
1

Energy-efficient and Latency-aware Task Offloading
for Industrial Cloud-edge Systems with

Heterogeneous CPUs and GPUs
Jiahui Zhai, Student Member, IEEE, Jing Bi, Senior Member, IEEE, Haitao Yuan, Senior Member, IEEE,

Jia Zhang, Senior Member, IEEE, and Rajkumar Buyya, Fellow, IEEE

Abstract—The unprecedented prosperity of the Industrial
Internet of Things has significantly driven the transition from
traditional manufacturing to intelligent one. In industrial en-
vironments, resource-constrained industrial equipments (IEs)
often fail to meet the diverse demands of numerous compute-
intensive and latency-sensitive tasks. Mobile edge computing has
emerged as an innovative paradigm to reduce latency and energy
consumption for IEs. However, the increasing number of IEs in
industrial settings relies on heterogeneous platforms integrated
with different processing units, i.e., CPUs and GPUs. To address
this challenge, we propose a software-defined networking-based
equipment-edge-cloud architecture with three-stage heteroge-
neous computing. This architecture accurately models the multi-
task processing of both scientific and concurrent workflows in
real industrial environments. We formulate a joint optimization
problem to simultaneously minimize task completion time and
energy consumption for IEs. To solve this problem, we design
an Improved Two-stage Multi-Objective Evolutionary Algorithm
(IT-MOEA). IT-MOEA employs a novel multi-objective grey wolf
optimizer based on manta ray foraging and associative learning
to accelerate convergence in the early evolution stages and adopts
a diversity-enhancing immune algorithm to enhance diversity
in the later stages. Simulation results with various benchmarks
demonstrate that IT-MOEA outperforms several state-of-the-art
single-objective optimization algorithms by an average of 24.7%
and multi-objective algorithms by 41.0% in terms of delay and
energy consumption.

Index Terms—Industrial Internet of Things, mobile edge com-
puting, task offloading, multi-objective optimization, evolutionary
algorithms.

This work was supported by the National Natural Science Foundation
of China under Grants 62173013 and 62473014; in part by the Beijing
Natural Science Foundation under Grants L233005 and 4232049; in part by
Beihang World TOP University Cooperation Program; and in part by the 2023
International Cooperation Training Program for Innovative Talents (“Double
First-class” Construction Special Program-“Artificial Intelligence + Internet
of Things”) of the China Scholarship Council (CSC). (Corresponding author:
Haitao Yuan)

J. Zhai and J. Bi are with the College of Computer Science, Bei-
jing University of Technology, Beijing 100124, China. (e-mail: zhaiji-
ahui@emails.bjut.edu.cn; bijing@bjut.edu.cn).

H. Yuan is with the School of Automation Science and Electrical Engineer-
ing, Beihang University, Beijing 100191, China. (e-mail: yuan@buaa.edu.cn).

J. Zhang is with the Department of Computer Science, Southern Methodist
University, Dallas, TX 75206, USA. (e-mail: jiazhang@smu.edu).

R. Buyya is with the Cloud Computing and Distributed Systems (CLOUDS)
Lab, School of Computing and Information Systems, University of Melbourne,
Melbourne, VIC 3010, Australia (e-mail: rbuyya@unimelb.edu.au).

Copyright (c) 2025 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

I. INTRODUCTION

With the continuous advancement of wireless communica-
tion technologies and the Internet of Things (IoTs), industrial
IoT (IIoT) technologies have emerged as a torchbearer in
driving the industrial revolution and enhancing traditional
industrial efficiency [1]. In IIoTs, various industrial equip-
ments (IEs), e.g., industrial robots, vehicles, and sensors are
required to play crucial roles across different production
stages, aiming to enhance production efficiency while reducing
resource consumption [2]. However, compute-intensive and
latency-sensitive industrial applications cannot autonomously
be operated in IEs constrained by their limited computational
capabilities and battery. To address this challenge, offload-
ing tasks from industrial applications to resource-sufficient
computing nodes to reduce computation time and energy
consumption [3]. Given the massive data transmission and
computation demands of IEs in industrial environments, tradi-
tional approaches involve processing data in cloud data centers
(CDCs) [4]. However, due to the long geographical distances
between CDCs and IEs, this solution fails to meet the latency
requirements of rapidly expanding IE scales and industrial
applications [4]. Mobile edge computing (MEC) deploys cloud
resources in access points (APs) closer to IEs, enabling low-
latency and energy-efficient IE tasks [5]. Additionally, delay
and energy consumption in MEC serve as primary metrics
for evaluating the effectiveness of offloading decisions [6].
Given the complexity and diversity of task types in industrial
applications, it is essential to consider the diverse requirements
of multiple tasks during the offloading process. Therefore, it
is crucial to design a task offloading approach that balances
delay and energy consumption for complex and diverse tasks
in industrial environments.

Moreover, the complexity of tasks in the IIoTs imposes
higher demands on heterogeneous computing resources. Tra-
ditional general-purpose CPU computing methods are in-
sufficient to effectively address the requirements of paral-
lel computing. General-purpose GPUs (GPGPUs) have be-
come increasingly prevalent in cloud processing and high-
performance embedded systems, accelerating parallel comput-
ing applications [7]. Many tasks require coordinating multiple
computing resources, such as CPU+GPU and CPU+ASIC.
For instance, when processing scene generation tasks of vir-
tual reality (VR), large scenes are decomposed into multiple
miniature scenes by CPUs. These smaller scenes are then

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3559690

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Melbourne. Downloaded on April 14,2025 at 08:27:11 UTC from IEEE Xplore. Restrictions apply.

2

subjected to high-precision parameter calculations and real-
time graphic rendering with both CPUs and GPUs, generating
multiple smaller scenes. CPUs further process intermediate
data fragments to achieve visual effects of the final VR
scene. High-performance GPUs, exemplified by products from
NVIDIA and AMD, have proven capable of meeting the
demands of extensive parallel computing tasks, leading to
the increasing adoption of heterogeneous resource integration
frameworks across various computing devices [8]. Existing
task offloading studies have predominantly focused on either
CPU or GPU resources, often neglecting the coordinated
utilization of heterogeneous computing platforms [3]–[5]. This
oversight limits the efficiency of task execution, particularly
for complex and data-intensive applications that require high
levels of parallelism and computational diversity. To address
this gap, this work designs a task offloading mechanism that
intelligently distributes computing tasks across heterogeneous
platforms with CPUs and GPUs while considering delay and
energy constraints of IIoT applications. In addition, IIoT tasks
exhibit significant heterogeneity in terms of computational
requirements, energy consumption, and latency constraints.
Current studies often assume uniform task characteristics,
failing to adequately address the diverse and dynamic nature
of real-world industrial applications [6]–[8]. Consequently,
this work establishes a practical heterogeneous computing
process model for systematically analyzing delay and en-
ergy consumption of heterogeneous computing tasks. Within
the broader context of cloud-edge computing, we leverage
software-defined networking (SDN) to provide a centralized
and programmable network control plane that flexibly coordi-
nates offloading decisions among IEs, APs, and CDCs. Thus,
an SDN-enabled equipment-edge-cloud framework holds great
promise for efficient task offloading and resource allocation in
heterogeneous systems containing both CPUs and GPUs.

Considering the heterogeneous task offloading with CPUs
and GPUs in IIoT, we aim to minimize the completion time
for industrial applications and the energy consumption of
IEs. This multi-objective task offloading problem in industrial
environments is a typical mixed-integer nonlinear program-
ming (MINLP) [9], which complicates the development of
efficient and scalable algorithms. This work proposes an
improved multi-objective evolutionary algorithm (MOEA) that
integrates various advanced optimization techniques to address
this challenge. Primary contributions can be summarized as:

1) We propose an SDN-enabled equipment-edge-cloud ar-
chitecture for multi-task offloading in a hybrid hetero-
geneous system, encompassing multiple IEs, APs, and a
CDC. It considers the three-stage heterogeneous comput-
ing processes of tasks with CPUs and GPUs. On this
basis, we propose a large-scale constrained bi-objective
optimization problem that simultaneously minimizes task
completion time and energy consumption for IEs.

2) To address the bi-objective optimization problem, we
design an Improved Two-stage MOEA (IT-MOEA) to
solve the MINLP problem. It jointly optimizes task allo-
cation across IEs, APs, and CDC, the association between
IEs and APs, the load balancing of edge servers (ESs),

the transmission power of IEs, and the heterogeneous
computing capabilities with CPUs and GPUs.

3) IT-MOEA adopts a Multi-objective Grey wolf optimizer
based on Manta ray foraging and Associative learn-
ing (MGMA) in the first evolutionary stage, aiming to
accelerate the convergence of population, and applies
a Diversity-enhanced Immune Algorithm (DIA) in the
second evolutionary stage to improve the distribution of
the final population.

In addition, this work evaluates the performance of IT-
MOEA with three types of benchmark methods regarding
single-objective, multi-objective, and offloading schemes. Ex-
tensive experiments demonstrate that IT-MOEA outperforms
several state-of-the-art peers regarding convergence and dis-
tribution performance.

The rest of the paper is organized as follows: Section II
provides an overview and comparison of relevant studies.
Section III elucidates the architecture of a hybrid equipment-
edge-cloud system and formulates the system optimization
problem. Section IV outlines the details of IT-MOEA. Section
V discusses the performance evaluation results. Section VI
concludes this work. Section III of the supplementary file
shows the limitations and future work.

II. RELATED WORK

This section provides a comprehensive overview of task
offloading and the trade-offs between delay and energy con-
sumption in industrial environments, focusing on approaches
involving IIoT, MEC, and edge-cloud collaboration systems.

A. Task Offloading for Industrial Environments

Task offloading is a highly efficient method for enhancing
network performance. Peng et al. [10] introduce an end-edge-
cloud collaboration optimization method for IIoTs, addressing
multi-objective issues in task offloading and resource alloca-
tion, enhancing energy efficiency, time consumption, resource
utilization, and load balancing. However, it does not consider
the optimization objectives for multiple tasks with complex
constraints. Deng et al. [11] provide an autonomous partial
offloading system for multi-user IIoT systems, utilizing rein-
forcement learning strategies to optimize delay performance.
However, it does not consider the issue of load balancing
among multiple ESs. The workflow application is a com-
plex task paradigm involving stringent task limitations. Sun
et al. [12] employ a Bayesian network-based evolutionary
algorithm for optimizing task allocation in MEC-enabled IIoT
architectures, improving response time by considering task
priority constraints. However, its task priority is limited to the
constraints of execution order, and it ignores the constraints
of task offloading sequence. Lin et al. [13] design a self-
adaptive discrete particle swarm optimization algorithm to
optimize data transmission time in scientific workflows by
combining edge and cloud computing, enhancing efficiency
through improved data placement strategies. However, it does
not consider concurrent workflow applications in edge-cloud
systems. Given the constrained resources of ESs, employing
edge-cloud collaboration for task offloading is a more optimal

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3559690

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Melbourne. Downloaded on April 14,2025 at 08:27:11 UTC from IEEE Xplore. Restrictions apply.

3

approach for IEs. Wu et al. [14] propose a blockchain-enabled
IoT-edge-cloud architecture, optimizing energy consumption
and task response time by dynamically selecting computing
locations with the Lyapunov optimization. Nevertheless, it
neglects the load balancing of MEC servers and the constraints
on CPUs, GPUs, and memory. Xu et al. [15] present an
edge-cloud collaboration method for the distributed COVID-
19 detection model training on chest X-ray images, optimizing
training efficiency, model accuracy, time cost, and energy
consumption. However, it does not consider the transmission
latency between APs and ESs. Chouikhi et al. [16] propose a
multi-agent deep reinforcement learning approach for optimiz-
ing computation offloading in IIoT systems, training models
centrally in CDC while executing decentralized decisions at
ESs to minimize long-term energy consumption. However, it
neglects an SDN-enabled hierarchical architecture with load
balancing, optimized resource allocation across APs via SDN
control, and hybrid computational hardware (CPUs/GPUs) at
both ESs and CDC.

Different from these methods, this work considers the com-
putational offloading of multiple IEs, computation-intensive,
and latency-sensitive tasks in a large-scale hybrid system
that includes equipment-edge-cloud infrastructure. Specifi-
cally, this work considers the heterogeneous computing re-
sources of various devices in the equipment-edge-cloud frame-
work with CPUs and GPUs. Besides, we devise a three-stage
heterogeneous computing task model to accurately describe
the latency and energy consumption processes of scientific and
concurrent workflow tasks to minimize task completion time
and energy consumption for IEs.

B. Trade-off of Delay and Energy Consumption

Many recent studies have generated a single-objective func-
tion by weighting two related objective functions to strike a
trade-off between delay and energy consumption. Peng et al.
[17] propose an online resource coordinating and allocating
scheme, optimizing multi-user cooperative partial offloading
for device-to-device underlay MEC. Unlike it, we focus on
minimizing the total task completion time and energy con-
sumption of IEs. Ding et al. [18] introduce and evaluate
two architectures for end-edge-cloud computing, optimizing
offloading strategies with potential game-based algorithms,
enhancing resource utilization and quality of experience based
on real-world data experiments. Unlike this, we optimize
the quality of service for the hybrid system while ensuring
resource utilization and allocation efficiency. Wang et al. [19]
present a distributed deep learning-based task offloading and
resource allocation algorithm for a software-defined frame-
work of MEC and IoTs, optimizing task offloading and power
allocation with deep learning. However, it does not consider
the transmission latency and energy consumption between the
SDN controller and APs. Shakarami et al. [20] develop an
autonomous task offloading framework for MEC, addressing
challenges in time and resource-intensive applications with
a hybrid model. However, it fails to consider a real-world
scenario where ESs cannot handle tasks due to excessive load.
The studies mentioned above transform the multi-objective

problem into a single-objective one by assigning weights to
the two objectives. Existing studies also address the simul-
taneous optimization of dual objectives. Keshavarznejad et
al. [21] present a multi-objective optimization approach for
task offloading in fog computing to reduce system power
consumption and task execution delay, demonstrating robust-
ness in achieving a balance between offloading probability
and power efficiency. Unlike this, we conduct detailed ex-
perimental setups to optimize the task completion time and
energy consumption of IEs with different evaluation metrics.
Peng et al. [22] introduce three constrained multi-objective
evolutionary algorithms for IoT-enabled task offloading, opti-
mizing time and energy consumption. In contrast, our method
thoroughly considers the features of large-scale cloud and
edge systems, making it suitable for more specialized and
sophisticated optimization of problems to handle tasks among
IEs, APs, and CDC.

Unlike existing studies, this work simultaneously minimizes
the task completion time and energy consumption of IEs in
large-scale equipment-edge-cloud systems. This architecture
primarily encompasses the processes of task uploading, trans-
mission, and computation. Our method jointly optimizes task
allocation across the IEs, edge, and cloud, the association
between IEs and APs, the transmission power of IEs, and the
heterogeneous computing capabilities with CPUs and GPUs.
Additionally, it considers constraints such as task workflow
and load balancing of ESs.

III. PROBLEM FORMULATION

A. System Model

AP ES

IE

Local IE

layer

Edge computing

layer

Edge computing

layer

Cloud computing

layer

SDN controller

AP ES AP ES

CDC

Fiber link

Wireless link

Local computing

Edge computing

Load balancing
computing

Cloud computing

Fig. 1. Framework of an industrial environment.

This work illustrates an SDN-enabled equipment-edge-
cloud architecture for multiple task offloading in a hybrid
heterogeneous system, including M IEs, J APs, an SDN
controller, and a single CDC. Fig. 1 illustrates the proposed
IIoT application architecture, which comprises three distinct
layers: a local IE layer, an edge computing layer, and a cloud
computing layer.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3559690

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Melbourne. Downloaded on April 14,2025 at 08:27:11 UTC from IEEE Xplore. Restrictions apply.

4

1) Local IE layer: This layer incorporates multiple types
of IEs, e.g., instruments, vehicles, machines, monitors, and
robots. These IEs periodically collect environmental data and
generate latency-sensitive and computation-intensive tasks.
Each IE can connect to its local AP via a wireless network.
Each AP covers M IEs, represented by M={1, 2, . . . ,M}.
IEs perform initial sensing and local computing before of-
floading heavier tasks.

2) Edge computing layer: This layer consists of J APs and
an SDN controller. As illustrated in Fig. 1, J APs are evenly
distributed in the industrial environment, each covering distinct
types of IEs without mutual interference and each paired with
an ES. Each ES is equipped with CPUs and GPUs to handle
complex computations and reduce latency at the network
edge. A set of APs is denoted as J={1, 2, . . . , J}. APs
are interconnected via optical cables. Each AP is connected
to an SDN controller via an optical fiber link. The SDN
controller enables APs to connect to CDC through the core
backbone network and implements load balancing strategies to
optimize task distribution across APs. Furthermore, the SDN
controller can centrally manage all APs and IEs, i.e., making
computational offloading decisions.

3) Cloud computing layer: This layer contains a single
CDC with extensive computational resources, supporting ap-
plications with higher computational demands. CDC integrates
high-performance computing clusters with CPUs and GPUs.
It is connected to the SDN controller via a redundant core
switch, guaranteeing that computational traffic is not retrans-
mitted across the Internet, enhancing transmission stability.
The dynamic task offloading process is given in Fig. S1 in the
supplementary file, which extends the three-layer architecture
of Fig. 1 by explicitly modeling offloading decisions.

For clarity, Table S1 in the supplementary file lists main
notations and decision variables in this section. IEs, ESs, and
CDC are equipped with CPUs and GPUs. Each IE runs K
delay-sensitive and computation-intensive tasks, represented
by K={1, 2, . . . ,K}. K tasks need to be completed before
a given deadline. The CPU parameter of IE m is represented
by the tuple {ώC , f́C , ṕC,d, ṕC,i}. ώC is the number of CPUs,
f́C is the computational capability of each CPU (in FLOPS),
ṕC,d is the dynamic power of the CPU (in W), and ṕC,i is the
static power of the CPU (in W). Similar to CPU, IE m’s GPU
parameters are represented as the tuple {ώG, f́G, ṕG,d, ṕG,i}.
Moreover, {ω̇C , ḟC , ω̇G, ḟG} and {ὼC , f̀C , ὼG, f̀G} denote
the computing resources of ESs and CDC, respectively. When
a task is generated by an IE, a computation request is sent to
the SDN controller, which makes the optimal execution deci-
sions. Ultimately, the SDN controller schedules the pending
tasks to the designated parts for computation.

This work examines a binary offloading strategy where tasks
are either processed locally in IEs or entirely offloaded to ESs
or CDC. Each task requires at least one CPU, and CPUs and
GPUs are dedicated to a single task at any given time. The
utilization of both CPUs and GPUs can be up to 100%. Let λ́km
(λ́km∈{0, 1}), ˙λkm (˙λkm∈{0, 1}), and λ̀km (λ̀km∈{0, 1}) denote
the offload factors of task k (1≤k≤K) of IE m (1≤m≤M)

executed in IE, ESs, and CDC, respectively. Thus,

λ́km+ ˙λkm+λ̀km=1. (1)

Each IE is exclusively linked to a solitary AP. Then, if tasks
from IE m are linked to AP j, xm,j=1; otherwise, xm,j=0.
Thus, for each IE m, we have:

J∑
j=1

xm,j=1. (2)

B. Task Model

Original

Task

Serial

Subtask

Serial

Result

Parallel

Subtask

Parallel

Result

Result

Aggregation

Task preprocessing Hybrid computing Result aggregation

CPU computing GPU computing

Concurrent workflow tasks

1t

2t

3t

5t

6t

4t 7t

Scientific workflow tasks

1t

2t 3t 4t

5t 6t

7t

Fig. 2. Three-stage heterogeneous computing model of tasks.

This work considers both serial and parallel tasks generated
by IIoT applications, e.g., deep learning and reinforcement
learning tasks. CPUs and GPUs can handle these tasks but
with varying efficiencies. It is shown that CPUs are more
efficient for serial tasks, while GPUs are superior for parallel
tasks [8]. We focus on scenarios where CPUs handle serial
tasks and GPUs manage parallel tasks. For instance, in a
smart manufacturing environment, CPUs execute time-critical
scheduling algorithms, coordinate sensor data acquisition, or
manage logical decision-making (e.g., controlling operational
states of robotic arms). Meanwhile, GPUs can concurrently
perform large-scale parallel computations for tasks such as
real-time defect detection in production lines, where convolu-
tional neural networks analyze high-resolution images at scale.
Likewise, in a predictive maintenance scenario, CPUs execute
sequential logic to decide when to query system health, while
GPUs process large amounts of sensor data in parallel to
detect early warning signs of potential failures. Therefore, we
propose a three-stage task model including task preprocessing,
hybrid computing, and results aggregation shown in Fig. 2. Ac-
cording to typical GPGPU models, e.g., CUDA and OpenCL
[23], the CPU preprocesses tasks and sends them to CPUs
and GPUs for serial or parallel computation. Developers may
split tasks into serial and parallel subtasks for optimal resource
utilization, scheduling them to CPUs and GPUs, respectively.
During the hybrid computing stage, these heterogeneous re-
sources are used concurrently. CPU handles logic-intensive or
sequential subtasks, while GPU processes large-scale parallel
subtasks. It improves scalability by separating the original
tasks from CPU-limited operations, meaning that additional
GPU resources can be seamlessly added for more demanding

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3559690

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Melbourne. Downloaded on April 14,2025 at 08:27:11 UTC from IEEE Xplore. Restrictions apply.

5

parallel subtasks without changing CPU-centric subtasks. The
final stage involves CPUs aggregating these results to produce
the final output. Importantly, serial and parallel subtasks are
independent and can be processed concurrently, and each
stage is executed sequentially. This model helps balance the
workload and reduces data-transfer costs. It also integrates
both CPU and GPU, giving high speed on parallel parts and
precise control over tasks that need a clear sequence.

Let tkm={Ikm, ϖk
m, T̂

k
m, Ê

k
m, q

k
m, o

k
m} denote the task k gen-

erated by IE m. Ikm denotes the data size of the tkm (in bits),
ϖk

m denotes the floating-point number (in FLOPs) required to
complete the tkm, T̂ k

m denotes the maximum allowable delay (in
sec.) of the tkm, Êk

m denotes the maximum energy consumption
(in J) of the tkm, qkm denotes the ratio of the computing
load during the hybrid computation stage compared to the
overall tkm, and okm denotes the ratio of parallel computational
load during the hybrid computation stage compared to the
overall hybrid computation stage in the tkm. Given that serial
subtasks must be executed sequentially while parallel subtasks
can be executed concurrently, we categorize tasks accordingly.
Sequentially executed tasks are modeled as scientific workflow
tasks, whereas tasks with concurrent execution are modeled
as concurrent workflow tasks in Fig. 2. C denotes a set of
priority constraints for scientific workflow tasks in K. Uk

m and
Vk
m denote the sets of predecessor and successor tasks of tkm,

respectively. tsm and tem denote the start and end tasks of tkm.

C. Communication Model

This work employs an orthogonal frequency-division multi-
ple access communication model between various IEs and their
associated APs. It is assumed that the spectrum between an
IE and its associated AP is orthogonally allocated. Similarly,
the spectrum between APs and the CDC is also orthogonal.
Let (dm,j)

−ς denote the path loss between IE m and its
corresponding AP j (1≤j≤J). dm,j represents the distance
from IE m to AP j and ς represents the path loss exponent.
According to [5], the uplink rate between IE m and AP j is
denoted by Rm,j . Hence, we have:

Rm,j=Wm,j log2(1+
pomϱ(dm,j)

−ς |h|2ζ
σ2

), (3)

where Wm,j is the bandwidth of uplink channel allocated to
IE m for AP j, pom is the transmission power of IE m, h
denotes the uplink channel fading coefficient, σ2 represents
the power parameter of Gaussian white noise, and ϱ and ζ are
the path-loss coefficient and log-normal shadowing.

When task tkm is offloaded to an ES not directly linked to
AP j, additional transmission delay is incurred from AP j
to the target ES. Wv is the transmission rate between APs.
The limited computational resources may create a bottleneck
when many tasks are offloaded to the ES. To fully utilize
the computational resources of other idle ESs and achieve
load balancing, AP j can offload tasks to the idle ES directly
connected to AP n (n ̸=j). Let Ws denote the data transmission
rate between the SDN controller and each AP. Additionally,
when the computational resources of all ESs are insufficient,
IE needs to offload tasks to CDC to leverage the massive

computational resources available at CDC. Let Wc denote the
data transmission rate between the SDN controller and CDC.

The communication overhead for task offloading comprises
three main components: 1) control signaling between SDN
controller and APs for path selection, which is proportional
to 1/Ws, 2) inter-AP coordination overhead for redirecting
tasks among ESs, which scales with J2/Wv , and 3) metadata
exchange for resource discovery in CDC offloading, which is
inversely proportional to Wc. In large-scale networks (J→∞),
the quadratic growth of inter-AP coordination overhead be-
comes significant, requiring dynamic topology-aware schedul-
ing as discussed in [24]. The total overhead Ω can be expressed
as:

Ω=
η1
Ws

+
η2J

2

Wv
+
η3
Wc

, (4)

where η1, η2, and η3 denote protocol-specific coefficients that
capture control message sizes. This formulation matches the
multi-tier overhead analysis in [25], suggesting that edge-to-
edge coordination dominates in dense deployments, supporting
the contract-theoretic analysis in [26].

D. Delay and Energy Consumption Models
The delay and energy consumption models of three comput-

ing models, including local computing, edge computing, and
cloud computing, are discussed below.

1) Local computing: When λ́km=1, task tkm is computed
at IE m. Fig. 2 shows that CPUs execute both the task
preprocessing and result aggregation stages. Let τ́k,1m denote
the sum of the delays for these two stages of tkm. ωC,k

m and
ωG,k
m denote CPU and GPU resources allocated to task tkm

in the local computing, respectively. Thus, the delay τ́k,1m is
expressed as:

τ́k,1m =
(1−qkm)ϖk

m

ωC,k
m f́C

. (5)

Let τ́k,Cm and τ́k,Gm denote the delays for the hybrid com-
putation stage of scientific and concurrent workflow tasks of
tkm, respectively, which are expressed as:

τ́k,Cm =
qkm(1− okm)ϖk

m

ωC,k
m f́C

, (6)

τ́k,Gm =
qkmo

k
mϖ

k
m

ωG,k
m f́G

. (7)

Thus, the total delay consumed during the hybrid computa-
tion stage, τ́k,2m , is given as:

τ́k,2m =max(τ́k,Cm , τ́k,Gm). (8)

Let τ́km denote the total delay for local computing of tkm,
which is obtained as:

τ́km=τ́k,1m + τ́k,2m . (9)

To address the energy consumption of IEs under both
dynamic and static power conditions of CPUs and GPUs. Let
ékm denote the total energy consumption of local computing
of tkm, which is expressed by [27]:

ékm=τ́km(ṕC,i+ṕG,i)+(τ́k,1m +τ́k,Cm)ṕC,d+τ́k,Gm ṕG,d. (10)

where ṕC,d is the dynamic power of CPU (in W), and ṕC,i is
the static power of CPU (in W).

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3559690

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Melbourne. Downloaded on April 14,2025 at 08:27:11 UTC from IEEE Xplore. Restrictions apply.

6

2) Edge computing: The computing capability of IE is
limited, and it has to offload its excessive task tkm to its ES,
i.e., ˙λkm=1. Then, the ES processes the computational task tkm
on behalf of the IE. The task offloading process consists of
three phases: uploading, transfer, and computation.

The computing task tkm of IE needs to be uploaded to its
neighboring AP j. According to (3), τ̇k,um,j denotes the data
transmission delay from IE m to AP j, which is given as:

τ̇k,um,j=
Ikm
Rm,j

. (11)

The computing task tkm is transferred from the source AP j
to the target ES associated with AP n that completes the task.
τ̇k,vm,j is the transmission delay for tkm, which is computed as:

τ̇k,vm,j=1(n ̸=j)δI
k
m

Wv
, (12)

where 1(condition) denotes an indicator function that returns
1 if the condition is true and 0 otherwise. δ is the number
of hops between APs. Note that δ=0 if n=j. In additional,
τ̇k,sm,j is the transmission delay of tkm from AP j to the SDN
controller, which is given as:

τ̇k,sm,j=
Ikm
Ws

. (13)

The computing task tkm is processed by ES directly associ-
ated with AP j. Let τ̇k,1m,j denote the sum of the delays for the
task preprocessing stage and result aggregation stage. Let τ̇k,2m,j

denote the total delay of the hybrid computing stage. τ̇k,1m,j and
τ̇k,2m,j are calculated as:

τ̇k,1m,j=
(1−qkm)ϖk

m

ωC,k
m,j ḟ

C
, (14)

τ̇k,2m,j=max(
qkm(1− okm)ϖk

m

ωC,k
m,j ḟ

C
,
qkmo

k
mϖ

k
m

ωG,k
m,j ḟ

G
). (15)

where ωC,k
m,j and ωG,k

m,j are the numbers of CPU and GPU
resources allocated to task tkm by AP j in the offloading
computing process.

Considering the computational results of the task are sig-
nificantly smaller than the original task data, the delay from
the ES returning to the IE can be neglected. The total delay of
the offloading process at the ES directly associated with AP
j for task tkm, τ̇km,j , is calculated as:

τ̇km,j=ϕ
k
m,j(τ̇

k,u
m,j+τ̇

k,v
m,j)

+(1−ϕkm,j)(τ̇
k,u
m,j+2τ̇k,sm,j+τ̇

k,v
m,j)+τ̇

k,1
m,j+τ̇

k,2
m,j ,

(16)

where ϕkm,j is a load balancing decision variable for task tkm by
AP j. When the ES directly connected with AP j has sufficient
processing capacity to handle task tkm, ϕkm,j=1; otherwise,
ϕkm,j=0. To achieve load balancing, task tkm needs to be sent to
an idle ES directly associated with AP n (n̸=j) for processing.

Meanwhile, ėkm,j denotes overall energy consumed by task
tkm associated with AP j, which is computed as:

ėkm,j=p
o
mτ̇

k,u
m,j+τ̇

k
m,j(ṕ

C,i+ṕG,i). (17)

3) Cloud computing: If the computational task tkm is of-
floaded to CDC for processing, i.e., λ̀km=1, the IE m first
transmits it to AP j that provides transmission services via
a wireless link. Subsequently, AP j forwards it to the SDN
controller, which then transmits it to the CDC for processing
over a wired link. Therefore, we consider the data uploading,
transmission, and computation delays associated with the task
tkm. τ̀k,cm,j is the transmission delay associated with AP j from
the SDN controller to CDC, which is given as:

τ̀k,cm,j=
Ikm
Wc

. (18)

Let τ̀k,1m,j denote the sum of the delays for the task prepro-
cessing stage and result aggregation stage of tkm associated
with AP j. Let τ̀k,2m,j denote the total delay of the hybrid
computing stage of tkm associated with AP j. They are obtained
as:

τ̀k,1m,j=
(1−qkm)ϖk

m

ωC,k
m,j f̀

C
, (19)

τ̀k,2m,j=max(
qkm(1− okm)ϖk

m

ωC,k
m,j f̀

C
,
qkmo

k
mϖ

k
m

ωG,k
m,j f̀

G
). (20)

According to (11), (13), and (18), the total delay of tkm and
energy consumption of the IE during the offloading process at
CDC are computed as:

τ̀km,j=τ̀
k,u
m,j+τ̀

k,s
m,j+τ̀

k,c
m,j+τ̀

k,1
m,j+τ̀

k,2
m,j , (21)

èkm,j=p
o
mτ̀

k,u
m,j+τ̀

k
m,j(ṕ

C,i+ṕG,i). (22)

In summary, the average delay of K tasks and the energy
consumption of M IEs in the equipment-edge-cloud system is
obtained as:

T=
1

M

M∑
m=1

K∑
k=1

{λ́kmτ́km+

J∑
j=1

(˙λkmτ̇
k
m,j+λ̀

k
mτ̀

k
m,j)}, (23)

E=
1

M

M∑
m=1

K∑
k=1

{λ́kmékm+

J∑
j=1

(˙λkmė
k
m,j+λ̀

k
mè

k
m,j)}. (24)

E. Load Variance Model

To enhance the task-processing efficiency of IEs, it is crucial
to utilize ESs for task processing effectively. Load balancing is
a key metric for the rational management of ES computational
capacity. One constraint is the load balancing among multiple
ESs. Uj is the resource utilization rate of each ES, which is
directly connected with AP j and given as:

Uj=

M∑
m=1

K∑
k=1

(
ωC,k
m,j

ω̇C
+
ωG,k
m,j

ω̇G
). (25)

U is the average resource utilization rate of all ESs, which
is computed as:

U =
1

J

J∑
j=1

Uj . (26)

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3559690

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Melbourne. Downloaded on April 14,2025 at 08:27:11 UTC from IEEE Xplore. Restrictions apply.

7

lj denotes the average load variance of ESs directly con-
nected to AP j, which is obtained as:

lj=(Uj−U)2. (27)

L is the average load variance of all ESs, computed as:

L=
1

J

J∑
j=1

lj . (28)

F. CPU, GPU, and Memory Models

The CPU and GPU resources allocated to IEs, ESs, and
CDC cannot exceed their maximum limits. Thus,

1≤ωC,k
m ≤λ́kmώC , (29)

1≤ωG,k
m ≤λ́kmώG, (30)

1≤ωC,k
m,j≤ ˙λkmω̇

C+λ̀kmὼ
C , (31)

1≤ωG,k
m,j≤ ˙λkmω̇

G+λ̀kmὼ
G. (32)

Let Ĝj denote the maximum amount of memory in ES
directly connected with AP j. The total memory consumption
of all IE tasks executed in an ES cannot exceed its limit, i.e.,

M∑
m=1

K∑
k=1

(˙λkmI
k
mψ

k
m)≤Ĝj , (33)

where ψk
m denotes the memory amount per bit of data for task

tkm generated by IE m.

G. Problem Formulation

The formulated problem is given as follows. In (34), ℏℏℏ
denotes a set of decision variables including λ́km, ˙λkm, λ̀km,
ϕkm,j , ωC,k

m , ωG,k
m , ωC,k

m,j , ωG,k
m,j , pom, and xm,j . Our objective

is to jointly minimize T and E, i.e.,

argmin
ℏ
{T ,E}, (34)

subject to (1), (2), (29), (30), (31), (32), (33),
M∑

m=1

J∑
j=1

Wm,j≤Ŵ , (35)

T≤
M∑

m=1

K∑
k=1

T̂ k
m, (36)

E≤
M∑

m=1

K∑
k=1

Êk
m, (37)

{tlm, tkm}∈C, (38)

χ(τ̇e,k,tm,j)≤χ(τ̇s,k,1m,j),

χ(τ̀e,k,tm,j)≤χ(τ̀s,k,1m,j),
(39)

χ(λ́lm(τ́e,l,1m,j +τ́e,l,Cm,j))≤χ(λ́km(τ́s,k,1m,j +τ́s,k,Cm,j)),

χ(˙λlm(τ̇e,l,1m,j +τ̇e,l,Cm,j))≤χ(˙λkm(τ̇s,k,1m,j +τ̇s,k,Cm,j)),

χ(λ̀lm(τ̀e,l,1m,j +τ̀e,l,Cm,j))≤χ(λ̀km(τ̀s,k,1m,j +τ̀s,k,Cm,j)),

λ́lm+ ˙λlm+λ̀lm=1, λ́km+ ˙λkm+λ̀km=1, ∀tlm∈Uk
m,

(40)

L≤L̂, (41)

0≤pom≤p̂om. (42)

(34) represent a classic Pareto optimization problem setting
including T and E [28]. By jointly considering latency and
energy, we inherently formulate a multi-objective optimization
task where no single solution simultaneously minimizes both
objectives to a global optimum without trade-offs. We adopt
the Pareto dominance principle to evaluate feasible solutions.
(35) represents that the total bandwidth allocated by J APs to
M IEs cannot exceed the total bandwidth Ŵ . (36) and (37)
denote the total execution time and energy consumption of
K tasks generated by M IEs cannot exceed their maximum
limits. (38) shows the constraint of the execution order among
scientific workflow tasks tlm and tkm, i.e., if {tlm, tkm}∈C, task
tlm cannot be executed before the completion of tkm. (39)
requires that task tkm cannot be executed before it is completely
offloaded to AP j or CDC, where χ(τ̇e,k,tm,j) is the end time
of task tkm completely offloaded to AP j and χ(τ̇s,k,1m,j) is the
start time of task tkm at AP j ready to execute in the task
preprocessing and result aggregation stages. (40) represents
the constraint on executing scientific workflow tasks, which
ensures that task tkm cannot be executed until all its preceding
tasks are completed. (41) is the constraint of the average load
variance of J APs. (42) represents the power constraint for
uploading data from IE m.

Due to the integer constraint (e.g., binary task offloading
decisions) and other nonlinear constraints (e.g., bandwidth
usage, energy consumption, and load variance), the multi-
objective task offloading problem is a typical constrained
MINLP problem. This formulation is common in complex
IIoT scheduling and resource allocation settings because both
discrete (selection of AP or CDC) and continuous (bandwidth
and power) decisions need to be optimized simultaneously.
Such a problem is generally NP-hard [29]. Nonetheless, this
formulation faithfully models industrial environments. These
environments support the intricacy of real-world industrial
workflows, which typically involve heterogeneous tasks, strict
deadlines, and limited resources. To solve this problem, we
design an improved two-stage MOEA introduced next.

IV. PROPOSED FRAMEWORK

This section proposes IT-MOEA to solve the problem. The
framework of IT-MOEA and details are presented.

A. Framework of IT-MOEA

The framework of IT-MOEA is shown in Fig. 3. IT-MOEA
mainly includes the initialization and evolutionary processes.
Specifically, IT-MOEA starts with the initialization process in
Section IV-B. Then, IT-MOEA enters the evolutionary process.
First, the objective function and decision variables for task
offloading with (34) are utilized to evaluate the Pareto-optimal
solutions of the initial population. To improve the convergence
and diversity of MOEA, IT-MOEA divides the evolutionary
process into two stages according to a predefined threshold ϑ.
IT-MOEA adopts a novel MGMA to evolve the population in

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3559690

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Melbourne. Downloaded on April 14,2025 at 08:27:11 UTC from IEEE Xplore. Restrictions apply.

8

Start

End

Initialization process in Section IV-B

Evaluation of population with (34)

g < ϑ * ĝ

Evolution using

MGMA in

Section IV-C

Evolution using

DIA in Section

IV-D

g = g + 1

g < ĝ

Evolutionary process

Yes

Yes

No

No

Output Pareto-optimal solutions

Fig. 3. Main flow of IT-MOEA.

the first evolutionary stage, aiming to accelerate the conver-
gence speed and improve optimization performance introduced
in Section IV-C. Then, IT-MOEA adopts DIA to evolve the
population during the second evolutionary stage, aiming to
enhance the population distribution, detailed in Section IV-D.
Finally, the entire evolutionary loop terminates upon reaching
the maximum number of iterations ĝ. Subsequently, we can
derive the Pareto-optimal solutions and the corresponding
decision variables of task offloading with (34) from the final
population obtained by IT-MOEA.

B. Population Initialization

Typically, individuals are randomly initialized in the absence
of prior information. It often leads to uneven distribution
within the search domain, causing individuals to be distant
from the global optimum and slowing convergence. Chaos of-
fers a better alternative with properties like ergodicity, random-
ness, and regularity. Standard chaotic perturbation equations
include logistic and tent maps. The logistic map has higher
probabilities at the extremes, which is disadvantageous if the
global optimum is not at the extremes. The tent map provides
better ergodic uniformity and faster search speed but contains
small cycles and unstable periodic points. To address this, the
improved tent chaotic map is expressed as:

xg+1=

{
2xg+rand(0, 1)× 1

N , 0≤x≤
1
2

2(1−xg)+ rand(0, 1)× 1
N ,

1
2<x≤1

. (43)

The transformed expression is given as:

xg+1=(2xg)mod 1+ rand(0, 1)× 1

N
, (44)

where N is the population size and rand(0, 1) is a random
number in [0,1]. IT-MOEA preserves randomness while con-
trolling the random value within a certain range, ensuring the
regularity of the Tent chaos.

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Improved Tent

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Tent

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Logistic

Fig. 4. Comparison of initial distributions of three chaotic sequences.

Fig. 4 shows the initial distribution of chaotic sequences
in a two-dimensional region generated by the logistic, tent,
and improved chaotic tent maps. The improved chaotic tent
map exhibits better distribution uniformity. This method aims
to enhance and improve the distribution quality of the initial
population in the search space, strengthen its global search
capability, and consequently improve the solution accuracy.

C. Proposed MGMA

Multi-objective grey wolf optimizer (MOGWO) [30] retains
the population updating mechanism of GWO, which iteratively
simulates the strict hierarchical structure of grey wolves and
their hunting and predation behaviors in nature. Therefore, it
possesses advantages such as fast convergence, high efficiency,
and high precision. However, MOGWO suffers from prema-
ture convergence and local optima trapping issues [31]. Hence,
this work proposes an improved MOGWO in the convergence
factor update, the position update mechanism of the three best
wolves, the population update mechanism, and the archive
update mechanism. Fig. 5 shows the main steps of MGMA.

1) Convergence factor update: In vanilla MOGWO, A is
a crucial parameter controlling the hunting behavior of the
wolf population. The variation in the convergence factor a
directly influences A, where a linearly decreases from 2
to 0. However, a linearly decreasing strategy often leads to
insufficient search space exploration for complex problems.
Therefore, we propose a nonlinear convergence factor a, which
is updated as:

a=1+cos(
πg

ĝ
), (45)

where ĝ represents the maximum iteration number, and g
denotes the current iteration number.

Fig. 6 compares the nonlinear function in this work with the
linear function in MOGWO. In early iterations, the nonlinear
function has a wider range of a, which expands its exploration
capability. In later iterations, a becomes smaller, facilitating
local exploitation and accelerating the convergence speed. In
addition, C denotes the random value in [0, 2] to emphasize
exploration [30].

2) Position update mechanism of three best wolves: α, β,
and δ represent the evolutionary directions of the population in
MOGWO, playing crucial roles in guiding the search process.
However, their position updates rely on the same mechanism,
disregarding the unique status of α in the traditional MOGWO.
In practice, individuals typically follow guidance primarily
from higher-ranked wolves. Yet, α, β, and δ also receive

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3559690

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Melbourne. Downloaded on April 14,2025 at 08:27:11 UTC from IEEE Xplore. Restrictions apply.

9

Initialize population and parameters in Section IV-B

Perform non-dominated sorting on initial wolf

pack to establish archive population

Update a, A, and C in Section IV-C1

Select α, β, and δ with roulette wheel selection in

archive population

Update positions of wolves in population with

MRFO and GWO in Section IV-C3

Calculate individual fitness value, perform non-

dominated sorting, and update archive population

Perform associative learning for updating archive

population in Section IV-C4

Archive population limit?

Calculate crowding density and remove individuals

Termination condition?

Output Pareto-optimal solutions

Yes

Yes

No

No

Update positions of α, β, and δ in Section IV-C2

Start

End

Fig. 5. Main steps of MGMA.

10 20 30 40 50 60 70 80 90 100

Iteration count

0

0.5

1

1.5

2

P
ar

am
et

er
 o

f
a

MGMA

Original MOGWO

Fig. 6. Comparison of convergence factors between MGMA and MOGWO.

leadership from wolves of lower ranks, which is not rational.
The performance is limited because when all wolves are
attracted to α, population diversity deteriorates rapidly, leading
to premature convergence.

To address this issue, separate update strategies are proposed
for α, β, and δ. δ accepts leadership from α and β. Its update
method is given as:

Xδ(g+1)=Dδ−Xδ(g), (46)

Dδ=ρXδ(g)+(1−ρ)Xα(g)+(1−ρ)Xβ(g), (47)

where ρ is a random number uniformly distributed in [0,1].
The random number introduces variability throughout the
optimization process, facilitating global exploration.
β accepts leadership from α, incorporating a spiral updat-

ing mechanism inspired by the whale optimization algorithm
(WOA) [32] to approach α in a spiral motion. Its update
method is given as:

Xβ(g+1) = |Xα(g)−Xβ(g)| ebl̇ cos(2πl̇) + ρXα(g), (48)

where b is a constant for defining the shape of the logarithmic
spiral, l̇ is a random number in [-1,1], and ρ is a random
number uniformly distributed in [0,1]. Randomness similarly
enhances the exploration capability of β.
α holds the highest rank in the wolf population and is

not guided by other wolves. Therefore, random walks are
introduced to update α. The Lévy flight mechanism is chosen
for its ability to explore short distances and occasionally make
long jumps, providing a balance between local exploration and
occasional long-range exploration. Short-distance exploration
ensures that α searches effectively around its current position,
enhancing the speed and accuracy of optimization. Occasional
long jumps extend the search area of α, enabling broader
exploration. Given the stochastic nature of the Lévy mech-
anism, we incorporate a greedy selection strategy to achieve
a survival-of-the-fittest mechanism. The position update of α
with the Lévy flight mechanism is given as:

X
′

α(g+1)=Xα(g)+ξ⊕Lévy(ℏ), (49)

where ξ is the step size control factor. ⊕ is the dot product
operation. Lévy(ℏ) represents the random search path, which
follows a Lévy distribution. For computational convenience,
the Mantegna algorithm is commonly used to simulate its flight
trajectory. Lévy(ℏ) is obtained as:

Lévy(ℏ)=
µ

|ν| 1κ
, (50)

where κ=1.5, and µ and ν follow normal distributions, i.e.,
µ∼N(0, σ2

µ) and ν∼N(0, σ2
ν). The variances are expressed as:

σ2
µ={

Γ (1+κ)
κΓ (1+κ)

2

sin(πκ2)

2
κ−1
2

2
κ

},

σ2
ν=1,

(51)

where Γ (·) represents the Gamma function. The position
update of α is expressed as:

Xα(g+1)=

{
X

′

α(g+1), other
Xα(g), f(X

′

α(g+1)>Xα(g)) and rand<ṗ
,

(52)
where rand represents a random variable in [0,1], ṗ denotes the
probability of survival-of-the-fittest selection, and f(·) repre-
sents the fitness value. This mechanism guides the population
toward optimal evolution while effectively enhancing search
efficiency.

3) Population update mechanism: We design a novel po-
sition updating mechanism to enhance information exchange
among the grey wolf population, inspired by the manta rays
foraging optimization (MRFO) [33]. The first half of (53)

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3559690

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Melbourne. Downloaded on April 14,2025 at 08:27:11 UTC from IEEE Xplore. Restrictions apply.

10

provides rapid convergence to the optimal solution, while the
latter provides higher population diversity to prevent premature
convergence. Thus,

X(g+1)=
w(X1(g)+X2(g)+X3(g))

3
+a(1−w)

(r(Xr(g)−X(g))+au̇r(Xα(g)−X(g))),
(53)

where w= (ŵ−w̌)g
ĝ +w̌, u̇=2erιsin(2πr), and ι= ĝ−g+1

ĝ . w
denotes an inertia weight in iteration g. w̌ and ŵ are the
minimum and maximum values of w. r is a random number
in (0,1). Xr(g) denotes a randomly selected individual. In the
initial stage, individuals exhibit higher social learning capa-
bilities, ensuring exploration of the globally optimal position
and enhancing search space coverage. The later stage focuses
on searching around α to accelerate convergence.

4) Archive update mechanism: In MOGWO, an external
archive stores non-dominated solutions. This mechanism effec-
tively preserves elite-level information during early iterations.
However, as iterations progress, the number of non-dominated
solutions increases sharply. Although crowding distance-based
deletion partially ensures solution quality, it may still result in
loss of solution information. Additionally, the influx of similar
solutions in later iterations can lead the population to local
optima. To enhance solution set diversity, this work perturbs
solutions in the crowded regions of the archive. Associative
learning, a recently proposed update strategy, is employed
to improve exploratory performance [34]. Hence, this work
introduces associative learning to update some individuals in
the archive. Thus,

X(g+1)=X(g)+0.001G(X(g)−κ̌, κ̂−X(g))

+b0S1r1(Xr(g)−X(g))+b0S2r2(Xα(g)−X(g)),
(54)

where G(·) denotes a Gaussian distribution function, κ̌ and
κ̂ represent the upper and lower bounds of the search space
dimensions, respectively. r1 and r2 are random numbers in
(0,1), b0 is a constant, and S1 and S2 are adaptive cognitive
and social factors, respectively. S1 and S2 are updated as:

S1=(1−g
ĝ
),

S2=
2g

ĝ
.

(55)

D. Diversity-enhanced Immune Algorithm

In the second evolutionary stage, IT-MOEA uses DIA to
improve the population distribution. Specifically, DIA allo-
cates the cloning resources for each individual according
to the vertical distance [35] between the individual and its
corresponding weight vector, i.e.,

Vi=

∥∥∥∥F (Xi)−(Z∗+d(Xi,λi, Z
∗)

λi

∥λi∥
)

∥∥∥∥ , (56)

d(Xi,λi, Z
∗)=
∥(F (Xi)−Z∗)λi∥

∥λi∥
, (57)

where d(Xi,λi, Z
∗) denotes the projection of vector F (Xi)−

Z∗ on the weight vector λi (1≤i≤N). F (·) denotes the
objective function, and Z∗ denotes an ideal approximated

point. Based on the above vertical distance, the cloning number
ci of individual Xi is calculated as:

ci =

⌈
N(1−Vi)∑N
i (1−Vi)

⌉
. (58)

Note that smaller vertical distance values imply that the indi-
vidual is closer to its weight vector and performs better about
diversity. As a result, these individuals with smaller vertical
distance values obtain more opportunities for cloning. Then,
each individual performs the proportional cloning operator
[36], defined as:

X̃ =

N⋃
i=1

{ci⊗Xi}, (59)

where ⊗ indicates the cloning operator, X̃ indicates the
cloning population consisting of all cloning offspring. Ac-
cording to the principle of DIA, these individuals with bet-
ter diversity receive more computing resources to generate
more promising offspring, thus significantly improving the
distribution of the whole population [35]. The computational
complexity analysis of IT-MOEA is provided in Section I-A
of the supplementary file.

V. PERFORMANCE EVALUATION

In this section, we first introduce the experimental setup.
Then, we investigate the effect of related parameters on the
IT-MOEA. Finally, we discuss the experimental results.

A. Experimental Setup

1) Dataset: CPU, GPU, and memory requirements of the
task and the expected computing time are derived from two
datasets, i.e., ClusterData 2011 traces [37] and Alibaba Cluster
Data V2018 [38]. Furthermore, the ESs and CDC specifica-
tions in the simulation environment are obtained from the
SPECpower ssj2008 dataset.

2) Simulation environment: In this work, the simulation
environment is implemented in MATLAB, and runs on a
personal computer with Intel(R) Xeon(R) Gold 6152 10-Core
2.1 GHz, 32.0 GB RAM, and NVIDIA GeForce RTX 3090.
Moreover, this work simulates the experiments in a 1000
m×1000 m area with MATLAB [39], where a CDC, IEs, and
APs are deployed in a grid network. Specifically, the service
range of each AP is 100 m, and each AP is randomly deployed
following a uniform distribution. Considering the assistance of
multiple APs, the maximum communication distance between
APs is 150 m. IEs are uniformly deployed within the area of
the APs. Six experimental scales with different M , J , and K
are given in Table I.

3) Parameter settings: According to [40], [41], parameters
of IEs, APs, CDC, and tasks are set as follows. For the
heterogeneous computing process with CPUs and GPUs,
ώC=4,ω̇C=16, ὼC=32, ώG=128, ω̇G=1024, and ὼG=6192.
Besides, f́C=2×109 FLOPS, ḟC=1×1010 FLOPS,
f̀C=1×1011 FLOPS, f́G=2×107 FLOPS, ḟG=5×108
FLOPS, and f̀G=3×109 FLOPS. ṕC,d=65 W, ṕG,d=160 W,
ṕC,i=15 W, and ṕG,i=50 W. For the computation task tkm,
Ikm=[25, 50] MB, ϖk

m=[2.5×108, 5×108] FLOPS, T̂ k
m=[1, 5]

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3559690

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Melbourne. Downloaded on April 14,2025 at 08:27:11 UTC from IEEE Xplore. Restrictions apply.

11

Algorithm 1: IT-MOEA

1 Input: Maximum iteration number (ĝ), population
size (N), objective function (F)

Output: Final population (P)
/* Initialization process */

2 Initialize parameters of MGMA and DIA;
3 Initialize positions of individuals to obtain P with (44);
/* Evolutionary process */
/* MGMA */

4 Initialize a with (45), A, and C;
5 Evaluate F (Xi) of each Xi with (34);
6 Perform non-dominated sorting on P to establish the

archive R;
7 for g←1 to ϑ×ĝ do
8 for i←1 to N do
9 Select α, β, and δ in R;

10 Update α, β, and δ with (46)–(52);
11 Update positions of Xi in P with (53);
12 end
13 Update a with (45), A, and C;
14 Evaluate F (Xi) of each Xi with (34);
15 Perform non-dominated sorting on P;
16 Update R with (54) and (55);
17 if |R|>N then
18 Update R with crowding density;
19 end
20 end

/* DIA */
21 for g←ϑ×ĝ to ĝ do
22 for i←1 to N do
23 Calculate Vi for Xi with (56) and (57);
24 Calculate ci for Xi with (58);
25 end
26 Generate X̃ on P with (59);
27 P←P∪X̃;
28 end

TABLE I
SIX TEST INSTANCES.

Instances M J K

1 1–5 1–3 1–4
2 6–10 4–6 5–8
3 11–15 7–9 9–12
4 16–20 10–12 13–16
5 21–25 13–15 17–20
6 26–30 16–18 21–24

sec., Êk
m=[3, 6] J, qkm=[0.5, 0.9], and okm=[0.5, 0.9]. For the

communication process, dm,j=[50, 200] m, ς=4, h=0.98,
σ=1.6×10−11, Wm,j=[2, 4] MHz, ϱ=1, ζ=1, Wv=125
Mbps, Ws=200 Mbps, Wc=256 Mbps, and δ=1. For the
constraints, Ĝj=2 GB, Ŵ=20 MHz, L̂=0.5, and p̂om=0.5
W. For MGMA, b0=1.4172. The threshold ϑ in IT-MOEA is
0.6. The overall population size (N) is 30, and the maximum
iteration number (ĝ) is 1000.

4) Compared algorithms: To comprehensively evaluate the
performance of IT-MOEA, several state-of-the-art (SOTA)
algorithms are employed for comparisons, including four
single-objective optimization evolutionary algorithms (PGL
[5], HGGWO [42], SBAGO [43], SAPSO [44]), and seven
MOEAs (MOGWO, NSGA-II [45], MOMVO [46], MOEA/D
[47], LMOCSO [48], MOWOA [32], and AR-MOEA [49])
with six test instances. The reasons for choosing them for
comparison are given in Section I-B of the supplementary file.

5) Performance metrics: We consider not only the two
metrics of completion time and energy consumption separately
but also their weighted sum, which is obtained as:

ϖ=φ×T̄+(1−φ)Ē, (60)

where T̄ and Ē are the normalized completion time and the
normalized energy consumption, respectively. φ is a control
factor and is 0.5. It maintains equal weighting between com-
pletion time and energy consumption. This balanced weighting
prevents inherent bias toward either objective while enabling
fair performance comparison across different optimization
scenarios. Particularly, two normalized objective values T̄ and
Ē are computed as:

T̄=
T

1
M

∑M
m=1

∑K
k=1 τ́

k
m

, (61)

Ē=
E

1
M

∑M
m=1

∑K
k=1

∑J
j=1(

˙λkmė
k
m,j + λ̀kmè

k
m,j)

. (62)

By normalizing these two objective values to the same order
of magnitude, the weighted sum can effectively represent the
MOEA’s overall optimization performance concerning both
completion time and energy consumption.

For the comparison of MOEAs, two other evaluation metrics
are used to evaluate the performance of the algorithms, includ-
ing average inverse generation distance (AIGD) and average
spacing (ASP) [30], [50]. AIGD assesses the convergence
and distribution performance of MOEAs, where a smaller
AIGD signifies superior overall performance. ASP measures
the distribution degree of non-dominated solutions, with a
smaller ASP indicating better distribution and diversity.

B. Parameter Analysis

To discuss the effect of ϑ on the performance of IT-
MOEA, the parameter analysis is conducted with different ϑ
(i.e., ϑ∈[0,1]) in this section. According to Algorithm 1, the
evolutionary preference of IT-MOEA for two components, i.e.,
MGMA and DIA, is adjusted by ϑ. The relevant parameters
of all variants are kept consistent except for ϑ. The average
results of ten independent runs at instance 4 for all variations
are employed for comparative analysis.

Fig. 7(a) provides the convergence results of all variants
within 1000 iterations at instance 4. Specifically, IT-MOEA
exhibits good convergence performance when ϑ>0, which
implies that MGMA can accelerate the convergence speed in
the early stage of IT-MOEA. Moreover, using only MGMA
or DIA, i.e., ϑ=1 or 0, for IT-MOEA leads to premature
convergence due to falling into local optimum. Therefore, IT-
MOEA utilizes MGMA and DIA in two evolutionary stages

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3559690

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Melbourne. Downloaded on April 14,2025 at 08:27:11 UTC from IEEE Xplore. Restrictions apply.

12

during the evolution process to obtain higher-quality solutions.
Moreover, Fig. 7(b) shows the final results obtained by IT-
MOEA after 1000 iterations for different ϑ. As ϑ increases,
the weighted sum obtained by IT-MOEA exhibits a decreasing-
then-increasing trend, with the minimum value occurring when
ϑ=0.6. Thus, ϑ=0.6 for IT-MOEA.

1 100 200 300 400 500 600 700 800 900 1000

Iteration count

0

20

40

60

80

100

W
ei

g
h

te
d

 s
u

m

840 860 880 900 920 940 960 980 1000

0

1

2

3

4

5

6

7

8

9

10

(a) Convergence result over iterations

0 0.2 0.4 0.6 0.8 1

Parameter

1

1.5

2

W
ei

g
h

te
d

 s
u

m

(b) The final weighted sum after 1000 iterations

Fig. 7. Result of IT-MOEA with different ϑ for instance 4.

C. Experimental Results

This section discusses the experimental results by compar-
ing IT-MOEA with several SOTA single-objective algorithms,
MOEAs, and offloading schemes on six scales. The remaining
experimental results are presented in the supplementary file.
Each peer is independently executed ten times, and the average
results are recorded to assess overall performance.

1) Comparison of single objective results: Fig. 8 exhibits
the experimental results of IT-MOEA compared to the other
single-objective peers concerning weighted sum, completion
time, and energy consumption, respectively. In Fig. 8(a), it
is evident that SBAGO and SAPSO consistently yield larger
weighted sums than IT-MOEA in most instances, indicating
that they fail to converge to high-quality solutions. The rea-
son is that these algorithms require careful tuning of key
parameters and are prone to local optima, hindering their
global exploration capabilities. Furthermore, although PGL
occasionally achieves lower weighted sums than SBAGO and
SAPSO, it still cannot outperform IT-MOEA. The reason
is that PGL only finds a locally optimal solution compared
with IT-MOEA. In Fig. 8(c), IT-MOEA demonstrates superior
performance in most test scenarios except HGGWO in instance
6. This is because of HGGWO’s specialized local exploitation
strategy for high-dimensional energy optimization. Regarding

weighted sum, completion time, and energy consumption,
IT-MOEA outperforms other SOTA single-objective peers
with the average reductions of 24.7%, 14.9%, and 34.5%,
respectively. Notably, IT-MOEA achieves its most substantial
advantages in large-scale tasks, i.e., instances 4-6. The main
reason is that IT-MOEA employs a two-stage evolutionary
process, where the first stage uses MGMA to accelerate the
convergence speed and improve optimization performance, and
the second stage adopts DIA to enhance the diversity.

Instance 1 Instance 2 Instance 3 Instance 4 Instance 5 Instance 6
0

1

2

3

4

5

W
ei

g
h

te
d

 s
u

m

IT-MOEA

PGL

HGGWO

SBAGO

SAPSO

(a) Weighted sum

Instance 1 Instance 2 Instance 3 Instance 4 Instance 5 Instance 6
0

1

2

3

4

C
o

m
p

le
ti

o
n

 t
im

e
(S

ec
.)

IT-MOEA

PGL

HGGWO

SBAGO

SAPSO

(b) Completion time

Instance 1 Instance 2 Instance 3 Instance 4 Instance 5 Instance 6
0

1

2

3

4

5

6

7

E
n

er
g

y
 c

o
n

su
m

p
ti

o
n

 (
J)

IT-MOEA

PGL

HGGWO

SBAGO

SAPSO

(c) Energy consumption

Fig. 8. Single-objective comparison results regarding weighted sum, comple-
tion time, and energy consumption, respectively.

2) Comparison of multiple objective results: We conduct
a comparative analysis of the performance of eight MOEAs,
focusing on the completion time of industrial applications
and the energy consumption of IEs for six test instances.
Figs. S2 and S3 of the supplementary file present the box
plots of eight algorithms concerning completion time and
energy consumption, respectively. In Figs. S2 and S3 of the
supplementary file, IT-MOEA performs better than others in
all test instances. This is because IT-MOEA utilizes MGMA
to optimize completion time and energy consumption by

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3559690

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Melbourne. Downloaded on April 14,2025 at 08:27:11 UTC from IEEE Xplore. Restrictions apply.

13

enhancing MOGWO. Improvements include the convergence
factor update, the position update, the population update, and
the archive update mechanisms.

Fig. 9 shows the Pareto fronts obtained by eight algorithms,
demonstrating that IT-MOEA performs best in six test in-
stances. While the Pareto-optimal solution sets of AR-MOEA
and LMOCSO are close to those of IT-MOEAs, their conver-
gence performance and distribution are weaker than those of
IT-MOEAs. Notably, IT-MOEA effectively strikes the optimal
balance between completion time and energy consumption.
IT-MOEA exhibits superior diversity and distribution across
six test instances. As the scale of experiments increases, the
comparison algorithms face significant challenges regarding
convergence and distribution, but IT-MOEA still performs
well. IT-MOEA shows a clear advantage in convergence in
large-scale scenarios. IT-MOEA shows exceptional stability
and convergence capabilities in addressing the problem in
a realistic industrial environment. This advantage can be at-
tributed to several key merits inherent to IT-MOEA, including
a high-quality initial population, avoiding local optima, global
exploration capability, and distributed enhancement.

Tables II and III illustrate the average values of AIGD
and ASP for all algorithms. The best results for AIGD and
ASP are highlighted in bold. The results in Tables II and III
demonstrate that for all six test instances, IT-MOEA consis-
tently outperforms other MOEAs. IT-MOEA indicates a better
balance between global exploration and local exploitation to
achieve the best AIGD and ASP with average reductions
of 38.3% and 43.7%, respectively, over existing algorithms.
Specifically, IT-MOEA reduces AIGD by 11.5% compared to
the second-best AR-MOEA across six instances. Similarly, it
reduces ASP by 28.5% on average compared to AR-MOEA,
particularly excelling in low-dimensional cases. In Instance
6 with the highest dimensionality, IT-MOEA reduces the
advantage AIGD by 4.6% compared to AR-MOEA while im-
proving ASP by 13.8%, demonstrating superior scalability and
robustness. The reason is that NSGA-II, MOGWO, MOMVO,
and MOWOA only rely on the Pareto-dominance and are
trapped in local optima. Furthermore, MOEA/D is sensitive to
decomposition methods and weight vector settings, potentially
leading to poor diversity and convergence on complex Pareto
fronts. In addition, LMOCSO has potential stagnation risks
and Pareto front degradation in large-scale multi-objective
optimization scenarios. AR-MOEA uses adaptive reference
points and an enhanced indicator to speed up convergence,
but these features weaken its ability to differentiate solutions,
especially on unevenly distributed Pareto fronts. IT-MOEA
incorporates several more outstanding strategies to enhance
its performance. First, IT-MOEA leverages improved initial-
ization to generate a high-quality initial population, facilitating
effective search space exploration. Additionally, IT-MOEA
conducts an improved strategy of updating the positions of
the three best wolves to enhance the speed and accuracy of
the optimization process, thereby broadening the search and
facilitating global exploration. Inspired by MRFO, IT-MOEA
promotes information exchange among populations, enhancing
its exploration capabilities. IT-MOEA employs associative
learning to perturb and mutate solutions in the archive, im-

proving overall exploration performance. Finally, IT-MOEA
uses the vertical distance value during the cloning process
to maintain the diversity of the whole population, effectively
improving the performance of MOEAs in solving complicated
industrial problems. Overall, IT-MOEA combines advanced
initialization, population interaction, solution perturbation, and
distribution enhancement strategies, yielding better AIGD and
ASP.

TABLE II
AIGD OF EIGHT ALGORITHMS.

Algorithms Instance 1 Instance 2 Instance 3 Instance 4 Instance 5 Instance 6

NSGA-II 18.784 18.553 19.689 22.018 25.553 27.411
MOGWO 10.540 17.346 18.329 20.864 22.726 24.162
MOMVO 8.678 9.721 10.265 12.344 14.129 17.127
MOEA/D 7.350 8.166 8.782 10.182 12.226 14.827
LMOCSO 6.716 7.419 8.543 9.825 10.439 13.699
MOWOA 7.017 8.288 8.691 9.781 11.165 13.876

AR-MOEA 4.182 6.203 7.619 8.161 10.235 12.197
IT-MOEA 3.572 5.146 6.873 7.203 9.077 11.635

TABLE III
ASP OF EIGHT ALGORITHMS.

Algorithms Instance 1 Instance 2 Instance 3 Instance 4 Instance 5 Instance 6

NSGA-II 2.602 3.491 4.396 4.419 6.063 9.452
MOGWO 2.022 2.726 3.925 3.642 5.152 7.821
MOMVO 1.748 2.624 2.665 3.345 5.139 7.593
MOEA/D 1.394 2.153 2.376 4.381 4.984 6.252
LMOCSO 1.020 1.514 1.774 2.985 4.316 6.147
MOWOA 1.031 1.625 1.847 2.892 4.574 6.038

AR-MOEA 0.847 1.329 1.706 2.752 4.138 5.945
IT-MOEA 0.252 0.846 1.024 2.579 3.963 5.126

3) Comparison of different offloading schemes: The above
experimental results have shown that IT-MOEA exhibits ex-
cellent and reliable performance concerning both convergence
and distribution for reducing completion time and energy con-
sumption. To further evaluate the performance of IT-MOEA
on different offloading problems, we compare IT-MOEA with
other three offloading schemes, which are edge offloading
scheme (EOS) [51], cloud offloading scheme (COS) [52],
and partial offloading scheme (POS) [53]. EOS and COS
represent that all tasks are offloaded to ESs and CDC. POS
refers to the allocation of all tasks based on predetermined and
practical user association tactics. Each task is offloaded to its
corresponding AP, and if the resources of ESs are inadequate,
some tasks are offloaded to a CDC.

To more effectively assess the efficacy of various schemes,
we compare the weighted sum of completion time and energy
consumption. Fig. S4 of the supplementary file shows the
convergence plots of all comparison offloading schemes at six
different experimental scales, where the Y-axis indicates the
weighted sum values calculated by (60) and the X-axis indi-
cates the iteration count. In six different experimental scales,
IT-MOEA shows fast convergence speed as its weighted sum
decreases rapidly, which is mainly attributed to MGMA in
the early evolutionary stage of IT-MOEA because it provides
strong convergence performance to accelerate the convergence
speed significantly. Moreover, the weighted sum obtained by
IT-MOEA is lower than comparison algorithms after 1000
iterations. In addition, Fig. S5 of the supplementary file

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3559690

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Melbourne. Downloaded on April 14,2025 at 08:27:11 UTC from IEEE Xplore. Restrictions apply.

14

0 0.1 0.2 0.3 0.4 0.5 0.6

Completion time (Sec.)

0

2

4

6

8

10

12

14

E
n
er

g
y

 c
o
n

su
m

p
ti

o
n

 (
J)

Instance 1

IT-MOEA

MOGWO

NSGA-II

MOMVO

MOEA/D

LMOCSO

MOWOA

AR-MOEA

(a) Instance 1

0 0.5 1 1.5 2 2.5 3

Completion time (Sec.)

0

5

10

15

20

25

30

35

E
n
er

g
y

 c
o
n

su
m

p
ti

o
n

 (
J)

Instance 2

IT-MOEA

MOGWO

NSGA-II

MOMVO

MOEA/D

LMOCSO

MOWOA

AR-MOEA

(b) Instance 2

0 1 2 3 4 5 6 7 8

Completion time (Sec.)

10

20

30

40

50

E
n

er
g

y
 c

o
n
su

m
p
ti

o
n
 (

J)

Instance 3

IT-MOEA

MOGWO

NSGA-II

MOMVO

MOEA/D

LMOCSO

MOWOA

AR-MOEA

(c) Instance 3

2 4 6 8 10 12 14 16

Completion time (Sec.)

10

20

30

40

50

60

70

80

E
n

er
g

y
 c

o
n
su

m
p
ti

o
n
 (

J)

Instance 4

IT-MOEA

MOGWO

NSGA-II

MOMVO

MOEA/D

LMOCSO

MOWOA

AR-MOEA

(d) Instance 4

0 2 4 6 8 10 12 14 16 18

Completion time (Sec.)

10

20

30

40

50

60

70

80

90

E
n

er
g

y
 c

o
n
su

m
p
ti

o
n
 (

J)

Instance 5

IT-MOEA

MOGWO

NSGA-II

MOMVO

MOEA/D

LMOCSO

MOWOA

AR-MOEA

(e) Instance 5

0 5 10 15 20 25 30 35

Completion time (Sec.)

0

20

40

60

80

100

120

E
n

er
g

y
 c

o
n
su

m
p
ti

o
n
 (

J)
Instance 6

IT-MOEA

MOGWO

NSGA-II

MOMVO

MOEA/D

LMOCSO

MOWOA

AR-MOEA

(f) Instance 6

Fig. 9. Pareto-optimal fronts of eight algorithms for six test instances.

shows experimental results of IT-MOEA compared to the other
offloading schemes concerning completion time and energy
consumption. Experimental results demonstrate that IT-MOEA
consistently outperforms EOS, COS, and POS across six task
scales in terms of both completion time and energy consump-
tion. This is because IT-MOEA uses a two-stage evolutionary
optimization framework, i.e., MGMA accelerates convergence
by efficiently approximating Pareto-optimal solutions, while
DIA enhances solution diversity to avoid local optima. In
contrast, EOS faces high energy cost due to limited edge
resources, COS suffers from slow task completion and high
energy from long-distance cloud communication, and POS
cannot adapt flexibly when the number of tasks grows, leading
to inefficient energy usage. The above results demonstrate that
the computing offloading decision scheme obtained by IT-
MOEA outperforms its peers in real-world scenarios.

VI. CONCLUSION

In the industrial Internet, both the completion time of
industrial applications and the energy consumption of in-
dustrial equipments (IEs) need to be optimized. Considering

the diverse requirements of heterogeneous tasks in industrial
environments, coordinating and task offloading multiple IEs
with diverse task types and multiple access points (APs)
poses challenges. Existing studies on task offloading either
consider only one objective or do not consider the impact
of heterogeneous tasks in hybrid computing with CPUs and
GPUs. This work proposes a three-stage heterogeneous com-
puting architecture that accurately describes the multi-task
processing of scientific and concurrent workflows, considering
constraints such as offloading decisions, task priorities, and
load balancing in real industrial environments. We design an
Improved Two-stage Multi-Objective Evolutionary Algorithm
(IT-MOEA) to simultaneously minimize task completion time
and energy consumption for IEs. Comprehensive experimental
results indicate that IT-MOEA outperforms other state-of-the-
art algorithms regarding convergence and distribution perfor-
mance.

REFERENCES

[1] Z. Cao, P. Zhou, R. Li, S. Huang, and D. Wu, “Multiagent Deep Rein-
forcement Learning for Joint Multichannel Access and Task Offloading

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3559690

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Melbourne. Downloaded on April 14,2025 at 08:27:11 UTC from IEEE Xplore. Restrictions apply.

15

of Mobile-Edge Computing in Industry 4.0,” IEEE Internet of Things
Journal, vol. 7, no. 7, pp. 6201–6213, Jul. 2020.

[2] P. Zhang, C. Wang, C. Jiang, and Z. Han, “Deep Reinforcement Learning
Assisted Federated Learning Algorithm for Data Management of IIoT,”
IEEE Transactions on Industrial Informatics, vol. 17, no. 12, pp. 8475–
8484, Dec. 2021.

[3] J. Bi, H. Yuan, S. Duanmu, M. Zhou, and A. Abusorrah, “Energy-
Optimized Partial Computation Offloading in Mobile-Edge Computing
With Genetic Simulated-Annealing-Based Particle Swarm Optimiza-
tion,” IEEE Internet of Things Journal, vol. 8, no. 5, pp. 3774–3785,
Mar. 2021.

[4] M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui, “A Joint
Learning and Communications Framework for Federated Learning Over
Wireless Networks,” IEEE Transactions on Wireless Communications,
vol. 20, no. 1, pp. 269–283, Jan. 2021.

[5] J. Bi, H. Yuan, K. Zhang, and M. Zhou, “Energy-Minimized Partial
Computation Offloading for Delay-Sensitive Applications in Hetero-
geneous Edge Networks,” IEEE Transactions on Emerging Topics in
Computing, vol. 10, no. 4, pp. 1941–1954, Dec. 2022.

[6] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund, “In-
dustrial Internet of Things: Challenges, Opportunities, and Directions,”
IEEE Transactions on Industrial Informatics, vol. 14, no. 11, pp. 4724–
4734, Nov. 2018.

[7] Q. Zeng, Y. Du, K. Huang, and K. K. Leung, “Energy-Efficient Resource
Management for Federated Edge Learning With CPU-GPU Heteroge-
neous Computing,” IEEE Transactions on Wireless Communications,
vol. 20, no. 12, pp. 7947–7962, Dec. 2021.

[8] C. Chen, K. Li, A. Ouyang, Z. Zeng, and K. Li, “GFlink: An In-Memory
Computing Architecture on Heterogeneous CPU-GPU Clusters for Big
Data,” IEEE Transactions on Parallel and Distributed Systems, vol. 29,
no. 6, pp. 1275–1288, Jun. 2018.

[9] H. Yuan, J. Bi, and M. Zhou, “Energy-Efficient and QoS-Optimized
Adaptive Task Scheduling and Management in Clouds,” IEEE Trans-
actions on Automation Science and Engineering, vol. 19, no. 2, pp.
1233–1244, Apr. 2022.

[10] K. Peng, H. Huang, B. Zhao, A. Jolfaei, X. Xu, and M. Bilal, “Intel-
ligent Computation Offloading and Resource Allocation in IIoT With
End-Edge-Cloud Computing Using NSGA-III,” IEEE Transactions on
Network Science and Engineering, vol. 10, no. 5, pp. 3032–3046, Sept.-
Oct. 2023.

[11] X. Deng, J. Yin, P. Guan, N. N. Xiong, L. Zhang, and S. Mumtaz, “In-
telligent Delay-Aware Partial Computing Task Offloading for Multiuser
Industrial Internet of Things Through Edge Computing,” IEEE Internet
of Things Journal, vol. 10, no. 4, pp. 2954–2966, Feb. 2023.

[12] L. Sun, J. Wang, and B. Lin, “Task Allocation Strategy for MEC-Enabled
IIoTs via Bayesian Network Based Evolutionary Computation,” IEEE
Transactions on Industrial Informatics, vol. 17, no. 5, pp. 3441–3449,
May 2021.

[13] B. Lin, F. Zhu, J. Zhang, J. Chen, X. Chen, N. Xiong, and J. Mauri.
“A Time-Driven Data Placement Strategy for a Scientific Workflow
Combining Edge Computing and Cloud Computing,” IEEE Transactions
on Industrial Informatics, vol. 15, no. 7, pp. 4254–4265, Jul. 2019.

[14] H. Wu, K. Wolter, P. Jiao, Y. Deng, Y. Zhao, and M. Xu, “EEDTO: An
Energy-Efficient Dynamic Task Offloading Algorithm for Blockchain-
Enabled IoT-Edge-Cloud Orchestrated Computing,” IEEE Internet of
Things Journal, vol. 8, no. 4, pp. 2163–2176, Feb. 2021.

[15] X. Xu, H. Tian, X. Zhang, L. Qi, Q. He, and W. Dou, “DisCOV:
Distributed COVID-19 Detection on X-Ray Images With Edge-Cloud
Collaboration,” IEEE Transactions on Services Computing, vol. 15, no.
3, pp. 1206-1219, May-Jun. 2022.

[16] S. Chouikhi, M. Esseghir, and L. Merghem-Boulahia, “Energy-Efficient
Computation Offloading Based on Multiagent Deep Reinforcement
Learning for Industrial Internet of Things Systems,” IEEE Internet of
Things Journal, vol. 11, no. 7, pp. 12228–12239, 1 Apr. 2024.

[17] J. Peng, H. Qiu, J. Cai, W. Xu, and J. Wang, “D2D-Assisted Multi-User
Cooperative Partial Offloading, Transmission Scheduling and Computa-
tion Allocating for MEC,” IEEE Transactions on Wireless Communica-
tions, vol. 20, no. 8, pp. 4858–4873, Aug. 2021.

[18] Y. Ding, K. Li, C. Liu, and K. Li, “A Potential Game Theoretic Approach
to Computation Offloading Strategy Optimization in End-Edge-Cloud
Computing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 33, no. 6, pp. 1503–1519, Jun. 2022.

[19] Z. Wang, T. Lv, and Z. Chang, “Computation Offloading and Resource
Allocation based on Distributed Deep Learning and Software Defined
Mobile Edge Computing,” Computer Networks, vol. 205, no. 2022, pp.
108732–108744, Jan. 2022.

[20] A. Shakarami, A. Shahidinejad, and M. Ghobaei-Arani, “An Au-
tonomous Computation Offloading Strategy in Mobile Edge Computing:
A Deep Learning-based Hybrid Approach,” Journal of Network and
Computer Applications, vol. 178, no. 2021, pp. 102974–102992, Jan.
2021.

[21] M. Keshavarznejad, M. Rezvani, and S. Adabi, “Delay-aware Optimiza-
tion of Energy Consumption for Task Offloading in Fog Environments
Using Metaheuristic Algorithms.”, Cluster Computing, vol. 24, no. 2021,
pp. 1825–1853, Jan. 2021.

[22] G. Peng, H. Wu, H. Wu, and K. Wolter, “Constrained Multiobjective
Optimization for IoT-Enabled Computation Offloading in Collaborative
Edge and Cloud Computing,” IEEE Internet of Things Journal, vol. 8,
no. 17, pp. 13723–13736, Sept. 2021.

[23] Q. Lu, J. Yao, Z. Qi, B. He, and H. Guan, “Fairness-Efficiency
Allocation of CPU-GPU Heterogeneous Resources,” IEEE Transactions
on Services Computing, vol. 12, no. 3, pp. 474–488, May-Jun. 2019.

[24] M. Karakus, and A. Durresi, “A Survey: Control Plane Scalability Issues
and Approaches in Software-Defined Networking (SDN),” Computer
Networks, vol. 112, no. 2017, pp. 279–293, Jan. 2017.

[25] Y. Gu, C. Yin, Y. Guo, B. Xia, and Z. Chen, “Communication-
Computation-Aware User Association in MEC HetNets: A Meta-
Analysis,” IEEE Transactions on Wireless Communications, vol. 22, no.
12, pp. 8919–8933, Dec. 2023.

[26] Y. Zheng, L. Zou, W. Zhang, J. Yang, L. Yang, and Z. Lin, “Contract-
based Cooperative Computation and Communication Resources Sharing
in Mobile Edge Computing,” Journal of Grid Computing, vol. 21, no.
14, pp. 1–19, Feb. 2023.

[27] R. Zhu, N. Lin, V. Dinavahi, and G. Liang, “An Accurate and Fast
Method for Conducted EMI Modeling and Simulation of MMC-Based
HVdc Converter Station,” IEEE Transactions on Power Electronics, vol.
35, no. 5, pp. 4689–4702, May 2020.

[28] Z. -Y. Chai, Y. -J. Zhao, and Y. -L. Li, “Multitask Computation Offload-
ing Based on Evolutionary Multiobjective Optimization in Industrial
Internet of Things,” IEEE Internet of Things Journal, vol. 11, no. 9,
pp. 15894–15908, 1 May1, 2024.

[29] H. Yuan, J. Bi, J. Zhang, and M. Zhou, “Energy Consumption and
Performance Optimized Task Scheduling in Distributed Data Centers,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 52,
no. 9, pp. 5506–5517, Sept. 2022.

[30] S. Mirjalili, S. Seyedali, S. Mirjalili, and L. Coelho. “Multi-objective
Grey Wolf Optimizer: A Novel Algorithm for Multi-criterion Optimiza-
tion,” Expert systems with applications, vol. 47, no. 2016, pp. 106–119,
Apr. 2016.

[31] J. Bi, J. Zhai, H. Yuan, Z. Wang, J. Qiao, J. Zhang, and M. Zhou, “Multi-
swarm Genetic Gray Wolf Optimizer with Embedded Autoencoders for
High-dimensional Expensive Problems,” 2023 IEEE International Con-
ference on Robotics and Automation, 2023, London, United Kingdom,
pp. 7265–7271.

[32] H. Peng, W. Wen, M. Tseng, and L. Li, “Joint Optimization Method
for Task Scheduling Time and Energy Consumption in Mobile Cloud
Computing Environment,” Applied Soft Computing, vol. 80, no. 2019,
pp. 534–545, May. 2019.

[33] I. Attiya, M. A. Elaziz, L. Abualigah, T. N. Nguyen, and A. A.
A. El-Latif, “An Improved Hybrid Swarm Intelligence for Scheduling
IoT Application Tasks in the Cloud,” IEEE Transactions on Industrial
Informatics, vol. 18, no. 9, pp. 6264–6272, Sept. 2022.

[34] A. A. Heidari, I. Aljarah, H. Faris, H.Chen, J. Luo, and S. Mirjalili, “An
Enhanced Associative Learning-based Exploratory Whale Optimizer for
Global Optimization,” Neural Computing and Application, vol. 32, no.
9, pp. 5185–5211, May 2020.

[35] L. Li, Q. Lin, K. Li, and Z. Ming, “Vertical Distance-based Clonal
Selection Mechanism for the Multiobjective Immune Algorithm,” Swarm
and Evolutionary Computation, vol. 63, no. 2021, pp. 100886–100903,
Apr. 2021.

[36] M. Gong, L. Jiao, H. Du, and L. Bo, “Multiobjective Immune Algorithm
with Nondominated Neighbor-Based Selection,” Evolutionary Computa-
tion, vol. 16, no. 2, pp. 225–255, Jun. 2008.

[37] Y. Lin, A. Barker, and S. Ceesay, “Exploring Characteristics of Inter-
cluster Machines and Cloud Applications on Google Clusters,” 2020
IEEE International Conference on Big Data (Big Data), Atlanta, GA,
USA, 2020, pp. 2785–2794.

[38] J. Guo, Z. Chang, S. Wang, H. Ding, Y. Feng, L. Mao, and Y. Bao,
“Who Limits the Resource Efficiency of My Datacenter: An Analysis
of Alibaba Datacenter Traces,” 2019 IEEE/ACM 27th International
Symposium on Quality of Service (IWQoS), Phoenix, AZ, USA, 2019,
pp. 1–10.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3559690

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Melbourne. Downloaded on April 14,2025 at 08:27:11 UTC from IEEE Xplore. Restrictions apply.

16

[39] J. Zhou and X. Zhang, “Fairness-Aware Task Offloading and Resource
Allocation in Cooperative Mobile-Edge Computing,” IEEE Internet of
Things Journal, vol. 9, no. 5, pp. 3812–3824, Mar. 2022.

[40] F. Song, H. Xing, S. Luo, D. Zhan, P. Dai, and R. Qu, “A Multiobjective
Computation Offloading Algorithm for Mobile-Edge Computing,” IEEE
Internet of Things Journal, vol. 7, no. 9, pp. 8780–8799, Sept. 2020.

[41] T. Yang, F. Hai, G. Shan, J. Zhi, Q. Meng, C. Nan, and B. Lin,
“Two-Stage Offloading Optimization for Energy-Latency Tradeoff With
Mobile Edge Computing in Maritime Internet of Things,” IEEE Internet
of Things Journal, vol. 7, no. 7, pp. 5954–5963, Jul. 2020.

[42] E. Daniel, “Optimum Wavelet-Based Homomorphic Medical Image
Fusion Using Hybrid Genetic-Grey Wolf Optimization Algorithm,” IEEE
Sensors Journal, vol. 18, no. 16, pp. 6804–6811, Aug. 2018.

[43] J. Bi, H. Yuan, J. Zhai, M. Zhou, and H. V. Poor, “Self-adaptive Bat
Algorithm With Genetic Operations,” IEEE/CAA Journal of Automatica
Sinica, vol. 9, no. 7, pp. 1284–1294, Jul. 2022.

[44] F. Javidrad and M. Nazari, “A New Hybrid Particle Swarm and
Simulated Annealing Stochastic Optimization Method,” Applied Soft
Computing, vol. 60, pp. 634–654, Nov. 2017.

[45] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A Fast and Elitist
Multiobjective Genetic Algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, Apr. 2002.

[46] S. Mirjalili, P. Jangir, S. Mirjalili, S. Saremi, and I. Trivedi. “Opti-
mization of Problems with Multiple Objectives Using the Multi-verse
Optimization Algorithm,” Knowledge-Based Systems, vol. 134, pp. 50–
71, Oct. 2017.

[47] Q. Zhang and H. Li, “MOEA/D: A Multiobjective Evolutionary Algo-
rithm Based on Decomposition,” IEEE Transactions on Evolutionary
Computation, vol. 11, no. 6, pp. 712–731, Dec. 2007.

[48] Y. Tian, X. Zheng, X. Zhang, and Y. Jin, “Efficient Large-Scale
Multiobjective Optimization Based on a Competitive Swarm Optimizer,”
IEEE Transactions on Cybernetics, vol. 50, no. 8, pp. 3696–3708, Aug.
2020.

[49] Y. Tian, R. Cheng, X. Zhang, F. Cheng, and Y. Jin, “An Indicator-Based
Multiobjective Evolutionary Algorithm With Reference Point Adaptation
for Better Versatility,” IEEE Transactions on Evolutionary Computation,
vol. 22, no. 4, pp. 609–622, Aug. 2018.

[50] L. Pan, C. He, Y. Tian, H. Wang, X. Zhang, and Y. Jin, “A Classification-
Based Surrogate-Assisted Evolutionary Algorithm for Expensive Many-
Objective Optimization,” IEEE Transactions on Evolutionary Computa-
tion, vol. 23, no. 1, pp. 74–88, Feb. 2019.

[51] Y. Dai, D. Xu, S. Maharjan, and Y. Zhang, “Joint Computation Offload-
ing and User Association in Multi-Task Mobile Edge Computing,” IEEE
Transactions on Vehicular Technology, vol. 67, no. 12, pp. 12313–12325,
Dec. 2018.

[52] Y. Shi, S. Chen, and X. Xu, “MAGA: A Mobility-Aware Computation
Offloading Decision for Distributed Mobile Cloud Computing,” IEEE
Internet of Things Journal, vol. 5, no. 1, pp. 164–174, Feb. 2018.

[53] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, “Mobile-Edge
Computing: Partial Computation Offloading Using Dynamic Voltage
Scaling,” IEEE Transactions on Communications, vol. 64, no. 10, pp.
4268–4282, Oct. 2016.

Jiahui Zhai (Graduate Student Member, IEEE) is
currently a Ph.D. student in the Faculty of Informa-
tion Technology, School of Software Engineering,
Beijing University of Technology, Beijing, China.
Before that, he received his B.E. degree in Software
Engineering from Zhengzhou University in 2019 and
M.E. degree in Software Engineering from Beijing
University of Technology in 2022. His research
interests include cloud/edge computing, computation
offloading, intelligent optimization algorithms, ma-
chine learning, and reinforcement learning. He was

the recipient of the Best Paper Award-Finalist in the 18th IEEE International
Conference on Networking, Sensing and Control (ICNSC). He is now a
Visiting Ph.D. Student in the School of Computer Science, University College
Dublin (UCD), Dublin, Ireland.

Jing Bi (Senior Member, IEEE) received her B.S.,
and Ph.D. degrees in Computer Science from North-
eastern University, Shenyang, China, in 2003 and
2011, respectively. She is currently a Professor with
the Faculty of Information Technology, Beijing Uni-
versity of Technology, Beijing, China. She has over
170 publications in international journals and confer-
ence proceedings. Her research interests include dis-
tributed computing, cloud & edge computing, large-
scale data analytics, machine learning, industrial
internet, and performance optimization. She is now

an Associate Editor of IEEE Transactions on Systems Man and Cybernetics:
Systems. She is a senior member of the IEEE.

Haitao Yuan (S’15–M’17–SM’21) received the
Ph.D. degree in Computer Engineering from New
Jersey Institute of Technology (NJIT), Newark, NJ,
USA in 2020. He is currently a Deputy Director
in the Department of Science and Technology In-
novation, Wenchang International Aerospace City,
Hainan, China. He is currently an Associate Profes-
sor at the School of Automation Science and Elec-
trical Engineering at Beihang University, Beijing,
China, and he is named in the world’s top 2% of
Scientists List. His research interests include the In-

ternet of Things, edge computing, deep learning, data-driven optimization, and
computational intelligence algorithms. He received the Chinese Government
Award for Outstanding Self-Financed Students Abroad, the 2021 Hashimoto
Prize from NJIT, the Best Paper Award in the 17th ICNSC, and the Best
Student Paper Award Nominees in 2024 IEEE SMC. He is an associate editor
for IEEE Trans. on Systems, Man, and Cybernetics: Systems, IEEE Internet
of Things Journal, and Expert Systems With Applications.

Jia Zhang (Senior Member, IEEE) received a PhD
degree in computer science from the University of
Illinois at Chicago, Chicago, IL, USA in 2000. She
is currently the Cruse C. and Marjorie F. Calahan
Centennial Chair in Engineering, Professor of De-
partment of Computer Science in the Lyle School
of Engineering at Southern Methodist University.
Her research interests emphasize the application of
machine learning and information retrieval methods
to tackle data science infrastructure problems, with
a recent focus on scientific workflows, provenance

mining, software discovery, knowledge graphs, and interdisciplinary applica-
tions of all of these interests in earth science. She is a senior member of the
IEEE.

Rajkumar Buyya (Fellow, IEEE) is a Redmond
Barry Distinguished Professor and Director of
the Cloud Computing and Distributed Systems
(CLOUDS) Laboratory at the University of Mel-
bourne, Australia. He received a B.E and M.E in
Computer Science and Engineering from Mysore
and Bangalore Universities in 1992 and 1995, re-
spectively, and a Ph.D. in Computer Science and
Software Engineering from Monash University, Mel-
bourne, Australia, in 2002. He was a Future Fellow
of the Australian Research Council from 2012 to

2016. He has authored over 800 publications and seven textbooks. He is one
of the highly cited authors in computer science and software engineering
worldwide, with over 156,600 citations and an h-index of 170. He was
recognized as a “Web of Science Highly Cited Researcher” from 2016 to
2021 by Thomson Reuters.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3559690

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Melbourne. Downloaded on April 14,2025 at 08:27:11 UTC from IEEE Xplore. Restrictions apply.

