple tasks. We

ave analyzed the performance the effect of various parameters on

robability of stragglers. Note: We have considered 36 resources

nd 30 0 0 workloads for these results. Fig. 15 (a) shows the prob-

bility of stragglers for different percentage of SLA Violation Rate

SVR). The probability of stragglers is increasing as the value of SVR

ncreases for CRUZE, HMRM, CSRE and CSMH, but CRUZE performs

etter than other resource scheduling techniques. Fig. 15 (b) shows

he probability of stragglers for different value of energy consump-

ion. The probability of stragglers is increasing as the value of

S.S. Gill, P. Garraghan and V. Stankovski et al. / The Journal of Systems and Software 155 (2019) 104–129 123

Fig. 14. Trade-off between different performance parameters: (a) Intrusion detection rate vs. reliability, (b) SLA violation rate vs. latency, (c) Fault detection rate vs. latency,

(d) Network bandwidth vs. reliability, (e) Datacenter temperature vs. reliability, (f) Energy consumption vs. intrusion detection rate, (g) Energy consumption vs. reliability,

(h) Energy consumption vs. execution time, (i) Energy consumption vs. execution cost, (j) Energy consumption vs. latency, (k) Energy consumption vs. SLA violation rate, (l)

Energy consumption vs. network bandwidth.

e

o

t

c

a

o

n

s

a

a

i

F

r

f

s

o

s

H

s

g

f

b

g

f

i

p

t

p

s
nergy consumption increases for all the algorithms, but the value

f straggler probability in CRUZE is 5.45%, 5.95% and 6.36% less

han HMRM, CSRE and CSMH respectively.

Fig. 15 (c) shows the probability of stragglers for different per-

entage of CPU utilization and its average value in CRUZE is 0.24

nd it shows the probability of stragglers is increasing as the value

f CPU utilization increases for all the resource scheduling tech-

iques, but CRUZE performs better than others. The probability of

tragglers is measured for different value of memory utilization

s shown in Fig. 15 (d) and probability of stragglers is decreasing

s the value of memory utilization increases for different schedul-

ng techniques, but CRUZE performs better than other techniques.

ig. 15 (e) shows the probability of stragglers for different value of

eliability and it is increasing as the value of reliability increases

or CRUZE, HMRM, CSRE and CSMH, but CRUZE gives better re-
ults than others. The probability of stragglers for different value

f latency is measured in Fig. 15 (f) and it shows the probability of

tragglers is increasing as the value of latency increases for CRUZE,

MRM, CSRE and CSMH, but CRUZE performs better than other

cheduling techniques. The average value of probability of strag-

lers in CRUZE is 0.41. Fig. 15 (g) shows the probability of stragglers

or different percentage of network bandwidth and CRUZE gives

etter results than other techniques but the probability of strag-

lers is increasing as the value of network bandwidth increases

or all the scheduling techniques. Fig. 15 (h) shows the probabil-

ty of stragglers for different percentage of fault detection rate. The

robability of stragglers is decreasing as the value of fault detec-

ion rate increases for CRUZE, HMRM, CSRE and CSMH, but CRUZE

erforms better than others. Fig. 15 (i) shows the probability of

tragglers for different percentage of intrusion detection rate. The

124 S.S. Gill, P. Garraghan and V. Stankovski et al. / The Journal of Systems and Software 155 (2019) 104–129

Fig. 15. Analysis of the effect of various performance parameters on Probability of Stragglers (P(s)): (a) SLA violation rate, (b) energy consumption, (c) CPU utilization, (d)

Memory utilization, (e) Reliability, (f) Latency, (g) Network bandwidth, (h) Fault detection rate, and (i) Intrusion detection rate.

Fig. 16. Energy consumption of different components of CDC in CRUZE.

a

h

m

s

N

t

5

a

a

l

t

t

g

t

r

l

c

e

5

fi

u

a
average value of probability of stragglers in CRUZE is 0.17 and the

probability of stragglers is decreasing as the value of intrusion de-

tection rate increases for every approach, but CRUZE performs bet-

ter than others. The average value of straggler probability in CRUZE

is 11.22%, 14.01% and 15.77% less than HMRM, CSRE and CSMH re-

spectively.

5.3.4. Energy consumption analysis

Fig. 16 shows the consumption of energy by different compo-

nents of CDC such as processor, storage, memory, network, cooling
nd extra using CRUZE as per Eq. (1) . The processor is most power

ungry component of CDC followed by cooling component. The re-

aining components (storage, memory, network and extra) con-

umes energy between 2-7% of total energy consumption by CDC.

ote: We have considered 36 resources and 30 0 0 workloads for

hese results.

.3.5. Convergence of CO algorithm

Fig. 17 plots the convergence of total energy consumed by CO

lgorithm over the number of iterations for different value of Reli-

bility: 95%, 90% and 85% by executing different number of work-

oads. Initially the workloads are randomly initialized. Therefore,

he total initial energy consumption is very high at 0 th iteration. As

he algorithm progresses, the convergence is drastic and achieves

lobal minima very quickly. The number of iterations required for

he convergence is seen to be 30-45, for our simulated cloud envi-

onment. Note: We have considered 36 resources and 30 0 0 work-

oads for these results.

Table 9 describes summary of experiment statistics and per-

entage of overall improvement of different performance param-

ters.

.3.6. Statistical analysis

Statistical significance of the results has been analyzed by Coef-

cient of Variation (Coff. of Var.), a statistical method. Coff. of Var. is

sed to compare to different means and furthermore offer an over-

ll analysis of performance of the framework used for creating the

S.S. Gill, P. Garraghan and V. Stankovski et al. / The Journal of Systems and Software 155 (2019) 104–129 125

Fig. 17. The trend of convergence of CO with the number of iterations for different value of reliability.

Table 9

Summary of experimental statistics and overall improvement.

Type of experiment

Performance

parameter Overall improvement (%) Average improvement (%)

HMRM CSRE CSMH

Fault detection rate 19.99 21.14 22.45 21.2

Reliability 19.07 19.75 20.98 19.9

Execution cost 14.41 14.91 15.46 14.9

Execution time 9.96 10.35 12.11 10.8

Intrusion detection

rate

19.20 21.45 20.86 20.5

Network bandwidth 14.44 16.31 18.73 16.49

SLA violation rate 23.68 24.42 27.45 25.18

(Number of Workloads) Availability 12.45 13.91 15.34 13.9

Resource

contention

17.56 18.79 19.42 18.59

Memory utilization 24.78 25.45 25.91 25.38

Disk utilization 18 18.5 19.18 18.56

Network utilization 12.77 11.68 12.25 12.23

CPU utilization 11.12 14.45 15.69 13.75

Energy

consumption

17.35 18.71 20.10 18.8

VM co-location cost 6.25 6.91 7.15 6.8

Datacenter

temperature

13.76 14.91 15.30 14.7

Energy reuse

effectiveness

17.46 19.45 20.99 19.3

Recirculation ratio 3.42 4.77 4.97 4.4

DCS efficiency 9.98 10.23 11.56 10.6

Memory utilization 27.77 28.11 29.12 28.3

Energy

consumption

14.46 15.35 18.86 16.2

CPU utilization 12.55 13.91 14.04 13.5

Datacenter

temperature

8.46 10.45 13.33 10.8

(Time in Hours) DCS Efficiency 11.46 12.75 13.01 12.4

Reliability 9.21 9.99 10.21 9.8

Execution time 17.65 18.95 19.63 18.74

Execution cost 15.89 17.72 19.81 17.8

SLA violation rate 24.35 27.29 31.42 27.68

s

a

C

w

o

F

t

s

b

a

s

m

c

e

n

t

r

6

s

m

i

b
tatistics. It states the deviation of the data as a proportion of its

verage value, and is calculated as follows (Eq. 40):

of f . of V ar. =

SD

M

× 100 (40)

here SD is a standard deviation and M is a mean . Coff. of Var .

f waiting time of CRUZE, HMRM, CSRE and CSMH is shown in

ig. 18 (a). Range of Coff. of Var . (0.48% - 1.03%) for energy consump-

ion approves the stability of CRUZE.

Coff. of Var . of reliability of CRUZE, HMRM, CSRE and CSMH is

hown in Fig. 18 (b). Range of Coff. of Var . (0.63% - 1.33%) for relia-

ility approves the stability of CRUZE. Value of Coff. of Var . increases

s the number of workloads is increasing. Small value of Coff. of Var .

ignifies CRUZE is more efficient and stable in resource manage-
ent in the situations where the number of cloud workloads are

hanging. CRUZE attained the better results in the cloud for en-

rgy consumption and reliability has been studied with respect to

umber of workloads. This research work is a practical implemen-

ation of the conceptual models that we proposed in our previous

esearch work (Gill and Buyya, 2019; Gill and Buyya, 2018b).

. Summary and conclusions

We proposed a Cuckoo Optimization (CO) algorithm based re-

ource scheduling approach called CRUZE, for holistic manage-

ent of all resources (spanning servers, networks, storage, cool-

ng systems) to improve the energy efficiency and reduce car-

on footprints in cloud datacenters and whilst maintaining cloud

126 S.S. Gill, P. Garraghan and V. Stankovski et al. / The Journal of Systems and Software 155 (2019) 104–129

Fig. 18. Coefficient of variation for algorithms (a) energy consumption, (b) reliability.

I

t

i

r

fi

S

t

o

s

f

p

f

l

a

p

c

p

t

p

t

w

p

b

t

r

A

P

M

A

t

v

s

B

t

I

(

D

c

i

R

A

service reliability by managing the failures (hardware, service, soft-

ware or resource) dynamically. Furthermore, CRUZE schedules pro-

visioned resources for heterogeneous workload execution and it

adjusts the resources at runtime according to the QoS require-

ments of workloads, which can avoid or assuage under-utilization

and over-utilization of resources. Experimental results demonstrate

that CRUZE improves the fault detection rate by 15.42%, relia-

bility by 17.11%, intrusion detection rate by 20.46%, CPU utiliza-

tion by 15.69%, memory utilization by 25.91%, disk utilization by

19.18%, network utilization by 12.25%, energy reuse effectiveness

by 20.56%, recirculation ratio by 4.97% and DCS Efficiency by 11.56%

and it reduces the latency by 8.32%, execution cost by15.46%, ex-

ecution time by 12.11%, energy consumption by 20.10%, VM Co-

Location Cost by 7.15% and datacenter temperature by 15.30% as

compared to existing resource management approaches. Finally,

the trade-off among energy consumption, reliability and resource

utilization for execution of workloads is described.

6.1. Future research directions and open challenges

In the future, we shall explore the applicability of the present

model and any potentially needed extensions in the following main

directions.

First, the modeling components for workflows analysis and QoS

based characterization shall be extended with knowledge of the

external context that may inform our holistic management ap-

proach. This may require to use additional modeling constructs

that help capture the non-functional requirements of each partic-

ular application. This is similar to the common technique of prior-

itization of jobs, for example, depending on the usage context the

same workflow can be launched with different priorities.

Second, we shall study possible extensions of the model to in-

clude exchange of information and actual hardware, networking,

software, storage, heat, and other resources with any other re-

sources from the environment (Gill and Buyya, 2019). For example,

micro-data centers may be placed in blocks of flats, and the actual

heating, ventilation, and air conditioning HVAC (Heating, Ventila-

tion and Air Conditioning) systems (Buyya and Gill, 2018) may ac-

tually use the thermal energy generated by the micro-data center.

Moreover, jobs scheduling could happen during periods that inhab-

itants usually spend at home, which in turn may define the hourly

rate for hosting computations (Mastelic et al., 2015). An economy

of resources like these may be facilitated by recent development in

the area of Blockchain and Smart Contracts, but, it is still necessary

to study the theoretical foundations which may potentially lead to

energy efficient management of highly distributed Fog computing

environments.

Third, many new applications rely on the Internet of Things

(IoT) and have particular focus on Big Data management. There is

the necessity to implement Big Data pipelines starting from the
oT via Fog and Cloud nodes up to High-Performance Data Cen-

ers (Li et al., 2018a; Balis et al., 2018). This requires the stream-

ng of significant amounts of data over the network, which in turn

epresents various management challenges, involving energy ef-

ciency, time-critical operations, and similar (Kaur et al., 2018).

ome of these aspects were tackled by the present study, never-

heless, more in-depth simulations are necessary to study the vari-

us arrangements of system components that lead to quasi-optimal

tates.

Fourth, the unplanned downtime can violate the SLA and af-

ects the business of cloud providers. To solve this problem, pro-

osed technique (CRUZE) should incorporate dynamic scalability to

ulfill the changing demand of user applications without the vio-

ation of SLA, which helps to improve the sustainability and reli-

bility of cloud services during peak load. Further, the scalability

rovides operational capabilities to improve performance of cloud

omputing applications in a cost-effective way, yet to be fully ex-

loited. However, holistic resource management mechanisms need

o be able to strategically use these capabilities.

Finally, relationship between theory and practice is very im-

ortant. Benchmarking is an important starting point, which may

ry to relate the holistic aspects studied in our simulation in real-

orld practice. For example, various workflow-based applications

erforming similar calculations, could be related among each other

y analyzing the entire hardware and software stack, including vir-

ualization. This may lead to additional improvements of the theo-

etical basis.

cknowledgments

This research work is supported by the Engineering and

hysical Sciences Research Council (EPSRC) – (EP/P031617/1),

elbourne-Chindia Cloud Computing (MC3) Research Network and

ustralian Research Council (DP160102414). We would like to

hank the editor, area editor and anonymous reviewers for their

aluable comments and suggestions to help and improve our re-

earch paper. We would like to thank Dr. Yogesh Simmhan (IISc

angalore, India), Dr. Adel Nadjaran Toosi (Monash University, Aus-

ralia), Shreshth Tuli (IIT Delhi, India), Amanpreet Singh (Thapar

nstitute of Engineering and Technology, India), Manmeet Singh

Scientist at Indian Institute of Tropical Meteorology, India) and

amian Borowiec (Lancaster University, UK) for their valuable

omments, useful suggestions and discussion to improve the qual-

ty of the paper.

eferences

bbasi, M.J. , Mohri, M. , 2016. Scheduling tasks in the cloud computing environment
with the effect of Cuckoo optimization algorithm. SSRG Int. J. Comput. Sci. Eng.

(SSRG - IJCSE) 3 (August 8), 1–9 .

http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0025

S.S. Gill, P. Garraghan and V. Stankovski et al. / The Journal of Systems and Software 155 (2019) 104–129 127

A

A

B

B

B

B

C

C

D

F

F

G

G

G

G

G

G

G

G

G

G

G

G

K

K

K

S

L

L

L

L

L

L

L

L

L

L

L

M

M

M

M

M

N

N

N

O

P

P

Q

Q

R

S

S

S

S

S

S
li, S. , Siegel, H.J. , Maheswaran, M. , Hensgen, D. , Ali, S. , 20 0 0. Representing task and
machine heterogeneities for heterogeneous computing systems. Tamkang J. Sci.

Eng. 3 (3), 195–207 .
zimzadeh, F. , Biabani, F. , 2017. Multi-objective job scheduling algorithm in cloud

computing based on reliability and time. In: 2017 Third International Confer-
ence on Web Research (ICWR). IEEE, pp. 96–101 .

alis, B. , Brzoza-Woch, R. , Bubak, M. , Kasztelnik, M. , Kwolek, B. , Nawrocki, P. ,
Nowakowski, P. , Szydlo, T. , Zielinski, K. , 2018. Holistic approach to management

of IT infrastructure for environmental monitoring and decision support systems

with urgent computing capabilities. Fut. Gener. Comput. Syst. 79, 128–143 .
arroso, L.A. , Clidaras, J. , Hoelze, U. , 2013. The datacenter as a computer: an intro-

duction to the design of warehouse-scale machines. Synth. Lect. Comput. Archi-
tect. (July) .

raun, T.D. , Siegel, H.J. , Beck, N. , Bölöni, L.L. , Maheswaran, M. , Reuther, A.I. , Robert-
son, J.P. , et al. , 2001. A comparison of eleven static heuristics for mapping a

class of independent tasks onto heterogeneous distributed computing systems.

J. Parallel Distrib. Comput. 61 (6), 810–837 .
uyya, R. , Gill, S.S. , 2018. Sustainable cloud computing: foundations and future di-

rections.. Bus. Technol. Digital Transform Strat. Cutter Consortium 21 (6), 1–10 .
alheiros, R.N. , Ranjan, R. , Beloglazov, A. , De Rose, C.A.F. , Buyya, R. , 2011. CloudSim:

a toolkit for modeling and simulation of cloud computing environments and
evaluation of resource provisioning algorithms. Softw.: Pract. Exp. 41 (1),

23–50 .

hang, C.W. , Liu, C.-Y. , Yang, C.-Y. , 2017. Energy-efficient heterogeneous resource
management for wireless monitoring systems. J. Syst. Softw. 131, 168–180 .

eb, K. , 2019. Constrained multi-objective evolutionary algorithm. In: Evolutionary
and Swarm Intelligence Algorithms. Springer, Cham, pp. 85–118 .

eller, E. , Rohr, C. , Margery, D. , Morin, C. , 2012. Energy management in IaaS clouds:
a holistic approach. In: 2012 IEEE Fifth International Conference on Cloud Com-

puting (CLOUD). IEEE, pp. 204–212 .

errer, A.J. , HernáNdez, F. , Tordsson, J. , Elmroth, E. , Ali-Eldin, A. , Zsigri, C. , Sirvent, R. ,
et al. , 2012. OPTIMIS: a holistic approach to cloud service provisioning. Fut.

Gener. Comput. Syst. 28 (1), 66–77 .
arraghan, P , Solis Moreno, I. , Townend, P. , Xu, J. , 2014. An analysis of failure-re-

lated energy waste in a large-scale cloud environment. IEEE Trans. Emerg. Top.
Comput. 2 (2), 166–180 .

arraghan, P. , Ouyang, X. , Yang, R. , McKee, D. , Xu, J. , 2016. Straggler root-cause and

impact analysis for massive-scale virtualized cloud datacenters. IEEE Trans. Serv.
Comput. .

ill, S.S. , Buyya, R. , 2018a. Resource provisioning based scheduling framework for
execution of heterogeneous and clustered workloads in clouds: from fundamen-

tal to autonomic offering. J. Grid Comput. 1–33 .
ill, S.S., Buyya, R., 2018b. Failure management for reliable cloud computing: a tax-

onomy, model and future directions. Comput. Sci. Eng. IEEE doi: 10.1109/MCSE.

2018.2873866 .
ill, S.S. , Buyya, R. , 2018c. SECURE: Self-Protection Approach in Cloud Resource

Management. IEEE Cloud Comput. 5 (1), 60–72 .
ill, S.S. , Buyya, R. , 2019. A taxonomy and future directions for sustainable cloud

computing: 360 degree view. ACM Comput. Surv. 51 (5), 104 .
ill, S.S. , Chana, I. , Buyya, R. , 2017. IoT based agriculture as a cloud and big data

service: the beginning of digital India. J. Org. End User Comput. (JOEUC) 29 (4),
1–23 .

ill, S.S. , Chana, I. , Singh, M. , Buyya, R. , 2018. CHOPPER: an intelligent QoS-aware

autonomic resource management approach for cloud computing. Cluster Com-
put. 21 (2), 1203–1241 .

ill, S.S. , Chana, I. , Singh, M. , Buyya, R. , 2019. RADAR: self-configuring and self-heal-
ing in resource management for enhancing quality of cloud services. Concur-

rency Comput. Pract. Exp. (CCPE) 31 (1), 1–29 .
rozev, N. , Buyya, R. , 2013. Performance modelling and simulation of three-tier ap-

plications in cloud and multi-cloud environments. Comput. J. 58 (1), 1–22 .

uitart, J. , 2017. Toward sustainable data centers: a comprehensive energy manage-
ment strategy. Computing 99 (6), 597–615 .

uzek, M. , Kliazovich, D. , Bouvry, P. , 2013. A holistic model for resource represen-
tation in virtualized cloud computing data centers. In: 2013 IEEE Fifth Interna-

tional Conference on Cloud Computing Technology and Science (CloudCom), 1.
IEEE, pp. 590–598 .

arellas, S. , Braimakis, K. , 2016. Energy–exergy analysis and economic investigation

of a cogeneration and trigeneration ORC–VCC hybrid system utilizing biomass
fuel and solar power. Energy Convers. Manage. 107, 103–113 .

aur, A. , Singh, V.P. , Gill, S.S. , 2018. The future of cloud computing: opportunities,
challenges and research trends. In: Second International Conference on I-SMAC

(IoT in Social, Mobile, Analytics and Cloud). IEEE, pp. 213–219 .
ouki, Y. , Ledoux, T. , 2012. Sla-driven capacity planning for cloud applications. In:

2012 IEEE Fourth International Conference on Cloud Computing Technology and

Science (CloudCom). IEEE, pp. 135–140 .
hafie, A.L.M. , Madni, S.H.H. , Abdullahi, M. , 2018. Fault tolerance aware schedul-

ing technique for cloud computing environment using dynamic clustering al-
gorithm. Neural Comput. Appl. 29 (1), 279–293 .

azic, N. , Boutilier, C. , Lu, T. , Wong, E. , Roy, B. , Ryu, M.K. , Imwalle, G. , 2018. Data cen-
ter cooling using model-predictive control. In: Advances in Neural Information

Processing Systems, pp. 3814–3823 .

ebre, A. , Legrand, A. , Suter, F. , Veyre, P. , 2015. Adding storage simulation capac-
ities to the SIMGRID toolkit: Concepts, models, and api. In: 2015 Fifteenth

IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing. IEEE,
pp. 251–260 .

i, X. , Jiang, X. , He, Y. , 2014. Virtual machine scheduling considering both comput-
ing and cooling energy. In: 2014 IEEE Intl Conf on High Performance Computing
and Communications, 2014 IEEE Sixth Intl Symp on Cyberspace Safety and Se-

curity, 2014 IEEE Eleventh Intl Conf on Embedded Software and Syst (HPCC, CSS,
ICESS),. IEEE, pp. 244–247 .

i, M. , Qin, C. , Li, J. , Lee, P.P.C. , 2016. CDStore: toward reliable, secure, and cost–
efficient cloud storage via convergent dispersal. IEEE Internet Comput. 20 (3),

45–53 .
i, X. , Garraghan, P. , Jiang, X. , Wu, Z. , Xu, J. , 2018b. Holistic virtual machine schedul-

ing in cloud datacenters towards minimizing total energy. IEEE Trans. Parallel

Distrib. Syst. 29 (6), 1317–1331 .
i, X. , Jiang, X. , Garraghan, P. , Wu, Z. , 2018a. Holistic energy and failure aware work-

load scheduling in Cloud datacenters. Fut. Gener Comput. Syst. 78, 887–900 .
iu, Z. , Chen, Y. , Bash, C. , Wierman, A. , Gmach, D. , Wang, Z. , Marwah, M. , Hyser, C. ,

2012. Renewable and cooling aware workload management for sustainable data
centers. ACM SIGMETRICS Perform. Eval. Rev. 40 (1), 175–186 ACM .

iu, B. , Chen, Y. , Blasch, E. , Pham, K. , Shen, D. , Chen, G. , 2014. A holistic cloud-en-

abled robotics system for real-time video tracking application. In: Future Infor-
mation Technology. Springer, Berlin, Heidelberg, pp. 455–468 .

iu, X. , Harwood, A. , Karunasekera, S. , Rubinstein, B. , Buyya, R. , 2017. E-Storm: repli-
cation-based state management in distributed stream processing systems. In:

Proceedings of the Forty-Sixth International Conference on Parallel Processing,
ICPP 2017. USA, Bristol, UK. IEEE CS Press August 14-17 .

uo, C. , Yang, L.T. , Li, P. , Xie, X. , Chao, H.-C. , 2015. A holistic energy optimization

framework for cloud-assisted mobile computing. IEEE Wirel. Commun. 22 (3),
118–123 .

uo, L. , Li, H. , Qiu, X. , Tang, Y. , 2016. A resource optimization algorithm of cloud
data center based on correlated model of reliability, performance and energy.

In: 2016 IEEE International Conference on Software Quality, Reliability and Se-
curity Companion (QRS-C), Vienna, pp. 416–417 .

öbius, C. , Dargie, W. , Schill, A. , 2014. Power consumption estimation models for

processors, virtual machines, and servers. IEEE Trans. Parallel Distrib. Syst. 25
(6), 1600–1614 .

adni, S.H.H. , Shafie, A.L.M. , Abdulhamid, S.M. , 2017. Optimal resource scheduling
for IaaS cloud computing using Cuckoo search algorithm. Sains Humanika 9

(1-3) .
astelic, T. , Oleksiak, A. , Claussen, H. , Brandic, I. , Pierson, J.-M. , Vasilakos, A.V. , 2015.

Cloud computing: survey on energy efficiency. ACM Comput. Surv. 47 (2), 33 .

oore, J.D. , Chase, J.S. , Ranganathan, P. , Sharma, R.K. , 2005. Making scheduling. In:
USENIX Annual Technical Conference, General Track Cool: Temperature-Aware

Workload Placement in Data Centers., pp. 61–75 .
oreno, I.S. , Garraghan, P. , Townend, P. , Xu, J. , 2014. Analysis, modeling and simula-

tion of workload patterns in a large-scale utility cloud. IEEE Trans. Cloud Com-
put. 2 (2), 208–221 .

atu, M. , Ghosh, R.K. , Shyamsundar, R.K. , Ranjan, R. , 2016. Holistic performance

monitoring of hybrid clouds: complexities and future directions. IEEE Cloud
Comput. 3 (1), 72–81 .

avimipour, N.J. , Milani, F.S. , 2015. Task scheduling in the cloud computing based
on the cuckoo search algorithm. Int. J. Model. Optim. 5 (1), 44 .

ita, M.C. , Pop, F. , Mocanu, M. , Cristea, V. , 2014. FIM-SIM: fault injection module for
CloudSim based on statistical distributions. J. Telecommun. Inf. Technol. 4, 14 .

xley, M.A. , Jonardi, E. , Pasricha, S. , Maciejewski, A .A . , Siegel, H.J. , Burns, P.J. ,
Koenig, G.A. , 2018. Rate-based thermal, power, and co-location aware resource

management for heterogeneous data centers. J. Parallel Distrib. Comput. 112,

126–139 .
érez, J.F. , Chen, L.Y. , Villari, M. , Ranjan, R. , 2018. Holistic workload scaling: a new

approach to compute acceleration in the cloud. IEEE Cloud Comput. 5 (1),
20–30 .

oola, D. , Ramamohanarao, K. , Buyya, R. , 2016. Enhancing reliability of work-
flow execution using task replication and spot instances. ACM Transactions

on Autonomous and Adaptive Systems (TAAS), 10. ACM Press, New York, USA

ISSN:1556-4665 .
inghui, T. , Gupta, S.K.S. , Varsamopoulos, G. , 2008. Energy-efficient thermal-aware

task scheduling for homogeneous highperformance computing data centers: a
cyber-physical approach. IEEE Trans. Parallel Distrib. Syst. 19 (11), 1458–1472 .

u, C. , Calheiros, R.N. , Buyya, R. , 2016. A reliable and cost-efficient auto-scaling sys-
tem for web applications using heterogeneous spot instances. In: Journal of Net-

work and Computer Applications (JNCA), 65. Elsevier, Amsterdam, The Nether-

lands, pp. 167–180. ISSN: 1084-8045 .
ajabioun, R. , 2011. Cuckoo optimization algorithm. Appl. Soft Comput. 11 (8),

5508–5518 .
hahdi-Pashaki, S. , Teymourian, E. , Kayvanfar, V. , Komaki, G.H.M. , Sajadi, A. , 2015.

Group technology-based model and cuckoo optimization algorithm for resource
allocation in cloud computing. IFAC-PapersOnLine 48 (3), 1140–1145 .

harma, Y. , Javadi, B. , Si, W. , Sun, D. , 2016. “Reliability and energy efficiency in

cloud computing systems: survey and taxonomy. J. Netw. Comput. Appl. 74,
66–85 .

huja, J. , Gani, A. , Shamshirband, S. , Ahmad, R.W. , Bilal, K. , 2016. Sustainable cloud
datacenters: a survey of enabling techniques and technologies. Renewable Sus-

tainable Energy Rev. 62, 195–214 .
ingh, S. , Chana, I. , 2015. Q-aware: quality of service based cloud resource provi-

sioning. Comput. Electr. Eng. 47, 138–160 .

ingh, S. , Chana, I. , 2015. QRSF: QoS-aware resource scheduling framework in cloud
computing. J. Supercomput. 71 (1), 241–292 .

ingh, S. , Chana, I. , 2016. A survey on resource scheduling in cloud computing: is-
sues and challenges. J. Grid Comput. 14 (2), 217–264 .

http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0062
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0062
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0062
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0062
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0062
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0062
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0040
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0040
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0040
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0040
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0061
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0061
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0061
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0061
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0061
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0061
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0061
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0061
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0061
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0056
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0056
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0056
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0056
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0050
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0050
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0041
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0041
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0041
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0041
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0041
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0055
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0055
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0055
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0055
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0055
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0055
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0038
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0038
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0038
https://doi.org/10.1109/MCSE.2018.2873866
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0046
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0046
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0046
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0036
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0036
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0036
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0036
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0036
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0045
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0045
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0045
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0045
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0045
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0068
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0068
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0068
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0051
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0051
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0035
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0035
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0035
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0049
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0049
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0049
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0049
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0033
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0033
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0033
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0065
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0065
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0065
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0065
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0065
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0065
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0065
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0065
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0069
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0069
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0069
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0069
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0069
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0042
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0042
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0042
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0042
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0042
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0037
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0037
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0037
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0037
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0037
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0037
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0037
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0037
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0037
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0060
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0060
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0060
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0060
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0060
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0067
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0067
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0067
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0067
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0034
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0034
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0034
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0034
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0034
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0048
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0048
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0048
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0048
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0048
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0044
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0044
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0044
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0044
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0044
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0039
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0039
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0039
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0039
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0039
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0039
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0039
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0039
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0064
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0064
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0064
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0064
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0047
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0047
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0047
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0052
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0052
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0052

128 S.S. Gill, P. Garraghan and V. Stankovski et al. / The Journal of Systems and Software 155 (2019) 104–129

p

G

b

e

a

I

n

g

g

h

u

h

I

m

n

j

p

a

B

o
Singh, S. , Chana, I. , 2016. EARTH: energy-aware autonomic resource scheduling in
cloud computing. J. Intell. Fuzzy Syst. 30 (3), 1581–1600 .

Sitaram, D. , Phalachandra, H.L. , Gautham., S , Swathi, H.V. , Sagar, TP , 2015. Energy
efficient data center management under availability constraints. In: 2015 Annual

IEEE Systems Conference (SysCon) Proceedings, Vancouver, BC, pp. 377–381 .
Sundarrajan, R. , Vasudevan, V. , 2016. An optimization algorithm for task scheduling

in cloud computing based on multi-purpose Cuckoo seek algorithm. In: Interna-
tional Conference on Theoretical Computer Science and Discrete Mathematics,

Cham. Springer, pp. 415–424 .

Taherizadeh, S. , Jones, A.C. , Taylor, I. , Zhao, Z. , Stankovski, V. , 2018. Monitoring self-
adaptive applications within edge computing frameworks: a state-of-the-art re-

view. J. Syst. Softw. 136, 19–38 .
Tschudi, B.I.L.L., O.T.T.O. Vangeet, J. Cooley, and D. Azevedo. “ERE: a metric for mea-

suring the benefit of reuse energy from a data center.” White Paper29 (2010).
Gill, S.S. , Garraghan, P. , Buyya, R. , 2019. ROUTER: Fog Enabled Cloud based Intel-

ligent Resource Management Approach for Smart Home IoT Devices. J. Syst.

Softw. 154, 125–138 .
Singh, S. , Chana, I. , 2013. Consistency verification and quality assurance (CVQA)

traceability framework for SaaS. In: 3rd IEEE International Advance Computing
Conference (IACC). IEEE, pp. 1–6 .

Yang, X.-S. , 2014. Swarm intelligence based algorithms: a critical analysis. Evol. In-
tell. 7 (1), 17–28 .

Youn, C.-H. , Chen, M. , Dazzi, P. , 2017. Cloud Broker and Cloudlet for Workflow

Scheduling. Springer, Singapore .
Zhang, S , Chatha, K S , 2007. Approximation algorithm for the temperature aware

scheduling problem. In: Proceedings of International Conference on Comput-
er-Aided Design, pp. 281–288 .

Zhou, A. , Wang, S. , Zheng, Z. , Hsu, C.-H. , Lyu, M.R , Yang, F. , 2016. On cloud service
reliability enhancement with optimal resource usage. IEEE Trans. Cloud Comput.

4 (4), 452–466 .

Dr. Sukhpal Singh Gill is currently working as a Re-

search Associate at School of Computing and Communi-
cations, Lancaster University, UK. Dr. Gill was a Postdoc-

toral Research Fellow at Cloud Computing and Distributed
Systems (CLOUDS) Laboratory, School of Computing and

Information Systems, The University of Melbourne, Aus-

tralia. He was a recipient of several awards, including
the Distinguished Reviewer Award from Software: Prac-

tice and Experience (Wiley), 2018, and served as the PC
member for venues such as UCC, SE-CLOUD, ICCCN, IC-

DICT and SCES. His one review paper has been nominated
and selected for the ACM 21st annual Best of Computing

Notable Books and Articles as one of the notable items

published in computing – 2016. He has published more than 45 papers as a lead-
ing author in highly ranked journals and conferences with H-index 17. Dr. Gill also

worked in Computer Science and Engineering Department of Thapar Institute of En-
gineering and Technology (TIET), Patiala, India, as a Lecturer. He obtained the De-

gree of Master of Engineering in Software Engineering (Gold Medalist), as well as
a Doctoral Degree specialization in Autonomic Cloud Computing from TIET. He was

a DST (Department of Science & Technology) Inspire Fellow during Doctorate and

worked as a SRF-Professional on DST Project, Government of India. His research in-
terests include Cloud Computing, Software Engineering, Internet of Things, Big Data

and Fog Computing. For further information on Dr. Gill, please visit: www.ssgill.in

Dr. Peter Garraghan is a Lecturer in the School of Com-
puting & Communications, Lancaster University. His pri-

mary research expertise is studying the complexity and

emergent behaviour of massive-scale distributed systems
(Cloud computing, Datacenters, Internet of Things) to pro-

pose design new techniques for enhancing system de-
pendability, resource management, and energy-efficiency.

Peter has industrial experience building large-scale pro-
duction distributed systems, and has worked and collabo-

rated internationally with the likes of Alibaba Group, Mi-

crosoft, STFC, CONACYT, and the UK Datacenter and IoT
industry.

Dr. Vlado Stankovski a Professor (at College) in Com-

puter and Information Science and Informatics in Com-

merce at University of Ljubljana. Vlado Stankovski was
awarded his Eng. Comp. Sc., M.Sc. and Ph.D. degrees

in computer science from the University of Ljubljana in
1995, 20 0 0 and 2009, respectively. He began his career

in 1995 as consultant and later as project manager with
the Fujitsu-ICL Corporation in Prague. From 1998-2002 he

worked as researcher at the University Medical Centre in

Ljubljana. From 2003 on, he is with the Department of
Construction Informatics at the University of Ljubljana.

He lectures in undergraduate computer science subjects.
Vlado Stankovski’s research interests are in semantic and

distributed-computing technologies. He has been the technical manager of the FP6
DataMiningGrid project and financial manager of the FP6 InteliGrid project. He also
articipates in Slovene national grid-related projects, such as: GridForum.si, Agent-
rid and SiGNet. His past experience is in applications of machine learning tech-

niques to engineering and medical problems.

Dr. Giuliano Casale received the Ph.D. degree in com-
puter engineering from Politecnico di Milano, Italy, in

2006. He joined the Department of Computing, Imperial

College London, UK, in 2010, where he is currently a Se-
nior Lecturer in modeling and simulation. He was a Scien-

tist with SAP Research, UK and as a Consultant in the ca-
pacity planning industry. He teaches and does research in

performance engineering, cloud computing, and Big data,
topics on which he has published over 120 refereed pa-

pers. He has served on the technical program committee

of over 80 conferences and workshops and as the co-chair
for conferences in the area of performance engineering

such as ACM SIGMETRICS/Performance. He is a member
of the IFIP WG 7.3 group on Computer Performance Analysis and since 2015 he has

een serving in the ACM SIGMETRICS Board of Directors. He was a recipient of sev-
ral awards, including the Best Paper Award at ACM SIGMETRICS 2017, and served

s the Program Chair for venues such as ACM SIGMETRICS/Performance, MASCOTS,

CAC, ICPE, and QEST.

Dr. Ruppa K. Thulasiram (Tulsi) (M’00–SM’09) received
the Ph.D. degree from the Indian Institute of Science, Ban-

galore, India. He is a Professor and the Director of the
Computational Finance Laboratory, Department of Com-

puter Science, University of Manitoba, Winnipeg, MB,

Canada. He spent years with Concordia University, Mon-
treal, QC, Canada; Georgia Institute of Technology, At-

lanta, GA, USA; and the University of Delaware, Newark,
DE, USA, as a Postdoctoral Researcher, Research Staff,

and Research Faculty before taking up a position with
the University of Manitoba. He has graduated many stu-

dents with MSc and Ph.D. degrees. He has developed

a curriculum for the cross-disciplinary computational fi-
ance course at the University of Manitoba for both graduate and senior under-

raduate levels. He has authored or co-authored many papers in the areas of
high-temperature physics, gas dynamics, combustion, computational finance, and

rid/cloud computing. His current research interest includes grid/cloud computing,
computational finance, cloud resources management, computational intelligence, ad

oc networks, and scientific computing. His research has been funded by the Nat-

ral Sciences and Engineering Research Council (NSERC) of Canada.Dr. Thulasiram
as been an Associate Editor for the IEEE Transactions on Cloud Computing, and

nternational Journal of Aerospace Innovations (MultiSceince Publishing). He is a
ember of the Editorial Board of many journals including the International Jour-

al of Computational Science and Engineering. He has been a guest editor of many
ournals such as Parallel Computing, Concurrency and Computation Practice and Ex-

erience, the International Journal of Parallel, Embedded and Distributed Systems,
nd the Journal of Supercomputing for special issues. He was the recipient of many

est Paper Awards.

Dr. Soumya K. Ghosh is a Professor in the Department

of Computer Science and Engineering, Indian Institute of
Technology, Kharagpur (IIT Kharagpur), India. Soumya K.

Ghosh (M’05) received the M. Tech. and Ph.D. degrees

from the Department of Computer Science and Engineer-
ing, IIT Kharagpur, Kharagpur, India, in 1996 and 2002, re-

spectively. He was with the Indian Space Research Orga-
nization, Bengaluru, India. He has authored or coauthored

more than 200 research papers in reputed journals and
conference proceedings. His current research interests in-

clude spatial data science, spatial web services, and cloud

computing.

Dr. Ramamohanarao (Rao) Kotagiri received Ph.D. from
Monash University. He was awarded the Alexander von

Humboldt Fellowship in 1983. He has been at the Univer-

sity Melbourne since 1980 and was appointed as a pro-
fessor in computer science in 1989. Rao held several se-

nior positions including Head of Computer Science and
Software Engineering, Head of the School of Electrical

Engineering and Computer Science at the University of
Melbourne and Research Director for the Cooperative Re-

search Center for Intelligent Decision Systems. He served

or serving on the Editorial Boards of the Computer Jour-
nal, Universal Computer Science, IEEE TKDE, VLDB Journal

and International Journal on Data Privacy. Rao is a Fellow
f the Institute of Engineers Australia, a Fellow of Australian Academy Technological

Sciences and Engineering and a Fellow of Australian Academy of Science.

http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0066
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0066
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0066
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0059
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0059
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0059
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0059
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0059
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0059
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0057
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0057
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0057
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0057
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0057
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0057
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0058
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0058
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0058
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0058
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0054
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0054
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0054
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0029
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0029
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0053
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0053
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0053
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0053
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0063
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0063
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0063
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30109-8/sbref0016
http://www.ssgill.in

S.S. Gill, P. Garraghan and V. Stankovski et al. / The Journal of Systems and Software 155 (2019) 104–129 129

P

t

i

a

t

C

T

p

s

R

v

i

s

w

v

Dr. Rajkumar Buyya is a Redmond Barry Distinguished

Professor and Director of the Cloud Computing and Dis-
tributed Systems (CLOUDS) Laboratory at the University

of Melbourne, Australia. He is also serving as the found-

ing CEO of Manjrasoft, a spin-off company of the Uni-
versity, commercializing its innovations in Cloud Comput-

ing. He served as a Future Fellow of the Australian Re-
search Council during 2012-2016. He has authored over

625 publications and seven text books including “Master-
ing Cloud Computing” published by McGraw Hill, China

Machine Press, and Morgan Kaufmann for Indian, Chinese

and international markets respectively. He also edited
several books including “Cloud Computing: Principles and

aradigms” (Wiley Press, USA, Feb 2011). He is one of the highly cited au-
hors in computer science and software engineering worldwide (h-index = 124 + , g-
ndex = 281, 80 0 0 0 + citations). Microsoft Academic Search Index ranked Dr. Buyya

s #1 author in the world (2005-2016) for both field rating and citations evalua-
ions in the area of Distributed and Parallel Computing. “A Scientometric Analysis of

loud Computing Literature” by German scientists ranked Dr. Buyya as the World’s

op-Cited (#1) Author and the World’s Most-Productive (#1) Author in Cloud Com-
uting. Recently, Dr. Buyya is recognized as a “Web of Science Highly Cited Re-

earcher” in both 2016 and 2017 by Thomson Reuters, a Fellow of IEEE, and Scopus
esearcher of the Year 2017 with Excellence in Innovative Research Award by Else-

ier for his outstanding contributions to Cloud computing. He served as the found-
ng Editor-in-Chief of the IEEE Transactions on Cloud Computing. He is currently

erving as Editor-in-Chief of Journal of Software: Practice and Experience, which

as established over 45 years ago. For further information on Dr. Buyya, please
isit his cyberhome: www.buyya.com .

http://www.buyya.com

	Holistic resource management for sustainable and reliable cloud computing: An innovative solution to global challenge
	1 Introduction
	2 Related work
	2.1 Energy-aware cloud resource scheduling
	2.2 Reliability-aware cloud resource scheduling
	2.3 Cuckoo optimization based energy-aware cloud resource scheduling
	2.4 Comparison of CRUZE with existing resource scheduling techniques

	3 System model
	3.1 Design models

	4 Resource provisioning and scheduling
	4.1 Clustering of workloads
	4.2 Resource provisioning
	4.3 Cuckoo optimization based resource scheduling algorithm

	5 Performance evaluation
	5.1 Workload
	5.2 Baseline resource scheduling approaches
	5.3 Experimental results
	5.3.1 Comparison of algorithms for different time intervals
	5.3.2 Trade-off among different performance parameters
	5.3.3 Straggler analysis
	5.3.4 Energy consumption analysis
	5.3.5 Convergence of CO algorithm
	5.3.6 Statistical analysis

	6 Summary and conclusions
	6.1 Future research directions and open challenges

	Acknowledgments
	References

