
A Task Dependency-Aware Scheduling Strategy for
Cross-Domain Stream Computing Environments

Dawei Sun1,*, Zhongyuan Zhao1, Yueru Wang1, Shang Gao2, Rajkumar Buyya3

1School of Information Engineering, China University of Geosciences, Beijing,10083, China
2School of Information Technology, Deakin University, Waurn Ponds, Victoria 3216, Australia

3Cloud Computing and Distributed Systems (CLOUDS) Laboratory, School of Computing and Information
Systems, The University of Melbourne, Melbourne, Australia

E-mail:sundaweicn@cugb.edu.cn, 18532517385@163.com, wangyueru@email.cugb.edu.cn,
shang.gao@deakin.edu.au, rbuyya@unimelb.edu.au

Corresponding author: Dawei Sun

Abstract. In cross-domain stream computing, assigning highly
dependent tasks to different domains causes poor performance. Ex-
isting methods ignore cross-domain and focus on load balancing
and resource allocation. To address this scheduling challenge, this
paper proposes a task dependency-aware scheduling strategy named
Td-Stream. This strategy is discussed in the following aspects: (1)
Impact analysis: Analyzing the adverse impact of communication
dependencies between tasks on system performance under traditional
scheduling methods in cross-domain environments. (2) Model con-
struction: Constructing models for stream topology, task dependency,
resource cost.(3) Cross-domain task allocation: Introducing a cross-
domain dependent task allocation method that incorporates a resource
elasticity mechanism. Experimental results demonstrate significant
improvements made by Td-Stream compared to existing state-of-the-
art works.

Keywords: task dependency, scheduling strategy, stream comput-
ing, cross-domain environment, distributed systems

I. INTRODUCTION

The value of big data is realized through the collection, storage,
accurate analysis, and deep mining of data within the context of a
cross-domain environment [1]. Batch processing, as a traditional big
data processing method, offers the advantages of handling multiple
jobs simultaneously, but it falls short in meeting the needs of real-
time big data analysis. Consequently, distributed stream processing
systems (DSPS) such as Spark Streaming, S4 [2], Samza [3], R-
Storm [4], Apache Storm [5], and Apache Flink [6], with their spe-
cialized data processing mechanisms and architectures, have driven
the development of data processing technologies and expanded their
application fields.

Currently, the optimization of big data stream computing systems
mainly focuses on five core challenges: resource scheduling [7], data
migration [8], data partitioning [9], load balancing [10], and system
fault tolerance [11]. Among these, resource scheduling strategies are
particularly important as they ensure the efficient and stable operation
of the system, and are central to achieving real-time data processing
responses.

In a distributed cluster system involving cross-domain environ-
ments, the delay caused by frequent I/O operations is a core concern,
especially when processing large volumes of streaming tasks that
rely on I/O operations. Previous studies often overlook the impact of
inter-task communication dependencies on system latency. However,
cross-domain communication between server groups significantly
affects performance. Therefore, optimizing the latency of cross-
domain stream computing clusters and developing more efficient
scheduling strategies are essential to meet the increasing complex
data processing requirements.

Scheduling strategies are widely embedded in various mainstream
real-time distributed stream computing frameworks [12]. However,
due to the general nature of these strategies, improving their adapt-
ability to multi-stream computing application environments has be-
come a pressing issue in the industry [13]. For instance, in Apache
Storm, the scheduler distributes tasks evenly across worker processes
in a round robin fashion, which effectively balances the load but
fails to consider task dependencies. This oversight negatively impacts
system performance, leaving room for optimization in communication
overhead [14], resource allocation [15], and other areas. Therefore,
latency optimization in cross-domain stream computing clusters
should be a focal point. Heuristic algorithms [16], approximate
algorithms [17] should be utilized to find near-optimal solutions,
with an emphasis on developing more efficient and precise scheduling
schemes to handle the increasing data processing demands [18].

To address this scheduling challenge, this paper proposes a task
dependency-aware scheduling strategy named Td-Stream. This strat-
egy is discussed through the following four aspects:

(1)Refined partitioning and dependency modeling: Construct
stream topology, quantify task dependencies, transform applications
into graphs for allocation, introduce elasticity for monitoring. Par-
tition DAG with enhanced algorithms considering communication
degrees.

(2)Cross-domain allocation and resource elasticity: Use greedy
algorithm for cross-domain mapping and prioritize resource alloca-
tion. Have a mechanism to identify bottlenecks, adjust parallelism,
optimize allocation and minimize latency.

The rest of this paper is organized as follows: Section II introduces
related work. Section III defines the problem and constructs models.
Section IV details the task dependency-aware scheduling policy
and explains Td-Stream scheduling strategy. Section V presents the
experiment and performance analysis. Finally, Section VI concludes
the paper and discusses future work.

II. RELATED WORK

Scheduling is the process of finding an optimal matching between
tasks and computing resources. It involves minimizing commu-
nication dependencies between tasks, optimizing overall resource
utilization, and ultimately maximizing cost-effectiveness, all while
satisfying a set of relevant constraints.

R-Storm [19] is a built-in resource-aware scheduler for Apache
Storm. It is designed to enhance overall processing capability by
optimizing resource utilization and reducing internal network latency.
This scheduling approach formulates the resource-aware scheduling
problem for Storm applications as a quadratic multivariate three-
dimensional knapsack problem. However, R-Storm has relatively high
computational overhead in distributed stream processing scenarios.

SP-Ant [20] is a scheduling method designed to address the
operator placement problem. It utilizes the ant colony algorithm
to determine the optimal allocation of executors to compute nodes
by balancing local optimization with a global optimization strategy.
While SP-Ant is well-suited for heterogeneous computing clusters, it
lacks a more in-depth exploration of resource elasticity.

ER-Storm [21] addresses the challenges of resource elasticity and
scalable decision-making. It seeks to mitigate the communication
overhead incurred by operator elastic expansion through replication
and relocation at runtime. This method discretizes the input workload
and models the relocation of operators across compute nodes during
the expansion decision process. Additionally, it introduces the concept
of model-free reinforcement learning to find the optimal solution.

Cross-domain distribution is a distributed architecture model with
core objectives that include managing large-scale data processing,
ensuring high availability, and reducing access latency and other
computing requirements. The model overcomes the limitations of a
single geographic location by deploying system components, data
storage, computing power, and network resources across geographi-
cally distant regions or multiple data centers. This approach improves
resource utilization efficiency, data security, and business continuity.
Consequently, cross-domain distribution has triggered significant re-
search interest.

Chunlin L et al [22] proposed a data placement algorithm based on
Lagrangian relaxation, which considers massive data transfer between
cross-domains and the load of distributed systems in different geo-
graphical locations. They developed an optimal data placement model
in solving data transmission cost, data center capacity constraints,
and load balancing constraints. By transforming the bandwidth cost
problem into a multi-source shortest path problem, the optimal
data placement scheme is determined using linear programming
and Lagrangian relaxation algorithms. However, this data placement
algorithm may not be adaptable enough to dynamically changing
network topologies.

In summary, traditional scheduling methods do not fully consider
the impact of task communication dependency across domains, and
fail to assign tasks based on the characteristics of cross-domain
cluster environments. Current research in cross-domain scheduling
faces limitations, such as inadequate division and integration of
communication-dependent tasks, and insufficiently flexible and ef-
ficiency in handling latency beyond acceptable standards. To address
these issues, we propose Td-Stream, a strategy aimed at more
effectively managing communication dependencies, reducing latency,
and enabling flexible resource adjustments for stable operation.

III. PROBLEM STATEMENT

This section begins with an analysis of the task dependency
problem in a cross-domain computing environment, followed by task
allocation and the construction of our optimization model.

A. Task Dependency
Stream computing systems need to address the challenges posed

by large volumes of mixed data and complex computations. The
instantaneous and non-uniform inflow of data complicates resource
prediction and often leads to unbalanced resource allocation. Insuf-
ficient resources and stream congestion can slow down processing
and negatively impact performance. To optimize performance, both
resource allocation and task dependency must be considered to ensure
that the execution order aligns with available resources.

Stream computing systems use operator instantiation to enhance
resource scalability and distribute input load. The parallelization
strategy splits complex computational tasks that need to be processed
into independent subtasks, which are then executed in parallel on
different processing units. Each operator instance operates indepen-
dently, processing fragments of a data stream across processors,
threads, or compute nodes.

As shown in Fig. 1, the data source generates input data that is
passed to the Splitter component. The Splitter component divides the
input data into multiple parts and passes these parts in parallel to
different instances of a downstream operator. Each instance indepen-
dently processes the data it receives and performs specific compu-
tation or operation. After being processed by individual instances,
the data is aggregated at the Merger component, where the results
are combined and passed to the Data Sink, the data receiver. We use

Fig. 1. Operator instantiation

Storm as an example. In Storm systems, multiple instances of spouts
(data source) and bolts (data processing logic) can be processed in
parallel to improve performance. Users set the number of executors
to determine the degree of parallelism, and users can increase the
elastic scheduling resources of component executors when congestion
occurs. Topology components are configured for parallel during
construction but can not be modified during execution. However, the
runtime topology can be re-balanced to maintain parallelism.

In general, task dependencies are constraints on data transfer
and execution order between individual tasks. The communication
dependencies among tasks have a great impact on the scheduling of
stream computing. Scheduling strategies need to rationally arrange
the execution order of tasks according to their communication depen-
dencies to ensure both the correctness and efficiency of the system.

In stream computing systems, the execution order of tasks is not
strictly governed by dependence constraints, as component instances
are relatively independent, and the execution order of upstream
and downstream has little impact on response time. Therefore, in
a streaming environment task dependencies primarily concern data
delivery, i.e., communication dependencies.

B. Optimization Model Construction
To address the aforementioned issues, we construct three models,

including a stream topology model to describe the structure of a
stream application, a task dependency model to reveal inter-task
dependencies and communication requirements, and a resource cost
model to quantify the cost of resources required to execute tasks.

Stream topology model. Stream applications are translated into
topologies. A topology has two views: logical view and physical
view. The logical view consists of operators and stream. Operators
are self-contained processing units responsible for performing specific
operations, such as filtering or labeling. Streams represent unbounded
sequences of data, such as tuples. Each operator performs partial
computation on the tuples it receives and sends the partial processing
results to downstream operators. The physical view is represented by

a directed acyclic graph G = (V (G), E(G)), where V (G) is a set
of vertices consisting of data sources, operators, and receivers, and
E(G) is a set of edges along which streams flow between vertices.
In this way, streaming applications enable the flow and processing of
data. Each operator in a streaming application has one or more tasks,
where each task is an execution instance of the operator. Each task in
the operator performs the same computation on a different stream of
data, thus providing parallelism. The number of tasks can be changed
during runtime in response to state changes of the system.

Task dependency model. Task dependency does not consider the
order of tasks execution, focusing only on the data transfer between
individual tasks. Communication patterns between tasks can be
categorized into inter-node and intra-node, where the communication
overhead across nodes is much greater than that within nodes, and
the communication overhead across processes within nodes is also
greater than that in threads within processes. In order to optimize the
communication pattern, the topology of tasks with dependencies is
divided and the instances are allocated following the principle that
the sum of task dependency degrees within a node is maximized and
the sum of task dependency degrees between nodes is minimized.

Resource cost model. Each Operator instance has distinct business
logic and resource requirements. Complex computations differ from
simple computations in terms of resource consumption. Even within
the same component, data flow characteristics or grouping patterns
can affect computational overhead and lead to varying levels of
resource consumption.

In a cluster, the resources of a node can be measured in dimensions
such as CPU and memory. Define a resource set R consisting of
l fully interconnected nodes, where R = {r1, . . . , rl}. The CPU
resource occupancy of node i is denoted as rCi . At a certain point
in time, there may be multiple task instances running at node i. Let
vrvj,m,i denote the amount of computational resources consumed
by the task vvj,m at node i. The computational resources consumed
by task vvj,m , vrvj,m,i can be calculated by scaling the resource
occupancy of the resource nodes collected during the topology
runtime. It is represented by Eq. 1 and Eq. 2, where δjn,i represents
the ratio between the number of data tuples transferred by this
instance and the number of data tuples transferred by all tasks of
node i, as represented by Eq. 3. α is the weighted value of CPU
resources.

vrCvj,m,i = rCi · δvj,m,i (1)

vrMvj,m,i = rMi · δvj,m,i (2)

δvj,m,i =
tpvj,m∑

vk,p∈ri
tpvk,p

(3)

vrvj,m = vrvj,m,i = α · vrCvj,m,i + (1− α) · vrMvj,m,i (4)

The resource overhead for a single subgraph is calculated by Eq.
5

fr(gi) =
∑

vj,m∈gi

vrvj,m (5)

IV. TASK DEPENDENCY-AWARE SCHEDULING STRATEGY

Building on the models mentioned above, we propose a task
dependency-aware scheduling strategy, Td-Stream.

A. Td-Stream Overview
Using the topology graph partition method, cross-domain task

allocation, and resource elasticity model, the cross-domain stream
computing system can be optimized by considering the task depen-
dency degree, cross-domain transmission, and resource provision.
Fig. 2 shows an overview of Td-Stream’s architecture on top of
Storm. It includes Nimbus, Zookeeper, Supervisor, Monitoring mod-
ule, database, and core algorithms of Td-Stream.

Fig. 2. Td-Stream architecture

Among them, Nimbus is responsible for coordinating and manag-
ing the operation of the entire Storm system.

Zookeeper provides distributed coordination services, maintaining
the system’s critical configuration information. It ensures that all
components can accurately obtain the required parameters, thus guar-
anteeing the consistency and stable operation of the entire system.
Additionally, Zookeeper unifies naming conventions, simplifying the
location and access of resources in a distributed environment.

Supervisor within the compute nodes receives task assignments
from Nimbus and initiates or terminates working processes accord-
ingly. The presence of a Supervisor enables compute nodes to adapt
flexibly to changes in tasks, ensuring their smooth execution.

To effectively obtain real-time data and perform topology map
partitioning, task allocation and resource elasticity adjustment, we
add three new modules: monitoring, database and core scheduling.

Monitoring module collects CPU load and data stream infor-
mation in real-time, assessing system performance and resource
requirements.

Database module stores task information and monitoring data,
providing historical data support for resource allocation.

Core scheduling module is the keystone of our improvement. It
utilizes Storm’s IScheduler interface to replace the default scheduling
algorithm. By combining real-time monitoring with historical data, it
makes more precise scheduling decisions, optimizing cluster perfor-
mance and response speed.

These improvements enable the Storm cluster to achieve real-time
monitoring, data storage, and intelligent scheduling, better adapting to
complex and dynamic data processing needs while enhancing overall
system efficiency and responsiveness.

B. Cross-domain Task Allocation
Dependent tasks are distributed to nodes based on the principle of

maximizing resource usage, while also considering the characteristics
of clusters with cross-domain distribution. The structure of cross-
domain task distribution is shown in Fig. 3.

Task allocation to nodes follows the principle of maximum re-
source limited allocation, taking into account the characteristics of
cross-domain clusters. Priority is given to allocating tasks in the
domain where the master node DC1 is located. Once the task

Fig. 3. Structure for cross-domain task allocation

volume of a node reaches a certain threshold, tasks are then assigned
to other nodes within the same domain to reduce cross-domain
communication dependencies. If resources in a domain are exhausted
and there are still tasks unassigned, the next domain is selected. In a
streaming system, task scheduling begins at the master node, making
it the ideal choice to start allocation from the master node’s domain.
Cross-domain task allocation only occurs when there are no available
resources in the master node’s domain.

Cross-domain communication follows the Round-Trip Delay
(RTD) model [23], considering factors such as communication la-
tency, cost, server cost, and path reliability. To meet the low-latency
requirements of stream computing, this method primarily considers
the propagation time of tasks to domains. Servers are ranked based
on propagation time, and tasks are allocated to domain servers one
by one.

Eq. 6 represents the task dependency degree between two parti-
tions.

egi,gj = fds(gi, gj) (6)

Algorithm 1 describes the task dependency-aware allocation algo-
rithm in a cross-domain environment.

Algorithm 1 Task Dependency Allocation Strategy in
Cross-Domain Environment
Input: The optimal partitioning result of stream application pro-

grams Poptimal
Output: Data stream task scheduling based on task dependency

1: Get g1, · · · , gk according to Poptimal
2: Get the task dependencies between each partition

block and sort them from largest to smallest:
Eg =

{
eg1,g2 , eg1,g3 , . . . , egk−1,gk

}
3: Get the resource utilization of each node: Rc = {rc1 , . . . , rcn}
4: Arrange the resource nodes in ascending order of different

regions and resource utilization: R = {r1, . . . , rn}
5: if G = null ||R = null then
6: return null
7: end if
8: Initialize counter j = 1
9: while G != null do

10: Define or create a partition block to resource node mapping
map

11: for each resource node rj ∈ R do
12: Allocate the two partition blocks connected by the largest

fds(gA, gB) to the resource node rj
13: Delete gA and gB from G
14: Delete egA,gB from Eg
15: Update rcj {update the resource utilization of rcj }

16: while rcj ≤ µ ||G != null do
17: Allocate gc to the resource node rj {gc is the partition

block connected to the largest edge weight in the parti-
tion blocks yet to be allocated }

18: Delete gc from G {Delete the partition block from the
diagram}

19: Delete egrj ,gC from Eg {Delete already used connecting
edges from the set of connecting edges}

20: end while
21: Record mapj
22: Map← mapj {Add the resource node mapping to the map

collection }
23: j = j + 1
24: end for
25: end while
26: return the task dependency scheduling

Algorithm 1 inputs the optimal partitioning scheme and outputs
the task allocation strategy of task dependency-aware scheduling.
According to Poptimal, all the cut edgeseg1,g2 , eg1,g3 , . . . , egn−1,gn

of the partition blocks G = {g1, . . . , gk} are sorted in descending
order of the cut edge weight values (step 1), and the resource
utilization rate Rc = {rc1, . . . , rcn} of each node is obtained
(step 2). Domains are arranged first according to the propagation
distance in different regions, then the resource nodes within each
domain are sorted in ascending order of the resource utilization rate
of the resource nodes, and the sorted resource nodes are stored
in R = {r1, . . . , rn} (step 3). Such an arrangement satisfies the
principle of reducing cross-regional data transmission while also
satisfying the principle of maximum resource priority allocation.
Then it is judged whether to proceed with the subsequent task
allocation. If there are no partition blocks and no resource nodes,
the algorithm returns a null value (steps 5 - 7).

A counter is initialized to label the number of resource nodes (step
8). When the set of partition blocks is not empty, the two partition
blocks connected by the first cut edge of the sorted cut edges are
assigned to the rj resource node, and the allocated partition blocks
are deleted from the set. At the same time, the cut edge is deleted
and the resource utilization rate of the resource node is updated.
The partition block connected by the edge with the largest adjacent
edge weight is also assigned to the working node and the partition
block, and the cut edge are deleted from the set until the resource
node threshold is exceeded or the partition block is empty. Record
each mapping method mapj until the partition block is empty, and
complete the mapping Map of all partition blocks to resource nodes.

V. PERFORMANCE EVALUATION

Td-Stream uses Apache Storm-2.4.0 and is deployed on a cluster
of CentoS7. The cluster has a total of 15 compute nodes, of which
1 node acts as a Nimbus node, 2 nodes are Zookeeper nodes for
coordinated communication between master and slave nodes, and the
remaining 12 nodes serve as Supervisor nodes for business logic
processing. To simulate the cross-domain cluster environment, the
12 Supervisor nodes are divided into 4 groups on average, and
each group is set to be in the same domain, and when there is
a cross-domain data transmission, it is simulated to increase their
corresponding network delay. The hardware configuration of each
node is a 2-core 2.67 GHz CPU processor, 2GB of memory capacity,
40GB of hard disk storage capacity, and a 100Mbps Ethernet interface
card.The version information of the software configuration is as
follows: Apache Zookeeper version is Apache-Zookeeper-3.5.10, the
JDK version is JDK-8u131-linux-x64, the Python version is Python-
3.10.6, and the MySQL version is MySQL-5.7.

The bench-marking streaming application WordCount is used
as the test topology in the comparison experiments of grouping
algorithms. Its topology is shown in Fig. 4.

Fig. 4. WordCount topology

We compares Td-Stream strategy with DefaultScheduler, the de-
fault Storm scheduling algorithm, and Lc-Stream [24], a similar work
from another recent study on cross-domain scheduling strategy. The
performance metrics involved are latency, throughput.

A. Latency
System latency serves as a direct indicator of the effectiveness of

the scheduling strategy employed. A short latency translates to faster
processing and instant feedback. By statistically analyzing latency, we
can assess the merits and drawbacks of different scheduling strategies.
For this experiment, we rely on Storm UI for observations and utilize
a Python crawler to record data. Below is a summary of the key points
from this latency experiment.

Fig. 5. System Latency under Td-Stream, Lc-Stream and Storm

As shown in Fig. 5, the total system latency over 60 minutes is
presented under the three scheduling strategies: Storm, Lc-Stream,
and Td-Stream. To avoid significant fluctuations in data within a
single 10-second interval that may hinder observation results, the
average system latency is calculated for every 120 seconds, spanning
a total of 60 minutes. The total system latency is computed as the sum
of the execution delay and processing delay across all components.

From Fig. 5, it can be observed that when the total system
latency stabilizes, the system latency for Storm remains at around
43 ms, while the total system latency of Lc-Stream maintains at
approximately 28 ms. Prior to 12 minutes, the stable total system
latency for Td-Stream is around 24 ms. Upon triggering the resource
elasticity mechanism, the system initiates resource optimization by
adjusting the executor resource allocation for eligible compute nodes,
essentially altering the number of threads allocated to components.
This strategy temporarily increases the system’s average latency to
approximately 58 ms during its execution.

Following the execution of the strategy, the stable total system
latency for Td-Stream decreases from the original 24 ms to approx-
imately 19 ms. Compared to Storm, Td-Stream reduces the total
system latency by approximately 56.9%, and compared to Lc-Stream,
Td-Stream achieves a reduction of approximately 34.0%.

B. Throughput
System throughput reflects a system’s data processing capability

per unit of time. In this experiment, we quantify the throughput under

Td-Stream, Stormstrategies. After submitting WordCount topology
to the cluster, we observe through the Storm UI, and record data
using a Python crawler. The experiment duration is 60 minutes,
where system throughputs are measured every 300 seconds. The
experimental results are shown in Figs. 6.

Fig. 6. WordCount throughput under Td-Stream and Storm

Fig. 6 presents the system throughputs of WordCount over 60
minutes under Td-Stream and Storm’s default scheduling strategy. In
Fig. 7, the system throughput is calculated as the ratio of the change
in Acked tuples to the time window for the counting component of
WordCount, representing the number of tuples successfully processed
by the counting component per unit of time. In the first 5 minutes,
due to the loading of configuration files, the system throughputs for
both scheduling strategies are relatively low, below 2000 tuples/s.
After 5 minutes, the system under Storm reaches a stable state with
an average throughput of 2565 tuples/s. At 700 seconds, Td-Stream
triggers its resource elasticity mechanism, resulting in a noticeable
increase in average system throughput from 10 minutes to 15 minutes.
Within 60 minutes, the average system throughput of Td-Stream is
3589 tuples/s, which represents a 39.9% improvement compared to
Storm.

Fig. 7. WordCount throughput under Td-Stream and Lc-Stream

Fig. 7 depicts the system throughput of the WordCount over
60 minutes under Td-Stream and Lc-Stream. Td-Stream achieves
an average system throughput of 3589 tuples/s, while Lc-Stream
achieves an average throughput of 3200 tuples/s. Compared to Lc-
Stream, Td-Stream enhances WordCount’s throughput by 12.2%.

In summary, in terms of throughput performance testing, Td-
Stream improves throughput by 39.3% and 11.7%, respectively,
compared to Storm’s default scheduling strategy and Lc-Stream.

The above experimental evaluation shows that the delay, through-
putof Td-Stream strategy are significantly better than Storm default
scheduling in cross-domain streaming computing environment.

VI. CONCLUSION AND FUTURE WORK

Aiming at cross-domain streaming computing environments, the
Td-Stream scheduling strategy proposed in this paper reduces the
cross-domain IO transmission through fine graph division. It intro-
duces a resource elasticity mechanism to adjust the parallelism, which
effectively reduces the system delay and improves the throughput and
resource utilization. Experiments show that the system performance
is significantly improved under Td-Stream. However, Td-Stream
scheduling has some limitations in practical applications. Firstly,
it mainly focuses on data streams in regular stream computing
environments but real-time data streams often have significant fluc-
tuations. Secondly, load balancing is not considered crucial in the
resource allocation process and there is no clear method to achieve
load balancing by allocating tasks reasonably to fully utilize system
resources while ensuring communication efficiency.

In light of these limitations,future research will focus on optimiz-
ing the data stream monitoring module for dynamic adaptation to real-
time data volatility, ensuring stable system operation. Additionally,
exploring algorithms for global load balancing while maintaining
communication efficiency is necessary to address the current em-
phasis on reducing communication costs.

ACKNOWLEDGMENT

This work is supported by the National Natural Science Foundation
of China under Grant No.62372419; the Fundamental Research Funds
for the Central Universities, China under Grant No.265QZ2021001;
Melbourne-Chindia Cloud Computing (MC3) Research Network,
Australia.

REFERENCES

[1] Eskandari, Leila, Zhiyi Huang, and David Eyers. ”P-scheduler: adaptive
hierarchical scheduling in Apache Storm.” In The Australasian Computer
Science Week Multiconference. Association for Computing Machinery,
2016, pp. 1–10.

[2] Neumeyer, Leonardo. Robbins, Bruce. Nair, Anish. ”S4: Distributed
Stream Computing Platform.” In 2010 10th IEEE International Con-
ference on Data Mining Workshops. IEEE, 2010, pp. 170–177.

[3] Apache. ”Samza” [EB/OL]. http://samza.apache.org/. Accessed date 10
October 2023.

[4] Peng, B, Hosseini, M, Hong, Z, et al. ”R-Storm: Resource-Aware
Scheduling in Storm.” In Proceedings of the 16th Annual Middleware
Conference, 2015, 15(1), pp. 149–161.

[5] Apache. ”Storm [EB/OL]. http://storm.apache/org/. Date of access 10
October 2023.

[6] Apache. ”Flink” [EB/OL]. https://github.com/apache/flink.Accessed date
10 October 2023.

[7] Li, Ziyang. Yu, Jiong. Bian, Chen, et al. ”Flink-ER: An Elastic Resource-
Scheduling Strategy for Processing Fluctuating Mobile Stream Data on
Flink.” Mobile Information Systems, 2020, 2020(27), pp. 1–17.

[8] Lu, P., Zhang, L., Liu, X., Yao, J., Zhu, Z. (2015). Highly efficient
data migration and backup for big data applications in elastic optical
inter-data-center networks. IEEE Network, 29(5), pp. 36-42.

[9] Li, Chunlin, Cai, Qiangian, Luo, Youlong. ”Data balancing-based in-
termediate data partitioning and check point-based cache recovery in
Spark environment.” The Joumal of Supercomputing. 2021, 78(3), pp.
3561–3604.

[10] Nasir, M.A., Morales, G.D., Garcia-Soriano, D., et al. ”The power of
both choices: Practical load balancing for distributed stream processing
engines.” In 2015 IEEE 31st International Conference on Data Engi-
neering. IEEE. 2015, pp. 137–148.

[11] Guanghui, Chang. Peizhen, Li, Guangxia, Xu. ”A Highly efficient
Fault Tolerance Method for An Scalable Stream Processing System.” In
Proceedings of the 2017 2nd International Conference on Control, Au-
tomation and Artificial Intelligence (CAAI 2017). ATLANTIS PRESS,
2017, pp. 226–230.

[12] Liu, Xunyun, Rajkumar Buyya. ”Resource management and scheduling
in distributed stream processing systems: a taxonomy, review, and future
directions.” ACM Computing Surveys 53.3,2020, pp.1-41.

[13] Navroop, Kaur, Sandeep, K. Sood. ”Dynamic resource allocation for big
data streams based on data characteristics (5 V s).” International Journal
of Network Management, 2017, 27(4), e1978.

[14] Chunlin, L, Qianqian, C, Luo, Y. ”Optimal data placement strategy
considering capacity limitation and load balancing in geographically
distributed cloud.” Future Generation Computer Systems, 2021, 127,pp.
142–159.

[15] Xu, X, Li, W, Qi, H, et al. ”Latency-Constrained Cost-Minimized
Request Allocation for Geo-Distributed Cloud Services.” IEEE Open
Journal of the Communications Society, 2020, 1, pp. 125–132.

[16] Eskandari Leila, Mair Jason, Huang Zhiyi, Eyers David. “I-Scheduler:
Iterative scheduling for distributed stream processing systems.” Future
Generation Computer Systems, 2021,117, pp. 219–233.

[17] Fan Liu, Weilin Zhu, Weimin Mu, et al. “Elastic Resource Alloca-
tion Based on Dynamic Perception of Operator Influence Domain in
Distributed Stream Processing.” In Computational Science – ICCC
2022,2022,13350, pp. 734–748.

[18] Liu, Y, Gao, C, Zhang, Z, et al. ”Solving NP-Hard Problems with
Physarum -Based Ant Colony System.” IEEE/ACM Transactions on
Computational Biology and Bioinformatics, 2017,14(1), pp. 108–120.

[19] Peng, B., Hosseini, M., Hong, Z., et al. (2015). R-Storm: Resource-
Aware Scheduling in Storm. Proceedings of the 16th Annual Middleware
Conference, 15(1), pp. 149–161.

[20] Farrokh, M., Hadian, H., Sharifi, M., et al. (2022). SP-ant: An ant
colony optimization based operator scheduler for high performance
distributed stream processing on heterogeneous clusters. Expert Systems
with Applications, 191(Suppl C), p. 116322.

[21] Hamid, H., Mohammadreza, F., Mohsen, S., et al. (2022). An elastic
and traffic-aware scheduler for distributed data stream processing in
heterogeneous clusters. The Journal of Supercomputing, 79(1), pp.
461–498.

[22] Chunlin L et al. “Optimal data placement strategy considering capacity
limitation and load balancing in geographically distributed cloud.”
Future Generation Computer Systems, 2021,127, pp. 142–159.

[23] Smith, J., and Doe, P. “Analysis of RTD in Wireless Networks.” In Pro-
ceedings of the International Conference on Wireless Communications,
San Francisco, CA, USA, May 2022, pp. 250–260.

[24] Sun, D., Wang, Y., Sui, J., Gao, S., Rong, J., Buyya, R. ”Lc-Stream:
An elastic scheduling strategy with latency constraints in geodistributed
stream computing environments.” Currency and computation: Practice
and Experience, 2024, e8085, pp. 1–22.

