
1

Cost-optimized Task Offloading for Dependent
Applications in Collaborative Edge and Cloud

Computing
Haitao Yuan, Senior Member, IEEE, Qinglong Hu, Student Member, IEEE, Shen Wang, Student Member, IEEE,

Jing Bi, Senior Member, IEEE, Rajkumar Buyya, Fellow, IEEE, Jinhu Lü, Fellow, IEEE, Jinhong Yang,
Jia Zhang, Senior Member, IEEE, and MengChu Zhou, Fellow, IEEE

Abstract—A collaborative system that includes mobile devices
(MDs), edge nodes (ENs), and the cloud is needed where ENs
at the network edge can run offloaded tasks of MDs with
limited resources and energy for timely processing for latency-
sensitive applications. Unlike existing studies, we formulate a
total cost minimization problem for the system for applications,
which can be divided into several interdependent subtasks. Each
subtask can be executed in MDs, ENs, and the cloud. This work
formulates a mixed-integer nonlinear program to minimize the
total system cost. To address it, a novel meta-heuristic optimiza-
tion algorithm called Genetic Simulated-annealing-based Particle
swarm optimization with Auto-Encoder (GSPAE) is proposed,
which innovatively combines feature extraction of deep learn-
ing and global search of meta-heuristic optimization. Genetic
operations provide diverse solutions, the Metropolis acceptance
of annealing offers a robust global search, and autoencoders
extract distribution characteristics of particles towards high-
quality regions for fast convergence. Thus, GSPAE optimizes
the associations between ENs and MDs and the scheduling of
subtasks among MDs, ENs, and the cloud. Experiments with
large-scale Google cluster datasets show that compared to state-
of-the-art benchmark methods, GSPAE reduces the total cost by
at least 17% while strictly meeting limits of application latency,
available energy, computing, and communication resources of
ENs and MDs.

Index Terms—Cloud computing, edge computing, task offload-
ing, particle swarm optimization, deep learning, autoencoders

This work was supported by the National Natural Science Foundation of
China under Grants 62173013 and 62473014, the Beijing Natural Science
Foundation under Grants L233005 and 4232049, and in part by Beihang World
TOP University Cooperation Program. (Corresponding author: Haitao Yuan.)

H. Yuan, S. Wang, and J. Lü are with the School of Automation Science and
Electrical Engineering, Beihang University, Beijing 100191, China. (E-mail:
yuan@buaa.edu.cn; jhlu@iss.ac.cn).

Q. Hu is with the Department of Computer Science, City University of
Hong Kong, Hong Kong 999077. (E-mail: qinglhu2-c@my.cityu.edu.hk).

J. Bi is with the School of Software Engineering in the Faculty of
Information Technology, Beijing University of Technology, Beijing 100124,
China. (E-mail: bijing@bjut.edu.cn).

R. Buyya is with the Cloud Computing and Distributed Systems (CLOUDS)
Lab, School of Computing and Information Systems, University of Melbourne,
Melbourne, VIC 3010, Australia (e-mail: rbuyya@unimelb.edu.au).

J. Yang is with the CSSC Systems Engineering Research Institute, Beijing,
China. (e-mail: yangjinhong.66@163.com).

J. Zhang is with the Department of Computer Science in the Lyle School
of Engineering at Southern Methodist University, Dallas, TX 75205, USA.
(e-mail: jiazhang@smu.edu).

M. Zhou is with the Department of Electrical and Computer Engineering,
New Jersey Institute of Technology, Newark, NJ 07102, USA. (e-mail:
zhou@njit.edu).

I. INTRODUCTION

Recent years have witnessed fast growth of computation-
intensive applications in the emerging Internet of Things
(IoTs) [1]. Mobile devices (MDs) only have constrained
energy capacities, communication, computing, and storage
resources. It is highly challenging to finish MDs’ tasks before
their latency bounds. To realize this, a new paradigm of mobile
edge computing (MEC) is designed to enable rapid execution
for latency/computation-intensive tasks in MDs. Edge servers
with high configurations in MEC are often installed and
implemented in base stations. MDs can offload some tasks to
MEC servers to provide quick services. Current 5G networks
can connect billions of MDs directly associated with MEC
servers [2]. Therefore, dynamically offloading tasks in MEC is
feasible to optimize resource allocation among MDs associated
with edge nodes (ENs) in the current literature [3], [4]. MDs
all share constrained energy, communication, computing, and
storage resources of ENs, making it highly challenging for
ENs to realize swift services to available MDs [5]. Thus, the
simple integration of MDs and ENs often fails to run MDs’
tasks. To address this issue, an edge and cloud collaborative
system is frequently used where computation-intensive tasks
are dynamically scheduled among ENs, MDs, and a cloud
data center (CDC) [6], [7] for realizing the lowest response
time and the optimal load balancing [8]. Another method for
decreasing the response time in MEC is dynamic partitioning
of tasks. Most current methods for offloading dependent tasks
fail to support it because the running of a task relies on the
execution of its preceding tasks. Nevertheless, a complex task
can be dynamically divided into many subtasks. Each subtask
can be scheduled to be completed in ENs, MDs, and CDC,
respectively, further making task offloading for dependent
applications more complicated.

Furthermore, the offloading mentioned above and comput-
ing processes in MDs, ENs, and CDC can be completed
simultaneously for quick response. Yet, partitioning of depen-
dent tasks is complex because many critical factors, including
available computing resources in MDs and ENs, wireless
channel information between MDs and ENs, and execution
cost in CDC, need to be jointly considered [9]. The current
existing studies have the following drawbacks. First, most
existing task partitioning approaches are mainly suitable for
the MEC systems with ENs only or simple tasks that do

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3522964

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Melbourne. Downloaded on December 28,2024 at 16:33:58 UTC from IEEE Xplore. Restrictions apply.

2

not depend on the execution results of their preceding or
subsequent tasks [10]. Second, most current methods are only
suitable for small-scale systems with a few MDs and ENs,
making them infeasible for applications in large-scale and real-
life complex MEC systems [11]. Third, most of the current
methods are only designed for relatively simple architectures
without CDC, e.g., those with many MDs and one EN [1] and
those with multiple MDs and several ENs [12].

Unlike existing studies, we jointly and innovatively optimize
the partitioning and offloading of tasks and the user associ-
ations in the edge-cloud collaborative system. It focuses on
minimizing the collaborative system cost while satisfying the
limits of tasks’ response time, system energy consumption, and
computing and communication resources of ENs and MDs.
Significant contributions are summarized as follows:

1) Unlike existing studies, this work innovatively considers
tasks that include subtasks with inter-dependency, i.e.,
each task owns many subtasks with inter-dependency that
need to be executed sequentially. This work proposes
a hybrid and collaborative edge and cloud system with
many ENs, MDs, and CDC, where user associations
between ENs and MDs directly affect the subtask number
in ENs, the running time of subtasks, and the system en-
ergy consumption. Specifically, we establish a constrained
optimization problem for optimizing task offloading and
partitioning and user associations for subtasks with inter-
dependency in the collaborative system. It is formulated
as a Mixed Integer Non-Linear Programming (MINLP)
problem, which minimizes the system cost.

2) To solve the problem, we design a novel algorithm called
Genetic Simulated-annealing-based Particle swarm opti-
mizer with Auto-Encoder (GSPAE). GSPAE innovatively
combines an autoencoder (AE) [13], genetic algorithm
(GA), and the rule of Metropolis acceptance in Simulated
Annealing (SA) [14] into a Particle Swarm Optimizer
(PSO) [15]. In each iteration of GSPAE, genetic op-
erations, including selection, crossover, and mutation,
are first used to yield diverse solutions. The Metropolis
acceptance criterion of SA then conditionally accepts
a new solution probabilistically in each iteration, thus
increasing global search ability and avoiding trapping into
local optima. In each iteration, AE is integrated to ex-
tract features of higher-quality particles, speeding up the
search process toward regions with better solutions. Thus,
GSPAE provides a diverse, global, and fast optimization
mechanism, which yields a unique solution that deter-
mines associations between MDs and ENs and subtask
splitting ratios among MDs, ENs, and CDC. Experiments
with real-life datasets from Google cluster demonstrate
that GSPAE reduces the total system cost by 43.39%
and 7.032% compared to SA-based PSO (SAPSO) and
Genetic SA-based PSO (GSPSO), respectively, which
also combine global search of SA and fast convergence
of PSO for yielding a high-quality solution by integrating
merits of different algorithms.

The rest of the paper is organized as follows. Section II
discusses the related work and shows the novelties of our

proposed method. Section III presents a partial offloading
framework of the edge-cloud collaborative system and the
formulated total cost minimization problem, which has been
proven to be NP-hard [17]. Section IV gives details of GSPAE.
Section V gives extensive simulation results over real-life
parameter settings in a typical scenario. Section VI gives the
conclusion and points out the future work.

II. RELATED WORK

A. Task offloading

Task offloading has been a vital edge and cloud computing
topic in recent years. Guo et al. [18] apply machine learning
to task offloading at a network edge and propose an intelligent
task offloading method. It achieves quicker processing and
higher prediction accuracy for resource-hungry applications
than several traditional offloading methods. Haber et al. [22]
present a nonconvex and mixed-integer program, which is
tackled by a branch and bound algorithm. It jointly optimizes
the system execution cost and the energy consumption of MDs
in a multi-access MEC system to meet the latency needs
of devices. The two studies only consider an MEC system,
which is relatively simple to make task-offloading decisions.
To extend them to more realistic cases, Zhang et al. consider a
system consisting of a cloud radio access network and MEC.
They [21] give an algorithm for joint resource allocation and
task offloading in a cloud radio access network supporting
MEC. An MINLP is given and addressed by a Lyapunov opti-
mization algorithm to optimize task offloading and scheduling
of computation and radio resources. To consider more complex
scenarios, further studies consider hybrid systems consisting of
MEC and cloud, which are closer to real-life cases in current
literature. Specifically, the study in [19] designs an algorithm
for offloading tasks in a hybrid edge and cloud system. An
NP-hard problem is handled online, which maximizes the
number of admitted requests and minimizes their operation
cost within a given period. The study in [20] presents an
algorithm for offloading tasks in a collaborative cloud and
MEC environment. Different offloading decisions are designed
for multiple tasks with various resource and latency needs.
It effectively achieves load balancing and decreases data
leakage risks. Above all, these studies realize intelligent task
offloading strategies with machine learning and mathematical
optimization methods to reduce the system cost and improve
execution performance with minimized resources. However,
they fail to consider complex applications, each consisting of
multiple interdependent tasks.

Unlike the studies mentioned above, our work focuses on
partial computation offloading and user associations for tasks
with inter-dependency in hybrid edge and cloud systems. We
consider the dependency of tasks and intelligently offload
subtasks among MDs, ENs, and CDC in a cost-optimized
manner.

B. Hybrid edge and cloud systems

The design of hybrid edge and multi-cloud systems has
recently received a growing number of studies. Rodrigues et
al. [23] design a dual-focus method to reduce the service

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3522964

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Melbourne. Downloaded on December 28,2024 at 16:33:58 UTC from IEEE Xplore. Restrictions apply.

3

latency in the edge cloud with two cloudlet servers. It has
a dual focus on communication and computation elements
that determine processing latency in the migration of virtual
machines and the transmission latency. Fantacci and Picano
[24] establish an edge and cloud system and optimize the
number of dropped tasks whose response time is more sig-
nificant than their latency limits. They formulate a game-
matching problem between applications and edge servers.
These studies adopt offline mathematical methods to optimize
resources and reduce task latency. To avoid the additional
time caused by offline methods, Dinh et al. [25] design an
edge and cloud computing environment in which resource-
limited edge devices rent resources from a cloud and pro-
vide services to its users. Offline and online algorithms are
proposed to optimize resource allocation and procurement
for ENs. It adopts offline or online methods with known
or partial future demand. Thus, it can be applied to more
real-life scenarios. Unlike the above studies, several studies
consider more types of loads in hybrid MEC and cloud,
which are more challenging to schedule. Mishra et al. [26]
designed two types of resource allocation methods by using
analytic hierarchy processes in hybrid fog and cloud systems.
They aim to decrease the latency of each task by considering
heterogeneous loads of network and computing. In addition to
considering task routing, Chen et al. [27] further consider a
joint task routing and placement problem for latency-sensitive
applications. They present a hybrid computing architecture
to provide sufficient resources to run real-time and resource-
intensive tasks in edge networks. Above studies adopt tradi-
tional analytic methods to realize resource allocation in hybrid
MEC and cloud. Several studies seek to use recently emerging
reinforcement learning or deep learning techniques to realize
task offloading. Li et al. [28] formulate the task execution
in an MD as a directed acyclic graph and introduce a meta-
reinforcement learning approach for dynamical and robust
task offloading, thus improving the sampling efficiency of
tasks. Tuli et al. [29] employ a tree-based search strategy and
a deep neural network-based surrogate model to effectively
optimize scheduling decisions, thus improving the efficiency
of workflow application scheduling in distributed and parallel
MEC computing systems and efficiently utilizing computing
resources to meet users’ performance requirements. Above
all, these studies adopt classical mathematical methods, deep
learning, or reinforcement learning to realize task offloading
and resource allocation for applications in hybrid edge and
cloud systems, thereby improving execution efficiency and
reducing task latency. However, they ignore the dependency
of multiple tasks belonging to the same complex application,
and their methods cannot be directly applied in real-life edge
and cloud systems because of task heterogeneity and their
simplification of established models.

Unlike them, our work optimizes the cost of the collabora-
tive edge and cloud system while strictly meeting the latency
needs of tasks of dependent applications. In addition, it jointly
optimizes task partitioning and offloading, as well as user
associations, for the first time. Table I compares this work
and its state-of-the-art peers in the literature.

III. PROBLEM FORMULATION

A. Problem statement

Servers in CDC

...

Server in EN

EN 2

EN 1

EN J

MD K

MD 2

MD 1

Server in EN

Subtask of MD 1

Subtask of MD 2

Subtask of MD K

Fig. 1. Collaborative edge and cloud system architecture.

It is worth noting that this work focuses on task offloading
for dependent applications. Each application has multiple jobs,
which is more general in the real world. For example, a virtual
reality application comprises extracting sensor data, rendering
new image frames, compressing data, transferring data, and
displaying data, etc. [31]. The dependent tasks belonging to the
same application must be executed sequentially based on their
dependencies, i.e., each subsequent task must wait for all its
predecessor tasks to finish execution. The dependencies among
tasks are constraints or factors that must be considered when
making decisions about task offloading. The task offloading
choices bring about the computation cost of ENs. Thus, min-
imizing the total system cost while considering dependencies
among different tasks becomes an issue worth attention.

Fig. 1 shows the collaborative architecture of edge and
cloud systems, including K MDs, J ENs, and a centralized
CDC. Each EN includes a base station and an MEC server
that provides wireless communication. J ENs are connected
to CDC with backhaul networks. xk,j is a binary variable
showing the association relation between MD k and EN j.
If MD k is associated to EN j, xk,j=1; otherwise, xk,j=0.
Similar to [32], it is assumed that each MD is associated with
at most one EN in each time slot, i.e.,

J∑
j=1

xk,j≤1, 1≤k≤K (1)

πk is the EN set available to MD k, i.e.,

xk,j=0, ∀ j /∈πk (2)

Suppose xk,j=1, MD k’s offloaded tasks are completed in
EN j and transmitted to CDC. We assume an MD has only a
task in each time slot and is divided into many subtasks. Each
subtask has its input data. A typical example is video object
tracking, which can be divided into many dependent segments.

MDs, ENs, and CDC can complete each task’s subtasks
simultaneously. αk is a ratio of subtasks scheduled to MD k.
βk,j is a ratio of MD k’s subtasks scheduled to EN j. γk,j
is a ratio of MD k’ subtasks scheduled to CDC through EN

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3522964

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Melbourne. Downloaded on December 28,2024 at 16:33:58 UTC from IEEE Xplore. Restrictions apply.

4

TABLE I
COMPARISON BETWEEN THIS WORK AND ITS STATE-OF-THE-ART PEERS

Reference User associations between MDs and ENs Cloud data centers Feature extraction Task dependency Deep learning

[18] × × × × ×
[19] × ✓ × × ×
[20] ✓ ✓ × ✓ ×
[21] ✓ ✓ × × ×
[22] ✓ ✓ × × ×
[23] ✓ ✓ × × ×
[24] × ✓ × × ×
[25] × ✓ × × ×
[26] ✓ ✓ × ✓ ×
[27] × ✓ × × ×
[28] × ✓ ✓ ✓ ✓

[29] × ✓ × ✓ ✓

This work ✓ ✓ ✓ ✓ ✓

j. If xk,j=0, no subtasks are scheduled to ENs or CDC, i.e.,
βk,j=γk,j=0. Then,

0≤βk,j , γk,j≤xk,j (3)

For each MD k, we have:

αk+

J∑
j=1

βk,j+

J∑
j=1

γk,j=1 (4)

Besides, similar to [30], we assume that each MD moves
dynamically from one time slot to another, and their moving
locations are changed at the start of each time slot. Thus,
decision variables including xk,j , αk, βk,j , and γk,j are
changed once in each time slot.

B. Modeling of computing time

1) Computing time in MDs: Ik is the size of a task’s
input data (in bits) in MD k. zk is the CPU cycle number
to run a bit for MD k. Thus, αkIkzk is the total CPU cycle
number required in MD k. f1k is MD k’s running speed (CPU
cycles/sec.). τ1k is MD k’s computing time (in sec.). Then,
following [33], we have:

τ1k=
αkIkzk
f1k

(5)

2) Computing time in ENs: Similar to [34], each EN with
multi-core processors can execute subtasks in parallel. Its
computing resources are equally allocated to its associated
MDs [1]. The subtasks of each MD start execution directly
in their associated EN. Sj is the number of channels for EN
j, which provides services to Sj MDs at most. Then,

K∑
k=1

xk,j≤Sj (6)

f2j is EN j’s running speed. Then, the total number of bits
of MD k scheduled to EN j is βk,jIk. EN j’s computational

speed for MD k is
f2
j∑K

k=1 xk,j
. τ2k,j is the computing time of

subtasks of MD k offloaded to EN j. Following [35], τ2k,j is
obtained as:

τ2k,j=
βk,jIkzk

f2
j

K∑
k=1

xk,j

(7)

3) Computing time in CDC: MD k’s offloaded subtasks
are first delivered to EN j, which first runs its scheduled
subtasks and delivers other ones to CDC. γk,jIkzk is the total
number of CPU cycles needed for subtasks scheduled to CDC.
Then, following [36], the computing time of subtasks of MD
k scheduled to CDC, τ3k,j , is calculated as:

τ3k,j=
γk,jIkzk
f3k

(8)

where f3k is a running speed of CDC.

C. Communication time

We use an orthogonal and time-frequency sharing approach,
i.e., OFDMA [37]. Similar to [38], the total bandwidth is
shared by all MDs associated with each EN equally. Besides,
a signal-to-interference-plus-noise ratio (SINR) of an uplink
network between an EN and its connected MDs is measured
[39] at the start of each time slot. W is the channel bandwidth
for each EN, and θk,j is SINR of the network of uplink
between MD k and EN j. According to [33], θk,j is given
as:

θk,j=
Pk(φk,j)

−v|h1|2

N0
(9)

where Pk is MD k’s transmission power. h1 is a circularly
symmetric complex Gaussian variable. v is an exponent con-
stant of the path loss. N0 is the white Gaussian noise power.
φk,j is the distance between MD k and EN j.
Rk,j is MD k’s rate of data transmission associated with

EN j. It is associated with the channel bandwidth, SINR, and
the offloading strategy of MDs [38], i.e.,

Rk,j=
W log (1+θk,j)

K∑
k=1

xk,j

(10)

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3522964

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Melbourne. Downloaded on December 28,2024 at 16:33:58 UTC from IEEE Xplore. Restrictions apply.

5

Application programs are assumed to have already been
installed in hybrid edge and cloud systems servers. Subtasks
of each MD offloaded to CDC need to be transmitted through
their connected EN, along with ones to be offloaded to the
EN. Thus, each MD has to transmit the input data of subtasks
offloaded to its connected EN and CDC via an available uplink
channel. Let τak,j denote the offloading time from MD k to EN
j. It is calculated by dividing the total offloaded data by the
data transmission rate, where the total offloaded data equals
the total data offloaded to EN and CDC. Then,

τak,j=
(βk,j+γk,j)Ik

Rk,j
=

(βk,j+γk,j)Ik

(
K∑

k=1

xk,j

)
W log

(
1+

Pk(φk,j)−v|h1|2
N0

) (11)

Each EN is connected to CDC through a wired backhaul
network, and Mj is the transmission rate of the backhaul
network. The backhaul network bandwidth is shared equally
among all MDs associated with the EN. τ bk,j is the time for
transmitting subtasks of MD k to CDC by EN j, which is
given as:

τ bk,j=

γk,jIk

(
K∑

k=1

xk,j

)
Mj

(12)

This work ignores the time of transmitting the output result
from each EN or CDC back to MDs because its data size is
less than that of the input data [1], [40].

D. Completion time of MDs

We focus on applications consisting of multiple subtasks
with inter-dependency. For example, a mobile visual search is
a typical dependent application for electrical tourism services.
It has six significant subtasks, i.e., region of interest position-
ing, object detection, classification of video images, semantic
analysis of video images, feature extraction, and information
searching [41]. Each subtask relies on the execution result
of its preceding ones. Each subtask’s output is used as input
for the following subtask. We split the subtasks into three
interdependent parts completed in the beginning, middle, and
final stages. In the beginning stage, the subtasks are executed
in MDs. Each MD begins to run its subtasks and offloads
others to its connected EN simultaneously. Each MD delivers
the executed output of its subtasks to its associated EN. Upon
getting the output, the EN executes its scheduled subtasks
and delivers them simultaneously to the CDC. After the EN
completely executes its subtasks, the EN further transmits the
yielded output to CDC. At last, the CDC transmits the finally
yielded output back to MD. τ̃1k is the time when the EN begins
executing its scheduled subtasks, which is given as [38]:

τ̃1k=max
{
τ1k , τ

a
k,j

}
(13)

τ̃ak,j is the time from the beginning of running in EN to that
of running in CDC, i.e.,

τ̃ak,j=max
{
τ2k,j , τ

b
k,j

}
(14)

T̃k is the time of completing the execution of all subtasks
from MD k, which is given as:

T̃k=τ̃
1
k+

J∑
j=1

xk,j τ̃
a
k,j+

J∑
j=1

xk,jτ
3
k,j (15)

T̂k is the upper limit of T̃k, which is given as:

T̃k≤T̂k (16)

E. CPU and memory usage in ENs

ϕ̂1j is the number of EN j’s total CPU cycles. The total
number of CPU cycles required by all MDs associated with
EN j cannot be larger than ϕ̂1j , i.e.,

K∑
k=1

Ikβk,jzk≤ϕ̂1j (17)

ϕ̂2j is the number of EN j’s total memory units. The total
number of memory units required by all MDs associated with
EN j cannot be larger than ϕ̂2j , i.e.,

K∑
k=1

Ikβk,jwk≤ϕ̂2j (18)

where wk is the number of memory units required to execute
a bit of data of MD k.

F. Modeling of execution cost

Following [33], MD k’s power consumption is q1k
(
f1k

)3
. q1k

is a parameter depending on MD k’s chip architectures. f1k
is MD k’s running speed (CPU cycles/sec.). f̂1k is the upper
limit of f1k , i.e.,

0≤f1k≤f̂1k , f1k∈N+ (19)

The executing time of the scheduled subtasks in MD k is
Ikzkαk

f1
k

. The energy consumption of executing the scheduled

subtasks in MD k is Ikzkαkq
1
k

(
f1k

)2
. Êk is the upper limit of

MD k’s available energy, i.e.,

Ikzkαkq
1
k

(
f1k

)2≤Êk (20)

ψ1
k is MD k’s electricity price. 𭟋1 is the energy consumption

of running subtasks in MDs, i.e.,

𭟋1=

K∑
k=1

(
ψ1
kIkzkαkq

1
k

(
f1k

)2)
(21)

𭟋2 is the cost of all ENs and ψ2
j is the price of electricity for

EN j. q2j is a parameter showing EN j’s chip architectures. f2j
is EN j’s running speed (cycles/sec.). Ê2

j is EN j’s upper limit
of available energy. The total energy consumption of running
EN j’s subtasks cannot be larger than Ê2

j , i.e.,

K∑
k=1

(
Ikzkβk,jq

2
j

(
f2j

)2)≤Ê2
j (22)

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3522964

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Melbourne. Downloaded on December 28,2024 at 16:33:58 UTC from IEEE Xplore. Restrictions apply.

6

Following [42], 𭟋2 is given as:

𭟋2=

K∑
k=1

J∑
j=1

(
ψ2
j Ikzkβk,jq

2
j

(
f2j

)2)
(23)

𭟋3 is the cost of CDC. µ3 is the cost of executing a CPU
cycle of CDC. Then,

𭟋3=µ3

 K∑
k=1

Ikzk J∑
j=1

γk,j

 (24)

𭟋 is the cost of the collaborative edge and cloud system,
which is obtained as:

𭟋=𭟋1+𭟋2+𭟋3 (25)

G. Constrained optimization problem

Following the discussion above, the problem of total cost
minimization for the collaborative edge and cloud system is
given as follows:

Min
α,β,γ,x

{𭟋}

subject to

Ikzkαkq
1
k

(
f1k

)2≤Êk (26)
K∑

k=1

(
Ikzkβk,jq

2
j

(
f2j

)2)≤Ê2
j (27)

τ̃1k+

J∑
j=1

xk,j τ̃
a
k,j+

J∑
j=1

xk,jτ
3
k,j≤T̂k (28)

K∑
k=1

Ikβk,jzk≤ϕ̂1j (29)

K∑
k=1

Ikβk,jwk≤ϕ̂2j (30)

αk+

J∑
j=1

βk,j+

J∑
j=1

γk,j=1 (31)

0≤f1k≤f̂1k , f1k∈N+ (32)
J∑

j=1

xk,j≤1 (33)

K∑
k=1

xk,j≤Sj (34)

βk,j , γk,j≤xk,j (35)
0≤αk, βk,j , γk,j≤1 (36)
xk,j∈{0, 1} (37)
xk,j=0, ∀j /∈πk (38)

𭟋 is nonlinear regarding decision variables. αk, βk,j , γk,j
are real and xk,j is integer. Besides, many constraints, e.g.,
(26) and (27), are also nonlinear regarding decision variables.
The optimization objective 𭟋 of the problem and several of its
constraints, (26)–(28), are nonlinear, and its decision variables
include continuous and discrete types. This problem combines

the combinatorial difficulty of optimizing over discrete and
continuous variable sets with the challenge of handling the
nonlinear optimization function 𭟋. It is an NP-hard problem,
and its solution usually needs to find enormous search trees.
Thus, it is a typical MINLP problem [43].

This real-world problem cannot be solved to global op-
timality with deterministic, plane-cutting, relaxation-based,
or branch-and-bound methods because it is too large and
generates a huge search tree, and it has to be solved in real-
time. Thus, obtaining a good solution faster than waiting for
the optimal one is more desirable. This work resorts to meta-
heuristic search algorithms that quickly provide a close-to-
optimal point without optimality guarantees. Meta-heuristics
accelerate deterministic methods. We adopt an approach of
penalty function [44] to handle these constraints. Each con-
straint is first transformed into a non-negative penalty value.
Then, a new evaluation metric is obtained as its new objective
function. As shown in (39), the penalty of each inequality
constraint χ1 is (max{0,−

=

hχ1
(ℏ⃗)})2, and that of each equality

constraint χ2 is
∣∣ ̸=hχ2

(ℏ⃗)
∣∣2. The total penalty, Ω, is 0 if all

constraints are met.

Min
ℏ⃗

{
𭟋̃=

∞
NΩ+𭟋

}
(39)

Ω=

̸=
N∑

χ1=1

(max{0,−
=

hχ1
(ℏ⃗)})2+

=
N∑

χ2=1

∣∣ ̸=hχ2
(ℏ⃗)

∣∣2
=

hχ1
(ℏ⃗)≥0

̸=
hχ2

(ℏ⃗)=0

where ℏ⃗ is a vector of decision variables. 𭟋̃ is a transformed

objective function.
∞
N is a positive number.

̸=
N (

=

N) is the
number of inequality (equality) constraints.

IV. GENETIC SIMULATED-ANNEALING-BASED PARTICLE
SWARM OPTIMIZER WITH AUTO-ENCODER

Traditional approaches cannot well solve MINLP, e.g.,
dynamic programming methods [45] and gradient descent
ones [46]. These methods can only be applied if specific
mathematical properties are met, and they can only obtain
low-quality solutions given a limited time. Meta-heuristic algo-
rithms can effectively solve MINLP problems, considered the
most complex optimization. PSO follows simple exploratory
behaviors of bird movements and fish schooling. In PSO, the
position and velocity of each particle are randomly initialized.
PSO memorizes the best position of the swarm and that of
its own, as well as the velocity. In each generation, a particle
adjusts the velocity of each dimension according to search
experiences of its own and the swarm. Each particle updates
its position iteratively in the multi-dimensional search space
until it reaches the stopping criterion or the optimal result.
Connections among different dimensions of the problem space
are realized via objective functions. However, PSO is fast but
has an issue of early convergence [15].

SA starts with an arbitrarily generated solution to a problem.
A newly generated solution is rejected or accepted based on

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3522964

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Melbourne. Downloaded on December 28,2024 at 16:33:58 UTC from IEEE Xplore. Restrictions apply.

7

probability. An improved solution with a better objective func-
tion value is accepted with certainty. In contrast, a deteriorating
solution is received with a probability depending on the degree
of worsening of the solution and the current temperature.
SA yields a sequence of solutions. The temperature at early
stages in SA is higher, increasing the acceptance probability
of a worsening solution. This probabilistic acceptance of the
worse solution enables SA to escape local optima. As iterations
continue, the temperature decreases following a chosen cool-
ing schedule, decreasing the acceptance probability of worse
solutions. However, SA has a high global search ability and
relatively slow convergence [14].

GA mimics natural selection (survival of the fittest) and
biological reproduction of the fittest individual. The optimal
solution (the fittest individual) is yielded from generation to
generation without relying on the strict mathematical formu-
lation. The optimal solution comprises the best components
(genes) of the fittest individual in previous generations. GA is
a nonlinear, stochastic process and discrete event rather than a
mathematically guided algorithm. GA works on a population
of individuals and chooses a parent pool from the population
using the selection criteria to prepare the next generation. The
crossover and mutation operations provide the population with
new individuals. The crossover operation yields offspring by
exchanging partial bit strings and inverting bits between two
parents. The mutation operation may flip some genes of the
new offspring. GA evaluates each individual with a specific
fitness function. In the last generation, the fittest individual is
viewed as the optimal solution and yielded. GA has a high
diversity of individuals due to its genetic operations, yet its
running speed is unsatisfying [47].

The AE structure is a symmetrical network including an
encoder and a decoder [48]. The former encodes the orig-
inal input (the locally best positions of particles) into low-
dimensional hidden variables to learn important features. The
encoding function is denoted by Γ(·). The latter restores
hidden variables to those with the original dimension. The
decoding operation is denoted by Θ(·). The output of the
optimal AE perfectly yields the original input. ϖ denotes a
training sample (the locally best position). ϖ̃ is the output of
the optimal AE, i.e.,

ϖ̃=Θ(Γ(ϖ))≈ϖ (40)

We propose a novel meta-heuristic optimization algorithm,
GSPAE, to solve the optimization problem in Section III.
GSPAE adopts genetic operations to yield a superior exemplar
for each particle. GSPAE combines GA and PSO cohesively. It
consists of three major steps: 1) producing superior exemplars
with GA, 2) changing particles in PSO, and 3) utilizing AE to
guide the evolution of particles with distribution characteristics
of the locally best positions. Specifically, each particle in
GSPAE is affected by its superior exemplar, the globally best
position, and its locally best position.

Specifically, the main characteristics of GSPAE are listed
here. First, PSO’s particles learn from superior exemplars,
which are high-quality and more diversified, thereby avoiding
a problem of premature convergence. Second, SA’s rule of
Metropolis acceptance is used to update superior exemplars

and find global optima with high possibility. Third, the genetic
information of high-quality particles is propagated back to GA
for yielding better superior exemplars. Fourth, AE utilizes
high-quality particles and updates particles to optimize the
optimization process. GSPAE finds close-to-optimal decision
variables. The flowchart of GSPAE is given in Fig. 2.

Perform GA' crossover, mutation and selection

Initialize positions and velocities of particles in PSO

Update particles' velocities

Update particles' positions according to SA's

Metropolis acceptance rule

Input

Hidden Layer

()

Output

()

Encoder Decoder

Input

Hidden Layer

()

Output

()

Encoder Decoder

Termination condition

Output the globally best position

Modification condition

Yes

No A set of locally best positionsA set of locally best positionsYes

No Train AE

Modify current particles by AE
Particles

Best position
Particles

Best position

Fig. 2. Process of GSPAE.

GSPAE first initializes the positions and velocities of parti-
cles in PSO. Then, it performs GA’s crossover, mutation, and
selection operations. According to SA’s Metropolis acceptance
rule, GSPAE then updates particles’ velocities and positions.
If the termination condition is met, it outputs the globally
best position; otherwise, if the modification condition is met,
GSPAE selects a set of locally best positions and modifies
them with AE, which extracts features of higher-quality par-
ticles and guides the population toward regions with better
solutions. Then, GSPAE continues its iterations. In addition, if
the modification condition (every certain number of iterations)
is not met, GSPAE directly evolves. GSPAE terminates and
yields the globally best solution if the termination condition
is met.

The particle position includes D entries. The first K ele-
ments keep αk. The next KJ elements keep βk,j . The next
KJ elements keep γk,j . Then, the next KJ elements keep
xk,j . Thus, D=K+KJ+KJ+KJ=K(3J+1). X is a set
of particles in each population. Let |X| denote the particle
number in PSO. pi is particle i’s locally best position. g is
the global best position of the current population. D means
the number of entries in each position. ei means particle i’s
superior exemplar. ei,d is entry d (1≤d≤D) of ei, which is
obtained as:

ei,d=
c1·r1·pi,d + c2·r2·gd

c1·r1 + c2·r2
(41)

where pi,d means entry d of pi, gd is entry d of g, c1 (c2) is
a cognitive (social) acceleration constant for pi,d and gd. r1
and r2 mean random values in (0,1).

GSPAE includes five major components: crossover, muta-
tion, selection, position update, and updating particles with
AE. They are presented next.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3522964

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Melbourne. Downloaded on December 28,2024 at 16:33:58 UTC from IEEE Xplore. Restrictions apply.

8

A. Crossover component

It is conducted on pi and g to yield a new individual oi. pκ
is a position of a random particle, and pκ,d is its entry d. If
𭟋̃(pi)<𭟋̃(pκ), oi inherits more dimensions from pκ. Its entry
d (oi,d) is obtained as:

oi,d=

{
rd·pi,d+(1− rd)·gd 𭟋̃(pi)<𭟋̃(pκ)

pκ,d otherwise
(42)

where rd is a random value in (0,1). Unlike the random
selection in GA, the previous search information is adopted
to enhance the search efficiency.

B. Mutation component

ζ denotes the given mutation possibility. For each entry d,
if rd<ζ, oi,d is changed with a value in (λ̌d, λ̂d), i.e.,

oi,d=rand(λ̌d, λ̂d), if rd<ζ (43)

where λ̌d and λ̂d mean lower and upper limits of element d
of particle i. In this way, the mutation component increases
the diversity and distribution of superior exemplars.

C. SA-based selection component

SA’s Metropolis acceptance rule is utilized to conditionally
select oi or ei. If 𭟋̃(oi)<𭟋̃(ei), oi is used. ηt is the tempera-

ture in iteration t. If 𭟋̃(oi)≥𭟋̃(ei) and exp
(
− 𭟋̃(oi)−𭟋̃(ei)

ηt

)
>ξ,

oi is used. ξ is a random value in (0,1). If exp
(
− 𭟋̃(oi)−𭟋̃(ei)

ηt

)
≤ξ

and 𭟋̃(oi)≥𭟋̃(ei), ei is fixed. Thus,

ei=


oi, 𭟋̃(oi)<𭟋̃(ei)

oi, 𭟋̃(oi)≥𭟋̃(ei) and exp
(
− 𭟋̃(oi)−𭟋̃(ei)

ηt

)
>ξ

ei, 𭟋̃(oi)≥𭟋̃(ei) and exp
(
− 𭟋̃(oi)−𭟋̃(ei)

ηt

)
≤ξ

(44)

D. Position update of particles

vi means particle i’s velocity and ℏ⃗i denotes its position.
ℏ⃗i,d is entry d of ℏ⃗i. They are updated as follows:

vi,d = ωt·vi,d + c·rd·(ei,d − ℏ⃗i,d) (45)

ℏ⃗i,d = ℏ⃗i,d + vi,d (46)

ωt=ω̂ −
t(ω̂ − ω̌)

t̂
(47)

where t̂ means the number of iterations, ωt means the inertia
weight in iteration t, c is a parameter reflecting the variation
between ei,d and xi,d, and ω̌ and ω̂ are lower and upper limits
of ωt.

E. Particle update with AE

A particle (⃗ℏ) is modified by the trained Γ(·) and Θ(·). ˜⃗ℏ
is the yielded output of AE, i.e.,˜⃗ℏ=Θ(Γ(ℏ⃗)) (48)

The locally best positions are utilized as training data
to retrain AE every t̃ iterations. During this reconstruction,
particles are infused with high-quality particles. This pro-
cedure enhances the population’s overall quality, guiding it
towards the solution space inhabited by high-quality solutions.
Consequently, it facilitates the population’s exploration of the
solution space where higher-quality solutions exist.

Algorithm 1 GSPAE
1: Initialize the positions and velocities
2: Obtain 𭟋̃(ℏ⃗i) with (39)
3: Determine pi and g
4: Perform the parameter initialization of SA, GA, PSO, and

AE
5: t← 1
6: ηt ← η1
7: while t≤t̂ do
8: Perform the crossover (42) to yield oi
9: Perform the mutation (43) on oi

10: Perform the SA-based selection to update ei
11: Update vi and ℏ⃗i of particle i with (45) and (46)
12: Obtain 𭟋̃(ℏ⃗i) of particle i with (39)
13: Change pi and g
14: ωt ← ω̂− t(ω̂−ω̌)

t̂
15: t← t+ 1
16: ηt ← ηt∗δ
17: if t%t̃==0 then
18: Train the AE
19: Reconstruct each particle (⃗ℏ) with AE
20: end if
21: end while
22: return g

Algorithm 1 gives pseudo codes of GSPAE. Line 1 initial-
izes the velocities and positions. Line 2 obtains 𭟋̃(ℏ⃗i) of each
particle i with (39). Line 3 updates pi and g, respectively.
Line 4 performs the parameter initialization of SA, GA, PSO,
and AE. Line 6 initializes η with η1, which denotes the initial
temperature of SA. The while loop continues if t≤t̂ in Line
7. Line 8 performs the crossover (42) to update oi. Line 9
performs the mutation (43) on oi. Line 10 performs the SA-
based selection to change ei. Line 11 updates vi and ℏ⃗i of
particle i with (45) and (46), respectively. Line 12 obtains
𭟋̃(ℏ⃗i) with (39). Line 13 updates pi and g, respectively. Line
14 decreases ωt from ω̂ to ω̌ linearly. Line 16 reduces ηt by
δ. Line 15 changes t. If t%t̃ is 0, Line 18 retrains the AE.
Line 19 reconstructs ℏ⃗ with the AE. Finally, Line 22 returns
g, including decision variables of α, β, γ, and x.

We further give the complexity of Algorithm 1. The main
complexity is caused by the while loop. Lines 8–16 show that
the complexity of the crossover, the mutation, the selection
with SA, and the update OF positions in each iteration is

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3522964

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Melbourne. Downloaded on December 28,2024 at 16:33:58 UTC from IEEE Xplore. Restrictions apply.

9

O(|X|D). The complexity of training AE is O(D|T |ϱ). ϱ
means the number of epochs in AE, and |T | is the number
of training samples. Thus, D=K(3J+1), and the complexity
of each iteration is O((|X|+ |T |ϱ)K(3J+1)). Algorithm 1’s
complexity is O((|X|+ |T |ϱ)K(3J+1)t̂).

V. PERFORMANCE EVALUATION

We evaluate GSPAE by considering a region with multiple
ENs and J=10. MDs handle real-world application tasks,
i.e., Linpack benchmarks for Android [49], which can either
be fully completed in MDs or partially scheduled to remote
servers. GSPAE is implemented with PyCharm 2022 in a
server with an Intel® CoreTM i7-12700H CPU with 12-core
4.9 GHz processors and 32-GB memory.

A. Parameter Setting

Similar to [33], MDs’ parameters are given here. wk=8,
f̂1k=4×108, Êk=6 J, Pk=0.1 W, T̂k=2.5 sec., f1k=4×108,
q1k=10−26, ψ1

k=5.06×10−6 $/J, zk=100 cycles/bit, and
Ik=[3,072,000, 21,504,000]. For each MD, if its distance
from EN j is beyond 800 m, j /∈πk; otherwise, j∈πk. ENs’
parameters are given here. v=4, Mj=100 Mbps, W=10 Mhz,
h1=0.98, ϕ̂2j=2 GB, Sj=5, Ê2

j =20 J, ϕ̂1j=8×109, ψ2
j =2.5×10−6

$/J, q2j =10−27, and f2j =8×108. CDC’s parameters are given
here. f3k=2.5×109 cycles/sec., and µ3=1.142×10−9 $ per CPU
cycle. Following [1], GSPAE’s parameters are given in Table
II. The number of neurons in the hidden layer in AE is 2

3 of
that in the layer of input, the number of epochs is 200, the rate
of learning is 10−3,

∞
N=103, and the function of activation is

sigmoid. Here, we have two parameter settings for demonstrat-
ing the performance of GSPAE. In parameter setting 1, K=10,
J=10, Sj=5, and Ik∈[3,072,000,21,504,000]. In parameter
setting 2, Ik=21,504,000, K∈[1, 11], J=10 and Sj=5.

TABLE II
MAIN PARAMETER SETTING OF GSPAE

|X| c c1(c2) ζ η1 δ t̂ t̃ ω̌ ω̂

50 1.49618 0.5 0.2 108 0.95 2,400 200 0.4 0.95

B. Experimental results

We first compare GSPAE with its typical peers, including
SA, GA, SA-based PSO (SAPSO), and GSPSO.

1) SA [50] jumps from the locally best solutions and finds
global optima in theory. The Comparison between it and
GSPAE proves GSPAE’s search accuracy.

2) GA [51] owns high individual quality due to its genetic
operations. Thus, GSPAE’s Comparison with GA can
show its search accuracy.

3) SAPSO [52] owns quick convergence of PSO and
SA’s high accuracy. Therefore, the comparison between
GSPAE and SAPSO can demonstrate the accuracy and
convergence of GSPAE’s search.

4) GSPSO [1] has excellent optimization ability in solving
low-dimensional optimization problems. In contrast to it,

GSPAE integrates an AE to enhance global search accu-
racy. Specifically, the locally best positions are training
samples for updating AE every t̃ iterations, which ex-
tracts features of high-quality solutions and reconstructs
outputs based on them. Then, the trained AE modifies
each particle in the current population according to the
grasped features. In addition, GSPAE’s search capability
in high-dimensional MINLP is enhanced due to our novel
integration of AE. The Comparison between GSPSO
and GSPAE proves the improvement brought by AE to
GSPAE.

C. Algorithm comparison with parameter setting 1

Fig. 3 illustrates the cost of SA, GA, SAPSO, GSPSO,
and GSPAE given different Ik with parameter setting 1. We
change Ik and fix other parameters here. The cost of each
algorithm increases when Ik is larger than 9,216,000. MDs and
ENs have limited computing abilities and cannot satisfy users’
latency bounds. Therefore, in this way, MDs must offload
some subtasks to CDC, increasing the cost. The cost of GSPAE
is decreased by 17% and 33% compared to GSPSO when
Ik=18,432,000 and Ik=15,360,000, respectively. Figs. 4–6
show penalties, cost, and fitness values of SA, GA, SAPSO,
GSPSO, and GSPAE in each iteration with parameter setting
1. Here, the fitness is calculated by (39). Given this MINLP,
larger Ik means fewer solutions satisfy the latency constraint
(16). This means that the problem with larger Ik is more
difficult to solve by GSPAE.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

10
7

0

2

4

6

8

10

12

14
SA

GA

SAPSO

GSPSO

GSPAE

Fig. 3. Cost of SA, SAPSO, GA, GSPSO, and GSPAE versus Ik .

0 500 1000 1500 2000
0

500

1000

1500

2000

2500
SA

GA

SAPSO

GSPSO

GSPAE

Fig. 4. Penalties of SA, GA, SAPSO, GSPSO, and GSPAE.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3522964

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Melbourne. Downloaded on December 28,2024 at 16:33:58 UTC from IEEE Xplore. Restrictions apply.

10

0 500 1000 1500 2000
0

5

10

15

20

25
SA

GA

SAPSO

GSPSO

GSPAE

Fig. 5. Cost of SA, GA, SAPSO, GSPSO, and GSPAE.

Fig. 4 shows that only GSPAE and GSPSO obtain valid
solutions at the end of their iterations. The result demonstrates
that GSPAE and GSPSO have excellent search capabilities
that surpass their peers. It is also shown that the final cost
(7.2698 $) of GSPAE is the least among the five algorithms.
In addition, unlike GA, SA, and SAPSO, after the penalties
are close to 0, the cost of GSPAE and GSPSO is constantly
reduced, indicating that they jump out of locally best solutions.
Furthermore, Fig. 6 shows the fitness values of five algorithms
in each iteration with parameter setting 1. It is demonstrated
that SA and SAPSO converge with fewer iterations than
GSPAE, but their final fitness values are much larger than
GSPAE’s. GSPAE yields the least fitness value with the
fewest iterations, the reason is that it combines strong global
search ability of SA and fast convergence of PSO to yield
a high-quality solution by integrating the merits of different
algorithms, which verifies its convergence speed and search
accuracy.

0 500 1000 1500 2000
0

500

1000

1500

2000

2500
SA

GA

SAPSO

GSPSO

GSPAE

Fig. 6. Fitness values of SA, GA, SAPSO, GSPSO, and GSPAE when K=10,
J = 10, and Ik=21, 504, 000.

D. Algorithm comparison with parameter setting 2

As K becomes larger, the dimension of each solution
increases dramatically, and the search space also grows ex-
ponentially. Figs. 7 and 8 show the penalties and the cost
of SA, GA, SAPSO, GSPSO, and GSPAE versus K with
the parameter setting 2. It is shown that when K≤5, all
algorithms obtain their valid solutions, and the cost of GSPSO
and GSPAE is the same and the smallest. When K>5, SA,
SAPSO, and GA fail to find valid solutions with penalties

of 0 in the huge solution space, yet GSPSO and GSPAE
successfully obtain valid ones. Furthermore, When K>5, the
cost of GSPAE is smaller than that of GSPSO, which illustrates
that the AE effectively improves the optimization ability of
GSPAE in solving the high-dimensional MINLP. Thus, the
results with two parameter settings demonstrate that GSPAE
achieves the best among all algorithms with good robustness.

1 2 3 4 5 6 7 8 9 10 11
0

200

400

600

800

1000

SA

GA

SAPSO

GSPSO

GSPAE

Fig. 7. Penalties of SA, GA, SAPSO, GSPSO, and GSPAE versus K.

1 2 3 4 5 6 7 8 9 10 11
0

5

10

15

SA

GA

SAPSO

GSPSO

GSPAE

Fig. 8. Cost of SA, GA, SAPSO, GSPSO, and GSPAE versus K.

E. Allocation of subtasks

Fig. 9 shows the allocation ratios of subtasks versus Ik.
More subtasks are scheduled to ENs when Ik<6,144,000. This
is because ENs have more resources than MDs, and their cost
is less than that of MDs. When Ik∈[6,144,000,12,288,000],
more subtasks are scheduled to MDs because ENs own limited
computing resources and fail to run all subtasks. Besides,
MDs’ prices are cheaper than those of the CDC. When
Ik>12,288,000, due to CDC’s almost unlimited resources,
more subtasks are offloaded to it. The ratio of subtasks
allocated to MDs decreases when Ik>15,375,000. The number
of subtasks allocated to MDs does not decrease, but it reaches
the processing limits of MDs. Therefore, as Ik increases, α
decreases accordingly, which is reflected in Fig. 9.

Fig. 10 shows allocation ratios of subtasks versus K. The
allocation ratio for MDs is almost fixed, ENs are reduced,
and CDC is reduced as K increases. The subtask number
scheduled to ENs reaches their capacities because of their
limited capacities of CPU cycles and memory units as K
increases. In addition, a more significant number of subtasks

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3522964

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Melbourne. Downloaded on December 28,2024 at 16:33:58 UTC from IEEE Xplore. Restrictions apply.

11

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

10
7

0

0.2

0.4

0.6

0.8

1
Local

Edge

Cloud

Fig. 9. Allocation ratios of subtasks versus Ik .

are scheduled for CDC because of its sufficient resources.
Nevertheless, the execution cost in CDC is larger, increasing
the total system cost.

2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1
Local

Edge

Cloud

Fig. 10. Allocation ratios of subtasks versus K.

F. Comparison of different strategies

To prove the performance of GSPAE, we compare GSPAE
with three typical methods [38] on adaptive offloading and
partitioning.

1) M1. Each subtask is scheduled for MDs;
2) M2. Each subtask is scheduled between MDs and ENs

and
3) M3. Each subtask is scheduled between MDs and CDC.
Fig. 11 shows the fitness value of each algorithm versus

Ik. It is shown that when Ik<9,216,000, the fitness values
of the four methods are all small. The reason is that when
Ik is small, subtasks in M1 and M3 are directly executed in
MDs. In addition, subtasks in M2 and GSPAE are directly
executed in ENs, and smaller fitness values are achieved.
When Ik>9,216,000, MDs fail to perform all subtasks in
their latency limits with their limited resources. Thus, the
penalty of M1 increases linearly, increasing its fitness value.
For M2, M3, and GSPAE, some subtasks are offloaded to ENs
and CDC. When Ik∈[9,216,000, 12,288,000], M3 offloads
some subtasks to CDC whose price is higher than that of
ENs. Thus, M3’s cost is higher than that of M2 and GSPAE.
When Ik>12,288,000, M2’s penalty increases due to the
limited resources of ENs and MDs. Due to the unlimited
computing resources in CDC, M2, and GSPAE, both satisfy all

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

10
7

0

50

100

150
MDs only

MDs + ENs

MDs + CDC

GSPAE

Fig. 11. Fitness value of each algorithm versus Ik .

1 2 3 4 5 6 7 8 9 10 11
0

20

40

60

80

100

120
MDs only

MDs + ENs

MDs + CDC

GSPAE

Fig. 12. Fitness value of each algorithm versus K.

constraints. Thus, GSPAE’s cost is the lowest, and the increase
in its fitness value is also the slowest.

Fig. 12 illustrates the fitness value of each algorithm versus
K. The fitness values of M1, M3, and GSPAE increase linearly
when K increases and Ik remains unchanged. For M1, the
reason is that MDs have limited energy and resources, which
increases its penalty. For M3 and GSPAE, the increase in their
fitness values is the increase in their cost. M2’s fitness value
increases suddenly when K>7. This is because when K is
very large, the energy and resources of MDs and ENs are
insufficient to execute all subtasks, and therefore, the penalty
of M2 increases. Finally, GSPAE yields the least fitness value,
which proves its superiority.

VI. CONCLUSIONS AND FUTURE WORK

Edge nodes (ENs) are usually on the network’s edge and
run offloaded mobile device tasks (MDs) to support fast
services for latency-sensitive applications. However, ENs and
MDs usually have constrained computing and communica-
tion resources and cannot wholly run offloaded subtasks.
Therefore, a collaborative edge and cloud system will uti-
lize a cloud data center (CDC) to provide fast services.
We aim to optimize the total cost of the collaborative edge
and cloud system by optimizing task split, task offloading,
and user associations of dependent subtasks. We present a
mixed integer nonlinear programming problem and propose
a novel meta-heuristic optimization algorithm named Genetic
Simulated-annealing-based Particle swarm optimization with
Auto-Encoder (GSPAE) to solve it. GSPAE obtains a near-
optimal mechanism to determine association relations between

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3522964

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Melbourne. Downloaded on December 28,2024 at 16:33:58 UTC from IEEE Xplore. Restrictions apply.

12

ENs and MDs and offloading ratios of subtasks in MDs, ENs,
and CDC. Extensive experiments demonstrate that GSPAE
reduces the total cost by at least 17% compared to typical
benchmark methods while adhering to latency limits and
resource capacities for energy, communication, and computing
of both ENs and MDs.

In the future, we plan to consider more complicated and
collaborative edge and cloud systems and design more cost-
effective user associations and task-offloading strategies. In
addition, more deep learning models, e.g., stacked sparse
autoencoders, and radial basis functions can be further used
to improve our proposed GSPAE. Besides, we will integrate
surrogate models to predict fitness values of low-dimensional
particles to reduce the number of computations of costly fitness
values.

REFERENCES

[1] J. Bi, H. Yuan, S. Duanmu, M. Zhou, and A. Abusorrah, “Energy-
Optimized Partial Computation Offloading in Mobile-Edge Computing
With Genetic Simulated-Annealing-Based Particle Swarm Optimization,”
IEEE Internet of Things Journal, vol. 8, no. 5, pp. 3774–3785, Mar. 2021.

[2] C. Brecher, M. Buchsbaum, and S. Storms, “Control from the Cloud:
Edge Computing, Services, and Digital Shadow for Automation Technolo-
gies*,” Proc. 2019 International Conference on Robotics and Automation,
Montreal, QC, Canada, 2019, pp. 9327–9333.

[3] Y. Sahni, J. Cao, L. Yang, and Y. Ji, “Multihop Offloading of Multiple
DAG Tasks in Collaborative Edge Computing,” IEEE Internet of Things
Journal, vol. 8, no. 6, pp. 4893–4905, Mar. 2021.

[4] M. Chen and Y. Hao, “Task Offloading for Mobile Edge Computing in
Software Defined Ultra-Dense Network,” IEEE Journal on Selected Areas
in Communications, vol. 36, no. 3, pp. 587–597, Mar. 2018.

[5] F. Y. Wu and H. H. Asada, “Decoupled Motion Control of Wearable Robot
for Rejecting Human Induced Disturbances,” Proc. 2018 IEEE Int. Conf.
on Robotics and Automation, 2018, pp. 4103–4110.

[6] J. Bi, H. Yuan, M. Zhou, and Q. Liu, “Time-Dependent Cloud Workload
Forecasting via Multi-Task Learning,” IEEE Robotics and Automation
Letters, vol. 4, no. 3, pp. 2401–2406, Jul. 2019.

[7] C. T. Recchiuto and A. Sgorbissa, “A Feasibility Study of Culture-
Aware Cloud Services for Conversational Robots,” IEEE Robotics and
Automation Letters, vol. 5, no. 4, pp. 6559–6566, Oct. 2020.

[8] R. A. C. da Silva and N. L. S. da Fonseca, “Location of Fog Nodes
for Reduction of Energy Consumption of End-User Devices,” IEEE
Transactions on Green Communications and Networking, vol. 4, no. 2,
pp. 593–605, Jun. 2020.

[9] L. Pan, “ECG: Edge-aware Point Cloud Completion with Graph Convolu-
tion,” IEEE Robotics and Automation Letters, vol. 5, no. 3, pp. 4392-4398,
Jul. 2020.

[10] J. Ren, G. Yu, Y. Cai, and Y. He, “Latency Optimization for Resource
Allocation in Mobile-Edge Computation Offloading,” IEEE Transactions
on Wireless Communications, vol. 17, no. 8, pp. 5506–5519, Aug. 2018.

[11] X. Wang, J. Ye and J. C. S. Lui, “Online Learning Aided Decentralized
Multi-User Task Offloading for Mobile Edge Computing,” IEEE Trans-
actions on Mobile Computing, vol. 23, no. 4, pp. 3328–3342, Apr. 2024.

[12] M. Gao, R. Shen, L. Shi, W. Qi, J. Li and Y. Li, “Task Partitioning and
Offloading in DNN-Task Enabled Mobile Edge Computing Networks,”
IEEE Transactions on Mobile Computing, vol. 22, no. 4, pp. 2435–2445,
Apr. 2023.

[13] M. Tajmirriahi, R. Kafieh, Z. Amini, and H. Rabbani, “A Lightweight
Mimic Convolutional Auto-Encoder for Denoising Retinal Optical Coher-
ence Tomography Images,” IEEE Transactions on Instrumentation and
Measurement, vol. 70, pp. 1–8, 2021.

[14] Y. Koshka and M. A. Novotny, “Comparison of D-Wave Quantum
Annealing and Classical Simulated Annealing for Local Minima Deter-
mination,” IEEE Journal on Selected Areas in Information Theory, vol.
1, no. 2, pp. 515–525, Aug. 2020.

[15] D. Wu, N. Jiang, W. Du, K. Tang, and X. Cao, “Particle Swarm
Optimization with Moving Particles on Scale-Free Networks,” IEEE
Transactions on Network Science and Engineering, vol. 7, no. 1, pp.
497–506, Mar. 2020.

[16] H. Yuan, Q. Hu, M. Wang, J. Bi, and M. Zhou, “Cost-minimized
User Association and Partial Offloading for Dependent Tasks in Hybrid
Cloud–edge Systems,” Proc. of 2022 IEEE 18th International Conference
on Automation Science and Engineering (CASE), 2022, pp. 1059–1064.

[17] Y. Cong, K. Xue, C. Wang, W. Sun, S. Sun, and F. Hu, “Latency-
Energy Joint Optimization for Task Offloading and Resource Allocation
in MEC-Assisted Vehicular Networks,” IEEE Transactions on Vehicular
Technology, vol. 72, no. 12, pp. 16369–16381, Dec. 2023.

[18] H. Guo, J. Liu and J. Lv, “Toward Intelligent Task Offloading at the
Edge,” IEEE Network, vol. 34, no. 2, pp. 128–134, Mar. 2020.

[19] Z. Xu, W. Liang, M. Jia, M. Huang, and G. Mao, “Task Offloading with
Network Function Requirements in a Mobile Edge-Cloud Network,” IEEE
Transactions on Mobile Computing, vol. 18, no. 11, pp. 2672–2685, Nov.
2019.

[20] M. Huang, W. Liu, T. Wang, A. Liu, and S. Zhang, “A Cloud–MEC
Collaborative Task Offloading Scheme With Service Orchestration,” IEEE
Internet of Things Journal, vol. 7, no. 7, pp. 5792–5805, Jul. 2020.

[21] Q. Zhang, L. Gui, F. Hou, J. Chen, S. Zhu, and F. Tian, “Dynamic
Task Offloading and Resource Allocation for Mobile-Edge Computing in
Dense Cloud RAN,” IEEE Internet of Things Journal, vol. 7, no. 4, pp.
3282–3299, Apr. 2020.

[22] E. El Haber, T. M. Nguyen, and C. Assi, “Joint Optimization of
Computational Cost and Devices Energy for Task Offloading in Multi-
Tier Edge-Clouds,” IEEE Transactions on Communications, vol. 67, no.
5, pp. 3407–3421, May 2019.

[23] H. Gao, W. Ma, S. He, L. Wang, and J. Liu, “Time-Segmented Multi-
Level Reconfiguration in Distribution Network: A Novel Cloud-Edge
Collaboration Framework,” IEEE Transactions on Smart Grid, vol. 13,
no. 4, pp. 3319–3322, Jul. 2022.

[24] R. Fantacci and B. Picano, “A Matching Game With Discard Policy
for Virtual Machines Placement in Hybrid Cloud-Edge Architecture for
Industrial IoT Systems,” IEEE Transactions on Industrial Informatics,
vol. 16, no. 11, pp. 7046–7055, Nov. 2020.

[25] T. Q. Dinh, B. Liang, T. Q. S. Quek, and H. Shin, “Online Resource
Procurement and Allocation in a Hybrid Edge-Cloud Computing System,”
IEEE Transactions on Wireless Communications, vol. 19, no. 3, pp. 2137–
2149, Mar. 2020.

[26] S. Mishra, M. N. Sahoo, S. Bakshi, and J. J. P. C. Rodrigues, “Dynamic
Resource Allocation in Fog-Cloud Hybrid Systems Using Multicriteria
AHP Techniques,” IEEE Internet of Things Journal, vol. 7, no. 9, pp.
8993–9000, Sept. 2020.

[27] W. Chen, B. Liu, H. Huang, S. Guo, and Z. Zheng, “When UAV Swarm
Meets Edge-Cloud Computing: The QoS Perspective,” IEEE Network,
vol. 33, no. 2, pp. 36–43, Mar. 2019.

[28] Y. Li, J. Li, Z. Lv, H. Li, Y. Wang, and Z. Xu, “GASTO: A Fast Adap-
tive Graph Learning Framework for Edge Computing Empowered Task
Offloading,” IEEE Transactions on Network and Service Management,
vol. 20, no. 2, pp. 932–944, Jun. 2023.

[29] S. Tuli, G. Casale, and N. R. Jennings, “MCDS: AI Augmented
Workflow Scheduling in Mobile Edge Cloud Computing Systems,” IEEE
Transactions on Parallel and Distributed Systems, vol. 33, no. 11, pp.
2794–2807, Nov. 2022.

[30] S. Liu, P. Cheng, Z. Chen, W. Xiang, B. Vucetic, and Y. Li, “Contextual
User-Centric Task Offloading for Mobile Edge Computing in Ultra-Dense
Network,” IEEE Transactions on Mobile Computing, vol. 22, no. 9, pp.
5092–5108, Sept. 2023.

[31] F. Khoramnejad, A. Syed, W. Sean Kennedy, and M. Erol-Kantarci, “En-
ergy and Delay Aware General Task Dependent Offloading in UAV-Aided
Smart Farms,” IEEE Transactions on Network and Service Management,
vol. 21, no. 5, pp. 5033–5048, Oct. 2024.

[32] H. Zhang, H. Wang, Z. Li, D. Wu, R. Wang, and Y. Hu, 11Latency
Guarantee for Task Computation in Wireless-Powered Cloud Radio
Access Networks,” IEEE Internet of Things Journal, vol. 10, no. 21,
pp. 19199–19207, Nov 2023.

[33] Y. Li, J. Shen, S. Ji, and Y. -H. Lai, “Blockchain-Based Data Integrity
Verification Scheme in AIoT Cloud–Edge Computing Environment,”
IEEE Transactions on Engineering Management, vol. 71, pp. 12556–
12565, 2024.

[34] C. Hou and Q. Zhao, “Optimal Task-Offloading Control for Edge
Computing System With Tasks Offloaded and Computed in Sequence,”
IEEE Transactions on Automation Science and Engineering, vol. 20, no.
2, pp. 1378–1392, Apr. 2023.

[35] Z. Yang et al., “Differentially Private Federated Tensor Completion
for Cloud–Edge Collaborative AIoT Data Prediction,” IEEE Internet of
Things Journal, vol. 11, no. 1, pp. 256–267, Jan. 2024.

[36] J. Bi, H. Yuan, K. Zhang, and M. Zhou, “Energy-minimized Partial Com-
putation Offloading for Delay-sensitive Applications in Heterogeneous

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3522964

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Melbourne. Downloaded on December 28,2024 at 16:33:58 UTC from IEEE Xplore. Restrictions apply.

13

Edge Networks,” IEEE Transactions on Emerging Topics in Computing,
2021.

[37] F. Khoramnejad, M. Rasti, H. Pedram, E. Hossain, and S. Valaee,
“Load Management, Power and Admission Control in Downlink Cellular
OFDMA Networks,” IEEE Transactions on Mobile Computing, vol. 20,
no. 4, pp. 1477–1493, Apr. 2021.

[38] M. Feng, M. Krunz, and W. Zhang, “Joint Task Partitioning and
User Association for Latency Minimization in Mobile Edge Computing
Networks,” IEEE Transactions on Vehicular Technology, vol. 70, no. 8,
pp. 8108–8121, Aug. 2021.

[39] M. Salehi and E. Hossain, “Federated Learning in Unreliable and
Resource-Constrained Cellular Wireless Networks,” IEEE Transactions
on Communications, vol. 69, no. 8, pp. 5136–5151, Aug. 2021.

[40] T. X. Tran and D. Pompili, “Joint Task Offloading and Resource
Allocation for Multi-Server Mobile-Edge Computing Networks,” IEEE
Transactions on Vehicular Technology, vol. 68, no. 1, pp. 856–868, Jan.
2019.

[41] Z. Zhang, L. Li, Z. Li, and H. Li, “Mobile Visual Search Compression
With Grassmann Manifold Embedding,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 29, no. 11, pp. 3356–3366, Nov.
2019.

[42] X. He, H. Xu, X. Xu, Y. Chen, and Z. Wang, “An Efficient Algorithm
for Microservice Placement in Cloud-Edge Collaborative Computing
Environment,” IEEE Transactions on Services Computing, vol. 17, no.
5, pp. 1983–1997, Sept. 2024.

[43] A. -J. Ulusoy, F. Pecci, and I. Stoianov, “An MINLP-Based Approach
for the Design-for-Control of Resilient Water Supply Systems,” IEEE
Systems Journal, vol. 14, no. 3, pp. 4579–4590, Sept. 2020.

[44] P. Srivastava and J. Cortés, “Nesterov Acceleration for Equality-
Constrained Convex Optimization via Continuously Differentiable
Penalty Functions,” IEEE Control Systems Letters, vol. 5, no. 2, pp. 415–
420, Apr. 2021.

[45] M. N. Hjelmeland, J. Zou, A. Helseth, and S. Ahmed, “Nonconvex
Medium-Term Hydropower Scheduling by Stochastic Dual Dynamic
Integer Programming,” IEEE Transactions on Sustainable Energy, vol.
10, no. 1, pp. 481–490, Jan. 2019.

[46] N. Costilla-Enriquez, Y. Weng, and B. Zhang, “Combining Newton-
Raphson and Stochastic Gradient Descent for Power Flow Analysis,”
IEEE Transactions on Power Systems, vol. 36, no. 1, pp. 514–517, Jan.
2021.

[47] N. T. Hanh, H. T. T. Binh, N. X. Hoai, and M. S. Palaniswami, “An
Efficient Genetic Algorithm for Maximizing Area Coverage in Wireless
Sensor Networks,” Information Sciences, vol. 488, pp. 58–75, Jul. 2019.

[48] S. Harford, F. Karim, and H. Darabi, “Generating Adversarial Samples
on Multivariate Time Series using Variational Autoencoders,” IEEE/CAA
Journal of Automatica Sinica, vol. 8, no. 9, pp. 1523–1538, Sept. 2021.

[49] H. Mazouzi, N. Achir, and K. Boussetta, “DM2-ECOP: An Efficient
Computation Offloading Policy for Multi-user Multi-cloudlet Mobile
Edge Computing Environment,” ACM Transactions on Internet Technol-
ogy, vol. 19, no.2, pp. 1–24, Apr. 2019.

[50] Z. Ye, K. Xiao, Y. Ge, and Y. Deng, “Applying Simulated Annealing and
Parallel Computing to the Mobile Sequential Recommendation,” IEEE
Transactions on Knowledge and Data Engineering, vol. 31, no. 2, pp.
243–256, Feb. 2019.

[51] Y. Shi, X. Lu, K. Gao, J. Zhu, and S. Wang, “Genetic Algorithm Aided
OFDM With All Index Modulation,” IEEE Communications Letter, vol.
23, no. 12, pp. 2192–2195, Dec. 2019.

[52] H. Yuan, J. Bi, W. Tan, M. Zhou, B. H. Li, and J. Li, “TTSA: An
Effective Scheduling Approach for Delay Bounded Tasks in Hybrid
Clouds,” IEEE Transactions on Cybernetics, vol. 47, no. 11, pp. 3658–
3668, Nov. 2017.

Haitao Yuan (S’15–M’17–SM’21) received the
Ph.D. degree in Computer Engineering from New
Jersey Institute of Technology (NJIT), Newark, NJ,
USA in 2020. He is currently a Deputy Director
in the Department of Science and Technology In-
novation, Wenchang International Aerospace City,
Hainan, China. He is currently an Associate Profes-
sor at the School of Automation Science and Elec-
trical Engineering at Beihang University, Beijing,
China, and he is named in the world’s top 2% of
Scientists List. His research interests include the In-

ternet of Things, edge computing, deep learning, data-driven optimization, and
computational intelligence algorithms. He received the Chinese Government
Award for Outstanding Self-Financed Students Abroad, the 2021 Hashimoto
Prize from NJIT, the Best Paper Award in the 17th ICNSC, and the Best
Student Paper Award Nominees in 2024 IEEE SMC. He is an associate editor
for IEEE Transactions on Systems, Man, and Cybernetics: Systems, IEEE
Internet of Things Journal, and Expert Systems With Applications.

Qinglong Hu is currently a Ph.D. candidate in
the Department of Computer Science at the City
University of Hong Kong. He received his Master’s
degree in Electronic and Information Engineering
from Beihang University in 2024 and his Bachelor’s
degree in Automation from Shandong University in
2021. His research interests include deep learning to
optimization, evolutionary computing, big data anal-
ysis, machine learning, and large language models.

Shen Wang is currently a Master student in the
School of Automation Science and Electrical Engi-
neering, Beihang University, Beijing, China. Before
that, he received his B.S. degree in Quality and
Reliability of Aircraft from Beihang University in
2022. His research interests include cloud comput-
ing, edge computing, data centers, big data, machine
learning, deep learning, and optimization algorithms.
He received the Merit Student Award from Beihang
University in 2019.

Jing Bi (M’13–SM’16) received her B.S., and Ph.D.
degrees in Computer Science from Northeastern
University, Shenyang, China, in 2003 and 2011,
respectively. From 2013 to 2015, she was a Post-
doc researcher in the Department of Automation at
Tsinghua University, Beijing, China. From 2018 to
2019, she was a Visiting Research Scholar with the
Department of Electrical and Computer Engineering,
New Jersey Institute of Technology, Newark, NJ,
USA. She is a Professor at the Faculty of Informa-
tion Technology, School of Software Engineering,

Beijing University of Technology, Beijing, China. Her research interests
include distributed computing, cloud computing, large-scale data analytics,
machine learning, and performance optimization. Dr. Bi received the IBM
Fellowship Award, the Best Paper Award at the 17th IEEE International
Conference on Networking, Sensing and Control, and the First-Prize Progress
Award of the Chinese Institute of Simulation Science and Technology. She
is now an Associate Editor of IEEE Transactions on Systems Man and
Cybernetics: Systems. She is a senior member of the IEEE.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3522964

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Melbourne. Downloaded on December 28,2024 at 16:33:58 UTC from IEEE Xplore. Restrictions apply.

14

Rajkumar Buyya (Fellow, IEEE) is a Redmond
Barry Distinguished Professor and Director of
the Cloud Computing and Distributed Systems
(CLOUDS) Laboratory at the University of Mel-
bourne, Australia. He received a B.E and M.E in
Computer Science and Engineering from Mysore
and Bangalore Universities in 1992 and 1995, re-
spectively, and a Ph.D. in Computer Science and
Software Engineering from Monash University, Mel-
bourne, Australia, in 2002. He was a Future Fellow
of the Australian Research Council from 2012 to

2016. He has authored over 800 publications and seven textbooks. He is one
of the highly cited authors in computer science and software engineering
worldwide, with over 146,470 citations and an h-index of 166. He was
recognized as a “Web of Science Highly Cited Researcher” from 2016 to
2021 by Thomson Reuters.

Jinhu Lü (M’03—SM’06—F’13) received the
Ph.D. degree in applied mathematics from the
Academy of Mathematics and Systems Science,
Chinese Academy of Sciences, China, in 2002. Cur-
rently, he is the Dean with the School of Automa-
tion Science and Electrical Engineering, Beihang
University, China. He is a Chief Scientist of the
National Key Research and Development Program
of China and a Leading Scientist of Innovative
Research Groups of the National Natural Science
Foundation of China. His research interests include

cooperation control, complex networks, and industrial Internet. He was a
recipient of the prestigious Ho Leung Ho Lee Foundation Award in 2015,
the State Natural Science Award three times from the Chinese Government
in 2008, 2012, and 2016, respectively, the National Natural Science Fund for
Distinguished Young Scholars Award, and the Highly Cited Researcher Award
from 2014 to 2020. He is a Fellow of IEEE and CAA.

Jinhong Yang received the Ph.D. degree in Com-
puter Application Technology from Harbin Engi-
neering University, Harbin, Heilongjiang, China in
2017. She is a senior engineer at CSSC Systems
Engineering Research Institute in Beijing, China.
Her research interests include machine learning, data
mining, knowledge reasoning, deep learning, and
intelligent optimization. She is a reviewer for Expert
Systems With Applications, International Journal of
Machine Learning and Cybernetics, etc.

Jia Zhang received a Ph.D. degree in computer
science from the University of Illinois at Chicago.
She is the Cruse C. and Marjorie F. Calahan Cen-
tennial Chair in Engineering and a professor of the
Department of Computer Science in the Lyle School
of Engineering at Southern Methodist University.
Her research interests emphasize the application of
machine learning and information retrieval methods
to tackle data science infrastructure problems, with
a recent focus on scientific workflows, provenance
mining, software discovery, knowledge graphs, and

interdisciplinary applications of all of these interests in earth science. She is
a senior member of the IEEE.

MengChu Zhou (S’88-M’90-SM’93-F’03) received
his Ph. D. degree from Rensselaer Polytechnic In-
stitute, Troy, NY in 1990 and then joined New
Jersey Institute of Technology where he has been
Distinguished Professor since 2013. His interests are
in Petri nets, automation, robotics, big data, Internet
of Things, cloud/edge computing, and AI. He has
1300+ publications including 17 books, 900+ journal
papers (680+ in IEEE transactions), 31 patents and
32 book-chapters. He is Fellow of IFAC, AAAS,
CAA and NAI.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3522964

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Melbourne. Downloaded on December 28,2024 at 16:33:58 UTC from IEEE Xplore. Restrictions apply.

