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57.1 Introduction

Scientists and practitioners are increasingly reliant on large amounts of computational resources to 
solve complicated problems and obtain results in a timely manner. To satisfy the demand for large com-
putational resources, organizations build or utilize distributed computing systems.

A distributed computing system is essentially a set of computers that share their resources via a com-
puter network and interact with each other toward achieving a common goal [31]. !e shared resources 
in a distributed system include data, computational power, and storage capacity. !e common goal can 
also range from running resource-intensive applications, tolerating faults in a server, and serving scal-
able Internet applications.

Distributed computing systems such as Clusters, Grids, and recently Clouds have become ubiquitous 
platforms for supporting resource-intensive and scalable applications. However, surge in demand is still 
a common problem in distributed systems [26] in a way that no single system (specially Clusters and 
Grids) can meet the needs of all users. !erefore, the notion of interconnected distributed computing 
systems has emerged.

In an interconnected distributed computing system, as depicted in Figure 57.1, organizations 
share their resources over the Internet and consequently are able to access larger resources. In fact, 
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57-2 Operating Systems

interconnected distributed systems construct an overlay network on top of the Internet to facilitate 
resource sharing between the constituents.

However, there are concerns in interconnected distributed systems regarding contention between 
requests to access resources, low access level, security, and reliability. !ese concerns necessitate a 
resource management platform that encompasses these aspects. !e way current platforms consider 
these concerns depends on the structure of the interconnected distributed system. In practice, intercon-
nection of distributed systems can be achieved in di"erent levels. !ese approaches are categorized in 
Figure 57.2 and explained over the following paragraphs.

· User level (Broker-based): Is useful for creating loosely coupled interconnected distributed sys-
tems. In this approach, users/organizations are interconnected through accessing multiple dis-
tributed systems. !is approach involves repetitive e"orts to develop interfaces for di"erent 
distributed systems and, thus, scaling to many distributed systems is di#cult. Gridway [103] 
and GridBus broker [104] are examples of broker-based interconnection approach. !e former, 
achieves interconnection in organization level, whereas the latter, works in the enduser level.

· Resource level: In this approach, di"erent interfaces are developed on the resource side and con-
sequently the resource can be available to multiple distributed systems. !is approach involves 
administration overhead, since the resource administrator has to be aware of well-known ser-
vices. !is approach is di#cult to scale to many distributed systems, hence, it is suggested mostly 
for large distributed systems. Interconnection of EGEE, NorduGrid, and D-Grid is done based on 
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57-3Taxonomy of Contention Management in Interconnected Distributed Sy stems

this approach [31]. Particularly, D-Grid [35] leverages interconnectivity via implementing inter-
faces of UNICORE, gLite, and Globus on each resource provider in a way that resources can be 
accessed by any of the middlewares.

· Platform level (Gateways): A third platform (usually called a gateway) handles the arrangements 
between distributed systems. Ideally, the gateway is transparent both from users and resources 
and makes the illusion of single system for the user. However, in this approach gateways are single 
point of failure and also a scalability bottleneck. InterGrid [26] and the interconnection of Naregi 
and EGEE [65] are instances of this approach.

· Standardization: Common and standard interfaces have been accepted as a comprehensive and 
 sustainable solution for interconnecting distributed systems. However, current distributed systems 
(e.g., current Grid platforms) have already been developed based on di"erent standards and it is a hard 
and long process to change them to a common standard interface. Issues regarding creating standards 
for interconnecting distributed systems are also known as interoperability of distributed systems.

UniGrid [88] is a large-scale interconnected distributed system implemented based on a stan-
dard and connects more than 30 sites in Taiwan. It o"ers a web interface that bridges the user 
and the lower-level middleware. !e core of UniGrid orchestrates di"erent middlewares, includ-
ing Globus Toolkit [33], Condor [96], and Ganglia [80] transparently from the user. Another 
project that sought to achieve the idea of World Wide Grid through developing standards and 
service-oriented architecture is GRIP [25].

Grid computing is a prominent example of interconnected distributed systems. Grids are usually comprised 
of various organizations that share their resources (e.g., Clusters or SMPs) and form Virtual Organizations 
(VOs). !e concept of Grid has speci$cally been fascinating for users/organizations that did not have huge 
resources available or did not have the budget to manage such resources. Nowadays, Grids are utilized pre-
dominantly in scienti$c communities to run high performance computing (HPC) applications. Over the 
last decade, variety of Grids have emerged based on di"erent interconnection mechanisms. TeraGrid in the 
United States [102], DAS in the Netherlands [61], and Grid5000 in France [17] are such examples.

Generally, in an interconnected environment, requests from di"erent sources co-exist and, therefore, 
these systems are prone to contention between di"erent requests competing to access resources. !ere 
are various types of contentions that can occur in an interconnected distributed system and, accord-
ingly, there are di"erent ways to cope with these contentions.

!e survey will help people in the research community and industry to understand the potential ben-
e$ts of contention-aware resource management systems in distributed systems. For people unfamiliar 
with the $eld, it provides a general overview, as well as detailed case studies.

!e rest of this chapter is organized as follows: In Section 57.2, an overview on resource manage-
ment systems of interconnected distributed systems is presented. Next, in Section 57.3 contention in 
interconnected distributed systems is discussed which is followed by investigating the architectural 
models of the contention-aware resource management systems in Section 57.4. In Section 57.5, we dis-
cuss about di"erent approaches for contention management in well-known interconnected distributed 
systems. Finally, conclusion and avenues of future works for researchers are provided in Section 57.6.

57.2 Request Management Systems

Interconnected distributed systems, normally, encounter various users and usage scenarios from users. 
For instance, the following usage scenarios are expectable:

· Scientists in a research organization run scienti$c simulations, which are in the form of long run-
ning batch jobs without speci$c deadlines.

· A corporate web site needs to be hosted for a long period of time with a guaranteed availability 
and low latency.

· A college instructor requires few resources at certain times every week for demonstration purposes.
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57-4 Operating Systems

In response to such diverse demands, interconnected distributed systems o"er di"erent service levels 
(also called multiple quality of service (QoS) levels).

For example, Amazon EC2* supports reserved (availability guaranteed), on-demand, and spot (best-
e"ort) virtual machine (VM) instances. O"ering a combination of advance-reservation and best-e"ort 
schemes [93], interactive and batch jobs [109], tight-deadline and loose-deadline jobs [37] are common 
practices in interconnected distributed systems.

!ese diverse service levels usually imply di"erent prices and priorities for the services that have to be 
managed by the resource management system. Additionally, interconnected distributed systems can be 
aware of the origin of the requests and they may discriminate requests based on that. Another challenge 
in job management of interconnected distributed systems is managing accounting issues of sending/
receiving requests to/from peer distributed systems.

!ere are many approaches for tackling these challenges in resource management systems of inter-
connected distributed systems. One common approach is prioritizing requests based on criteria, such 
as service (QoS) or origin. For example, in an interconnected distributed system usually local requests 
(i.e., local organizations' users) have priority over the requests from external users [5]. Another example 
is in urgent computing [15] (urgent applications), such as earthquake and bush-$re prediction applica-
tions where the applications intend to acquire many resources in an urgent manner. In circumstances 
that there is surge in demand, requests with di"erent priorities compete to gain access to resources. !is 
condition is generally known as resource contention between requests.

Resource contention is the main challenge in request management of interconnected distributed sys-
tems and occurs when a user request cannot be admitted or cannot receive adequate resources, because 
the resources are occupied by other (higher priority) requests.

In the remainder of this survey, we explore di"erent aspects of resource contention in interconnected 
distributed systems and also we investigate the possible solutions for them.

57.3 Origins of Resource Contentions

!ere are various causes for resource contention in interconnected distributed systems. !ey broadly 
can be categorized as request-initiated, interdomain-initiated, origin-initiated and hybrid. A taxonomy 
of di"erent contention types along with their solutions is shown in Figure 57.3.

57.3.1 Request-Initiated Resource Contention

Request-initiated resource contention occurs if any of the requests monopolizes resources to such an 
extent that deprives other requests from gaining access to them. It is prevalent in all forms of distributed 
systems, even where there is no interconnection. !ere are several scenarios that can potentially lead to 
request-initiated resource contention. One important situation is when there is an imbalance in request 
sizes, mainly, in terms of required number of nodes or execution time (duration). In this circumstance, 
small requests may have to wait for a long time behind a long job to access resources.

Another cause for request-initiated resource contention is situation that requests have QoS con-
straints and they sel$shly try to satisfy them. Generally, resource management systems can support 
three types of QoS requirements for users' requests:

 1. Hard QoS: Where the QoS constraints cannot be negotiated. !ese systems are prone to QoS 
violation and, hence, managing resource contention is critical [73].

 2. So% QoS: Where the QoS constraints are &exible and can be negotiated based upon the resource 
availabilities or when there is a surge in demand. !e &exibility enables resource management 
systems to apply diverse resource contention solutions [73].

* http://aws.amazon.com/ec2/
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57-5Taxonomy of Contention Management in Interconnected Distributed Sy stems

 3. Hybrid QoS: Where the resource management system supports a combination of Hard QoS and 
So% QoS requirements for the user requests. !is fashion is common in commercial resource 
providers such as Cloud providers. For instance, Amazon EC2 supports services with distinct 
QoS requirements including reserved (hard QoS), and spot (so% QoS) VM instances. Another 
example, are the resource management systems that support combination of interactive (hard 
QoS) and batch requests (usually so% QoS) [109].

Solutions for managing request-initiated contentions are mostly achieved in the context of schedul-
ing and/or admission control units of resource management systems. Over the next paragraphs, we 
categorize and describe di"erent solutions for resource contention.

Di!erentiated services (Di"Serv) technique that initially was used in Computer Networks and devel-
oped to guarantee di"erent QoS levels (with di"erent priorities) for various Internet services, such as 
VOIP and web. In Computer Networks, Di"Serv guarantees di"erent QoSs through dividing the ser-
vices into distinct QoS levels. According to IETF RFC 2474, each level is supported by dropping TCP 
packets of lower priority levels.

Similar approach can be taken in the context of request-initiated resource contentions in distrib-
uted systems. For this purpose, the resource management system presents di"erent QoS levels for user 
requests. !en, requests are classi$ed in one of these levels at the admission time. However, in this scheme 
there is no control on the number of requests assigned to each QoS level. As a result, QoS requirements 
of request cannot be guaranteed. !erefore, Di"Serv scheme is appropriate for so% QoS requirements.

Variations of Di"Serv technique can be applied when contention occurs due to imbalanced requests. 
Silberstein et al. [89] also sought to decrease the response time of short requests in a multigrid environment. 
For that purpose, they apply a multilevel feedback queue (MLFQ) scheduling. In their policy, Grids are placed 
in di"erent categories based on their response speed. Requests are all sent to the $rst queue upon arrival and 
if they cannot get completed in the time limit of that level, then they are migrated to the lower level queue 
which is a larger grid. !e process continues up until the task $nishes or reaches down the hierarchy.

In the Partitioning scheme, the resources are reserved for requests with di"erent QoS levels. 
Unlike Di"Serv scheme, in this approach boundaries of the reservations (partitions) can adaptively 
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move, based on the demand in di"erent QoS levels. !is solution can also be considered as a type of 
Di"Serv that is suitable for requests with hard QoS requirements.

Economic scheme solutions either work in an auction-based or utility-based manner. In the former, 
both resource provider and resource consumer have their own agents. !rough an auctioneer the con-
sumer bids on the resources and also provides a valuation function. !en, the provider agent tries to 
maximize the utility based on the valuation function and comes up with a set of resources for the user. 
In the latter, a utility function that generally re&ects the revenue earned by running a request is calcu-
lated for all contentious requests. !en, the request that maximizes the utility function has the priority 
of accessing resources. !ese approaches are commonly applied in market-oriented scheduling [36].

Fair scheme that guarantees contentious requests receive their share of the system resources [3]. !is 
scheme is used to resolve resource contentions resulting from imbalanced requests in the system and 
assures starvation-free scheduling of the requests.

Outsourcing scheme: Interconnection of distributed systems creates the opportunity to employ 
resources from other distributed systems in the case of resource contention. Outsourcing is applied for 
both causes of request-initiated resource contention (i.e., request imbalance and QoS levels). Specially, 
Cloud providers have been extensively employed for outsourcing requests [84]. !is issue has helped in 
emergence of hybrid clouds, which are a combination of a private (organizational) resources and public 
Clouds [12]. Although we categorize outsourcing as a resolution for request-initiated contentions, it can 
be applied for interdomain and origin initiated contentions as will be discussed in the next parts.

57.3.2 Interdomain-Initiated Resource Contention

Interdomain-initiated resource contention occurs, when the proportion of shared resources to the con-
sumed resources by a constituent distributed system is low. In other words, this resource contention 
happens when a resource provider contributes few resources while demand more resources from other 
resource providers in an interconnected distributed system. Unlike request-initiated contention, which 
merely roots in request characteristics and can take place in any distributed system, interdomain con-
tention is based on the overall consumption and contribution of each resource provider.

!ere are several approaches for handling interdomain-initiated contentions, namely, global sched-
uling, incentive, and token-based schemes (see Figure 57.3). !ese approaches are discussed in detail in 
what follows .

Global schedulers: In this approach, which is appropriate for large-scale distributed systems, there are 
local (domain) schedulers and global (meta) schedulers. Global schedulers are in charge of routing user 
requests to local schedulers and, ultimately, local schedulers, such as Condor [96] or Sun Grid Engine 
(SGE) [16], allocate resources to the requests.

Global schedulers can manage the interdomain resource contention by admitting requests from dif-
ferent organizations based on the number of requests it has redirected to the resources of each organi-
zation. Since global schedulers usually are not aware of the instantaneous load condition in the local 
schedulers, it is di#cult for them to guarantee QoS requirements of users [11]. !us, this approach is 
useful for circumstances where requests have so% QoS requirements.

Incentive scheme: In this approach, which is mostly used in peer-to-peer systems [71], resource provid-
ers are encouraged to share resources to be able to access more resources. Reputation Index Scheme 
[58] is a type of incentive-based approach in which the organization cannot submit requests to another 
organization while it has less reputation than that organization. !erefore, in order to gain reputation, 
organizations are motivated to contribute more resources to the interdomain sharing environment.

Quality service incentive scheme [70] is a famous type of incentive-based approach. Quality ser-
vice is an extension of Reputation Index Scheme. !e di"erence is that depending on the number of 
QoS levels o"ered by a participant, a set of distinct ratings is presented where each level has its own 
reputation index.
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Token-based scheme: Operates based on the principle where a certain amount of tokens, which are 
allocated to an organization, is proportional to its resource contribution. If a user wants to get access to 
another organization resources, its consumer agent must spend amount of tokens to get the access. !is 
scheme encompasses request-initiated and interdomain resource contentions. To address the request-
initiated resource contention, valuation functions can be used to translate the QoS demands of user 
to the number of tokens to be used for a request. !e provider agent can then use its own valuation 
functions to compute the admission price for the request. Finally, the request will be admitted only if 
the admission price is less or equal to the number of tokens that the requesting organization is willing 
to pay [73].

57.3.3 Origin-Initiated Resource Contention

In interconnected distributed systems, users' requests originate from distinct organizations. More 
importantly, these systems are prone to resource contention between local requests of the organiza-
tion and requests from other organizations (i.e., external requests). Typically, local requests of each 
organization have priority over external requests [5]. In other words, the organization that owns the 
resources would like to ensure that its community has priority access to the resources. Under such a 
circumstance, external requests are welcome to use resources if they are available. Nonetheless, external 
requests should not delay the execution of local requests.

In fact, origin-initiated resource contention is a speci$c case of interdomain-initiated and request-
initiated resource contentions. Consequently, the approaches of tackling this type of resource conten-
tion is similar to the already mentioned approaches. Particularly, partitioning approach both in static 
and dynamic forms and global scheduling are applicable for origin-initiated resource contentions. !ere 
are also other approaches to cope with origin-initiated contentions that we discuss in this part.

Preemption scheme: !is mechanism stops the running request and free the resources for another, pos-
sibly higher priority, or urgent request. !e higher priority request can be a local request or a hard 
QoS request in an interconnected distributed system. !e preempted request may be able to resume its 
execution from the preempted point. If suspension is not supported in a system, then the preempted 
request can be killed (canceled) or restarted. For parallel requests, full preemption usually is performed, 
in which whole request leaves the resources. However, some systems support partial preemption, in 
which part of resources allocated to a parallel request is preempted [86].

Although preemption mechanism is a common solution for origin-initiated contentions, it is also 
widely applied to solve request-initiated resource contentions. Due to the prominent role of preemption 
in resolving these types of resource contentions, in Section 57.4.5 we explain preemption in details.

Partitioning scheme: Both static and dynamic partitioning of resources, as mentioned in Section 57.3.1, 
can be applied to tackle origin-initiated contentions.

In dynamic partitioning of resources, the local and external partitions can borrow resources from 
each other when there is a high demand of local or external requests [11].

Several queues: In this approach when requests arrive [59], they are categorized in distinct queues, based 
on their origin. Each queue can independently have its own scheduling policy. !en, another scheduling 
policy determines the appropriate queue that can dispatch a request to the resources.

Combinations of the aforementioned contentions (mentioned as hybrid in Figure 57.3) can occur 
in an interconnected distributed system. !e most common combination is the origin-initiated and 
request-initiated resource contentions. For instance, in federated Grids and federated Clouds, origin-
initiated contention occurs between local and external requests. At the same time, external and local 
requests can also have distinct QoS levels, which is a request-initiated resource contention [5,6,81]. 
Generally, Resolution of hybrid resource contentions is a combination of di"erent strategies men-
tioned earlier.
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57.4 Contention Management

Resource management system is the main component of a distributed system that is responsible for 
resolving resource contentions. Various elements of a resource management system contribute in resolv-
ing di"erent types of resource contentions. !ey apply di"erent approaches in managing contentions. 
Di"erent components of resource management systems and the way they deal with resource contention 
is presented in Figure 57.4.

57.4.1 Resource Provisioning

Resource provisioning component of a resource management system is in charge of procuring resources 
based on user application requirements. Resource provisioning is performed based on a provisioning 
model that de$nes the execution unit in a system. In fact, requests are allocated resources based on the 
resource provisioning model.

Resource provisioning models do not directly deal with resource contentions. However, the way other 
components of resource management system function strongly depends on the resource provisioning 
model.

Provisioning resources for users' requests in distributed systems has three dimensions as follows:

 1. Hardware resources
 2. So%ware available on the resources
 3. Time during which the resources are available (availability)

Satisfying all of these dimensions in a resource provisioning model has been challenging. In practice, past 
resource provisioning models in distributed systems were unable to ful$ll all of these dimensions [93]. 
Emergence of virtual machine (VM) technology as a resource provisioning model recently has posed an 
opportunity to address all of these dimensions. Over the next subsections, we discuss common resource 
provisioning models in current distributed systems.

57.4.1.1 Job Model

In this model, jobs are pushed or pulled across di"erent schedulers in the system to reach the destination 
node, where they can run. In job-based systems, scheduling a job is the consequence of a request to run 
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the job. Job model resource provisioning has been widely employed in distributed systems. However, 
this model cannot perfectly support all resource contention solutions.

Job-based systems provision hardware for jobs while they o"er a limited support for so%ware avail-
ability. In fact, in job-based model users do not have root access, therefore it is di#cult to install and 
use required so%ware packages. Many job-based systems support availability based on queuing the-
ory along with scheduling algorithms. However, queue-based systems usually do not assure speci$c 
time+availabilities.

To support availability and hardware dimensions, Nurmi et al. [68], present advance reservation (AR) 
model over the job-based provisioning model. !ey support AR through predicting waiting time of jobs 
in the queue. Hovestadt et al. [45] propose plan-based scheduling (opposite to queue-based) that $nds 
the place of each job (instead of waiting in the queue) to be able to support AR model. In this system, on 
the arrival of each job the whole schedule is re-planned to optimize the resource utilization.

Falkon [75], Condor glidin [34], MyCluster [108], and Virtual Workspace [53] have applied a multilevel/
hierarchical scheduling on top of a job-based system to o"er other provisioning models (such as lease-
based model, which is described in Section 57.4.1.3). In these systems, one scheduler allocates resources 
to another scheduler and the other scheduler runs the jobs on the allocated resources.

57.4.1.2 Virtual Machine Model

Virtual machines (VMs) are considered as an ideal vehicle for resource provisioning in distributed sys-
tems. !e reason is that, in VM model, unlike the job model, hardware, so%ware, and availability can be 
provisioned for user requests. Additionally, VMs' capability in getting suspended, resumed, or migrated 
without major utilization loss have proved to be useful in resource management. !erefore, VM-based 
provisioning model is commonly used in current distributed systems.

!e VM-based resource provisioning model is used in creating virtual Clusters on top of an existing 
infrastructure. Virtual clusters (VC) are usually utilized for job-based batch processing. For example, 
in MOSIX [13], Clusters of VMs are transparently created to run high performance computing (HPC) 
applications. !e Nimbus toolkit [52] provides ªone-click virtual Clusterº automatically on heteroge-
neous sites through contextualizing disk images. Amazon EC2, provides VM-based Cluster instances* 
that o"er supercomputing services to expedite execution of HPC applications, without delaying the user 
in a queue or acquire expensive hardware. Automatic VM creation and con$guration in short time is 
also considered in In-VIGO [2] and VMplants [56]. An extension of Moab [29] creates VM-based virtual 
Clusters to run HPC batch applications.

Many commercial datacenters use VM-based provisioning model to provide their services to resource 
consumers. Such datacenters o"er services such as Virtual Cluster, or hosting servers including web, 
email, and DNS.

Datacenters usually contain large scale computing and storage resources (order of 100s±1000s) and 
consume so much energy. A remarkable bene$t of deploying VM-based provisioning model in data-
centers is the consolidation feature of VMs that can potentially saves the energy consumption [105]. 
However, VM consolidation requires accurate workload prediction in the datacenters. Moreover, the 
consolidation impact on service level agreements (SLA) needs to be considered. VM consolidation can 
be performed in a static (also termed cold consolidation) or dynamic (hot consolidation) manner. In the 
former, VMs needs to be suspended and resumed on another resource that involves time overhead. In 
the latter approach, live migration [107] of VMs is used, thus, is transparent from the user.

Solutions such as VMware, Orchestrator, Enomalism, and OpenNebula [32] provide resource man-
agement for VM-based data centers.

!ere are also concerns in deploying VM-based provisioning model and Virtual Clusters. Networking 
and load balancing among physical Clusters is one of the challenges that is considered in Vio-Cluster+[79]. 
Power e#ciency aspect and e"ectively utilizing VMs capability in suspending and migrating are also 

* http://aws.amazon.com/hpc-applications/

K14311_C057.indd   9 10/2/2013   1:11:07 PM
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considered by many researchers [51,66,106]. Overhead and performance issues involved in applying 
VMs to run compute-intensive and IO-intensive jobs, fault tolerance, and security aspects of VMs are 
also of special importance in deploying VM-based provisioning model.

57.4.1.3 Lease Model

!is model is considered as an abstraction for utility computing in which the user is granted a set of 
resources for speci$c interval and agreed quality of service [39]. In this model, job execution is inde-
pendent from resource allocation, whereas in the job model resource allocation is the consequence of 
running a job.

Formally, a lease is de$ned by Sotomayor [93] as ªa negotiated and renegotiable contract between a 
resource provider and a resource consumer, where the former agrees to make a set of resources avail-
able to the latter, based on a set of lease terms presented by the resource consumer.º If lease extension 
is supported by resource management system, then users would be able to extend their lease for a 
longer time. !is is particularly useful in circumstances that users have inaccurate estimation of 
required time. Virtual machines are suitable vehicles to implement lease-based model. Depending 
on the contract, resource procurement for leases can be achieved from a single provider or from 
multiple providers.

57.4.2 Scheduling Unit

!e way user requests are scheduled in an interconnected distributed system a"ects types of resource 
contentions occurring. E#cient scheduling decisions can prevent resource contention or reduce its 
impact whereas poor scheduling decisions can lead to more resource contentions.

In an interconnected distributed system, we can recognize two levels of scheduling, namely, local 
(domain level) scheduling and global scheduling (meta-scheduling). !e global scheduler is generally 
in charge of assigning incoming requests to resource providers within its domain (e.g., Clusters or 
sites). In the next step, the local scheduler performs further tuning to run the assigned requests e#-
ciently on resources.

From the resource contention perspective, scheduling methods can either react to resource conten-
tion or proactively prevent the resource contention to occur.

57.4.2.1 Local Scheduling

Local scheduler deals with scheduling requests within each distributed system (e.g., Cluster or site). 
Scheduling policies in this level can mainly deal with request-initiated and origin-initiated contentions. 
Indeed, there are few local schedulers that handle interdomain-initiated contention.

Back$lling is a common scheduling policy in local resource management systems (LRMS). !e aims 
of back$lling are increasing resource utilization, minimizing average request response time, and reduc-
ing queuing fragmentation. In fact, back$lling is an improved version of FCFS in which requests that 
arrive later, possibly are allocated earlier in the queue, if there is enough space for them. Variations of 
back$lling policy are applied in local schedulers:

· Conservative: In which a request can be brought forward if it does not delay any other request in 
the queue.

· Aggressive (EASY): !e reservation of the $rst element in the queue cannot be postponed. 
However, the arriving request can shi% the rest of scheduled requests.

· Selective: If the slowdown of a scheduled request exceeds a threshold, then it is given a reservation, 
which cannot be altered by other arriving requests.

!ere are also variations of back$lling method that are speci$cally designed to resolve request-
initiated resource contentions. Snell et al. [91] applied preemption on back$lling policy. !ey pro-
vide policies to select the set of requests for preemption in a way that the requests with higher 
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priority are satis$ed and, at the same time, the resource utilization increases. !e preempted request 
is restarted and rescheduled in the next available time slot.

Multiple resource partitioning is another scheduling approach for local schedulers by Lawson and 
Smirni [59]. In this approach, resources are divided into partitions that potentially can borrow resources 
from each other. Each partition has its own scheduling scheme. For example, if each partition uses 
EASY back$lling, then one request from another QoS level can borrow resources, if it does not delay the 
pivot request of that partition.

In FCFS or back$lling scheduling policies, the start time of a request is not predictable (not deter-
mined). Nonetheless, in practice, we need to guarantee timely access to resources for some requests 
(e.g., deadline-constraint requests in a QoS-based system). !erefore, many local schedulers support 
Advance Reservation (AR) allocation model that guarantees resource availability for a requested time 
period. Resource management systems such as LSF, PBSPRO, and MAUI support AR.

Advance Reservation is prone to low-resource utilization specially if the reserved resources are not 
used by the users. Additionally, it increases the response time of normal requests [63,90]. !ese side-
e"ects of AR can be minimized by limiting the number of AR, and leveraging &exible AR (in terms of 
start time, duration, or number of processing elements needed).

57.4.2.2 Global Scheduling (Meta-Scheduling)

Global scheduler in an interconnected distributed system usually has two aspects. On the one hand, 
the scheduler is in charge of assigning incoming requests to resource providers within its domain 
(e.g., Clusters). On the other hand, it is responsible to deal with other distributed systems such as sched-
ulers or gateways that delegate other peer distributed systems. !is aspect of global schedulers can par-
ticularly resolve interdomain-initiated and origin-initiated resource contentions.

!e global scheduler either works o"-line (i.e., batches incoming requests and assigns each batch to a 
Cluster), or is online (i.e., assign each request to a local scheduler as it is received). !e global schedulers 
can proactively prevent resource contentions.

57.4.3 Admission Control Unit

Controlling the admission of requests prevents the imbalanced deployment of resources. By employing an 
appropriate admission control policy di"erent types of resource contentions can be avoided. An example 
of the situation without admission control in place is when two requests share a resource but one of them 
demands more time. In this situation, the other request will face low-resource availability and subsequently, 
high response time. !us, lack of admission control can potentially lead to request-initiated contention.

Admission control behavior should depend on the workload condition in a resource provider. 
Applying a strict admission control in a lightly loaded system results in low resource utilization and 
high rejection of requests. Nonetheless, the consequence of applying less strict admission control in a 
heavily loaded resource is more QoS violation and less user satisfaction [112].

Admission control can function in di"erent ways. To tackle request-initiated contention, admission 
control commonly carried out via introducing a valuation function. !e valuation function relates the 
quality constrains of users to a single quantitative value. !e value indicates the amount a user is willing 
to pay for a given quality of service (QoS). Resource management system use the valuation functions to 
allocate resources with the aim of maximizing aggregate valuation of all users.

Admission control also can be applied in interdomain-initiated contentions to limit the amount of 
admitted requests of each organization to be proportional to their resource contribution. Similarly, 
admission control can be applied to avoid origin-initiated resource contention. For this purpose, admis-
sion control policy would not admit external requests where there is peak load of local requests.

Placement of admission control component in a resource management system of a interconnected dis-
tributed system can be behind the local scheduler and/or behind the global scheduler. In the former, for 
rejecting a request there should be an alternative policy to manage the rejected request. In fact, rejecting by 
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a local scheduler implies that the request has already been admitted and, hence, has to be taken care. For 
instance, the rejected request can be redirected to another resource provider or even queued in a separate 
queue to be scheduled later. Deploying admission control behind the global scheduler is easier in terms 
of managing the rejected requests. However, the drawback of employing admission control with global 
scheduler is that the global scheduler may not have updated information about site's workload situation.

57.4.4 Outsourcing Unit

Interconnectivity of distributed systems creates the opportunity to resolve the resource contention via 
employing resources from other distributed systems. !erefore, resource management systems in inter-
connected distributed computing systems usually have a unit that decides about details of outsourcing 
requests (i.e., redirecting arriving requests to other distributed systems) such as when to outsource and 
which requests should be outsourced. In terms of implementation, in many systems, the outsourcing 
unit is incorporated into either admission control or scheduling unit. However, it is also possible to have 
it as an independent unit in the resource management system.

Outsourcing is generally applied when there is a peak demand or there is a resource contention (spe-
cially request-initiated contention). In this situation to serve requests without resource contention, some 
requests (e.g., starved requests) are selected to be redirected to other distributed systems.

Cloud computing providers have been of special interest to be employed for outsourcing (o"-loading) 
requests [84]. !is issue has pushed the emergence of hybrid clouds, which are a combination of a private 
(organizational) Cloud and public Clouds.

57.4.5 Preemption Mechanism

Preemption mechanism in a resource management system makes the resources free and available for 
another, possibly higher priority, request. Preemption is a useful mechanism to resolve request-initiated 
and origin-initiated contentions. Preemption of a running process can be performed manually or auto-
matically through the resource management system.

!e way preemption mechanism is implemented, depends on the way checkpointing operation is car-
ried out. If the checkpointing is not supported, then the preempted process has to be killed and restarted 
at a later time. If checkpointing is supported (both by the running process and by the scheduler), then 
the preempted request can be suspended and resumed at a later time. However, checkpointing is not a 
trivial task in distributed systems. We will deal with checkpointing hurdles in Section 57.4.5.4.

Due to the critical role of preemption in solving di"erent types resource contentions, in this sec-
tion, we investigate preemption in distributed systems from di"erent angles. Particularly, we consider 
various usages of preemption and the way they solve resource contentions. !en, we investigate pos-
sible side-e"ects of preemption. Finally, we discuss how a preempted request (i.e., job/VM/lease) can be 
resumed in a distributed system.

57.4.5.1 Applications of Preemption Mechanism

Preemption in distributed systems can be applied for reasons that are presented in Figure 57.5. As we 
can see, preemptions can be used to resolve resource contention. However, there are other usages of 
preemption in distributed systems that we will discuss them in this part.

Preemption is used to resolve request-initiated resource contentions. One approach is employing preemp-
tion in local scheduler along with the scheduling policy (e.g., back$lling) to prevent unfairness. For instance, 
when a back$lled request exceeds the allocated time slot and interferes with the reservation of other requests 
preemption mechanism can preempt the back$lled requests and therefore the reservations can be served on 
time. !e preempted request can be allocated another time slot to $nish its computation [40].

A preemptive scheduling algorithm is implemented in MOSIX [4] to allocate excess (unclaimed) 
resources to users that require more resources than their share. However, these resources will be released 
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as soon as they are reclaimed. MOSIX also support situation that there are local and guest jobs and can 
consider priority between them (origin-initiated contention).

Scojo-PECT [92] provides a limited response time for several job classes within a virtualized Cluster. 
It employs Di"Serv solution that is implemented via coarse-grained preemption to cope with the 
request-initiated resource contention. !e preemptive scheduler aims at creating a fair-share schedul-
ing between di"erent job classes of a Grid. !e scheduler works based on a coarse-grained time sharing 
and for preemption it suspends VMs on the disk.

Walters et al. [109] introduced a preemption-based scheduling policy for batch and interactive jobs 
within a virtualized Cluster. In this work, batch jobs are preempted in favor of interactive jobs. !e 
authors introduce di"erent challenges in preempting jobs including selecting a proper job to be pre-
empted, checkpointing the preempted job, VM provisioning, and resuming the preempted job. !eir 
preemption policy is based on weighted summation of factors such as the time spent in the queue.

Haizea [93] is a lease scheduler that schedules a combination of advanced reservation and best e"ort 
leases. Haizea preempts best e"ort leases in favor of advance reservation requests. Haizea also considers 
the overhead time imposed by preempting a lease (suspending and resuming included VMs).

Preemption of parallel jobs has also been implemented in the Catalina job scheduler [63] in San-Diego 
Supercomputer Center (SDSC). !ey have added preemption to conservative back$lling. !e job preemp-
tion is carried out based on job priorities which is determined based on weighted summation of factors such 
as the time a request waits in the queue, the size (number of processing elements) required by the request, 
and expansion factor of the request. In general, the policy tries to preempt jobs that require fewer process-
ing elements because they impose less overhead to the system for preemption. In fact, preempting jobs with 
larger size (wide jobs) implies more overhead because of the time needed for saving messages between nodes.

Isard et al. [49] have investigated the problem of optimal scheduling for data intensive applications, 
such as Map-Reduce, on the Clusters where the computing and storage resources are close together. To 
achieve the optimal resource allocation, their scheduling policy preempts the currently running job in 
order to maintain data locality for a new job.

Preemption can be applied to resolve the origin-initiated resource contentions. Ren et al. [76] have 
proposed a prediction method for unavailable periods in $ne-grained cycle sharing systems where there 
are mixture of local jobs and global (guest) jobs. !e prediction is used to allocate global requests in a 
way that do not disturb local requests.

Gong et al. [38] have considered preemption of external tasks in favor of local tasks in a Network 
of Workstations (NOW) where local tasks have preemptive priority over external tasks. !ey pro-
vided a performance model to work out the run time of an external task that is getting preempted by 
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FIGURE 57.5 Di"erent usages of preemption in distributed systems.
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local tasks in a single processor. !e performance model also covers the average runtime of the whole 
external job which is distributed over NOW.

!ere are other research works such as [5,6,81,82] that apply preemption for removing origin- 
initiated contentions.

Apart from removing resource contention, preemption has other usages in resource management 
systems. More importantly, preemption can be applied to improve the quality of scheduling policies. In 
fact, preemption can be used as a tool by scheduler to enforce its policy.

Scheduling algorithms in distributed systems are highly dependent on user runtime estimation. 
!ere are studies (e.g., [99]) that demonstrate the ine#ciency of these estimations and how these wrong 
estimation can compromise the scheduling performance. In the presence of inaccurate estimations, pre-
emption can be deployed to help the scheduler in enforcing its decision through preempting the process 
that has wrong estimations. Particularly, this is critical for systems that support strict reservation model 
such as advanced reservation. In this situation, preemption abstracts the scheduling policy from the 
obstacles in enforcing that policy [44].

Preemption can be applied to improve the optimality of resource scheduling. Speci$cally, online 
scheduling policies are usually not optimal because jobs are constantly arriving over time and the 
scheduler does not have a perfect knowledge about them [4]. !erefore, preemption can potentially 
mitigate the nonoptimality of the scheduling policy.

Preemption mechanism can be employed for managing peak load. In these systems, resource-intensive 
applications or batch applications are preempted to free the resources during the peak time. Accordingly, 
when the system is not busy and the load is low, the preempted requests can be resumed [69].

Preemption can be employed to improve the system and/or user centric criteria, such as resource 
utilization and average response time. Kettimuthu et al. [54] have focused on the impact of preempting 
parallel jobs in supercomputers for improving the average and worst-case slowdown of jobs. !ey sug-
gest a preemption policy, called Selective Suspension, where an idle job can preempt a running job if the 
suspension factor is adequately more than the running job.

A recent application of preemption is in energy conservation in datacenters. In fact, one prominent 
approach in energy conservation of virtualized datacenters is VM consolidation, which takes place 
when resources in the datacenter are not utilized e#ciently. In VM consolidation, VMs running on 
under-utilized resources are preempted (suspended) and resumed on other resources. VM consolida-
tion can also occur through live migration of VMs [107] to minimize the unavailability time of the VMs. 
When a resource is evacuated, it can be powered o" to reduce the energy consumption of the datacenter.

Salehi et al. [83] have applied VM preemption to save energy in a datacenter that supports requests 
with di"erent SLAs and priorities. !ey introduce an energy management component for Haizea [93] 
that determines how resources should be allocated for a high-priority request. !e allocation can be car-
ried out through preempting lower-priority requests or reactivating powered o" resources. !e energy 
management component can also decide about VM consolidation, in circumstances that powered on 
resources are not being utilized e#ciently.

Preemption can be used for controlling administrative (predetermined) thresholds. !e thresholds 
can be con$gured on any of the available metrics. For instance, the temperature threshold for CPUs can 
be established that leads to the system automatically preempts part of the load and reschedule on other 
available nodes. Bright Cluster Manager [1] is a commercial Cluster resource management system that 
o"ers the ability to establish preemption rules by de$ning metrics and thresholds.

57.4.5.2 Preemption Challenges

Operating systems of single processor computers have been applying preemption mechanism for a 
long time to o"er interactivity to the end-user. However, since interactive requests are not prevalent 
in distributed systems, there has been less demand for preemption in these systems. More impor-
tantly, achieving preemption in distributed systems entails challenges that discourage researchers 
to investigate deeply on that. !is challenges are di"erent based on the resource provisioning model.
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In this part, we present the detailed list of challenges that distributed systems encounter in preempt-
ing requests in various resource provisioning models. Moreover, a summary of preemption challenges 
based on di"erent provisioning models is provided in Table 57.1.

· Coordination: Distributed requests (jobs/VMs/leases) are scattered on several nodes by nature. 
Preemption of the distributed requests have to be coordinated between the nodes that are execut-
ing them. Lack of such coordination leads to inconsistent situation (e.g., because of message loss) 
for the running request.

· Security: Preemption in job-based systems implies security concerns regarding $les that remain 
open and swapping-in the memory contents before job resumption. In other words, in job-based 
systems operating system has to provide the security of not accessing $les and data of the pre-
empted processes. Since VM- and lease-based systems are self-contained (isolated) by nature, 
there is not usually security concern in their preemption.

· Checkpointing: Lack of checkpointing facilities is a substantial challenge in job-based resource 
provisioning model. Because of this problem, in job-based systems the preempted job is gener-
ally killed, which is a waste of resources [91]. Checkpointing problem is obviated in VM and 
lease-based resource provisioning models [94]. Due to the fundamental role of checkpointing for 
preemption mechanism, in Section 57.4.5.4 we discuss it in details.

· Time overhead: In VM- and lease-based resource provisioning models, time overhead imposed to 
the system to perform preemption is a major challenge. If preemption takes place frequently and 
the time overhead would not be negligible, then the resource utilization will be a"ected.

Additionally, disregarding the preemption time overhead in scheduling, prevents requests to 
start at the scheduled time [94]. In practice, resource management systems that support preemp-
tion, must have an accurate estimation of the preemption time overhead. Overestimating the 
preemption time overhead results in idling resources. However, underestimating the preemp-
tion time overhead ends up in starting leases with delay, which subsequently might violate SLA 
agreements.

Sotomayor et al. [94] have presented a model to predict the preemption time overhead for VMs. 
!ey identi$ed that the size of memory that should be de-allocated, number of VMs mapped to 
each physical node, local or global memory used for allocating VMs, and the delay related to com-
mands being enacted are e"ective on the time overhead of preempting VMs. To decrease the pre-
emption overhead, the number of preemptions that take place in the system has to be reduced [87].

· Permission: In the lease-based resource provisioning model, preempting leases is not allowed by 
default. In fact, one di"erence between lease-based and other resource provisioning models is that 
jobs and VMs can be preempted without notifying the user (requester), whereas leases require 
the requester's permission for preemption [39]. !erefore, there must be regulations in the lease 

TABLE 57.1 Preemption Challenges in Di"erent Resource 
Provisioning Models

Challenge

Resource Provisioning Model

Job-Based VM-Based Lease-Based

Coordination ! ! !

Security ! Ï Ï
Checkpointing ! Ï Ï
Time overhead ! ! !

Permission ! ! Ï
Impact on queue ! ! !

Starvation ! ! !

Preemption candidates ! ! !
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terms to make lease preemption possible. !ese terms can be in the form of QoS constraints of the 
requests or can be bound to pricing schemes. For instance, requests with tight deadline, advance 
reservations, or requests with tight security possibly choose to pay more instead of getting pre-
empted while they are running.

· Impact on other requests: Most of the current distributed systems use a variation of back$lling 
policy as the scheduling policy. In back$lling, future resource availabilities are reserved for other 
requests that are waiting in the queue. Preempting the running process and allocating resources 
to a new request a"ects the running job/lease as well as the reservations waiting in the queue. 
Re-scheduling of the preempted requests in addition to the a"ected reservations are side-e"ects 
of preemption in distributed systems.

· Starvation: Preemption leads to increasing the response time and, in the worst case, starvation for 
low-priority requests [5]. !ere is a possibility that low-priority requests get preempted as soon 
as they start running. !is leads to unpredictable waiting time and unstable situation for low-
priority requests. E#cient scheduling policies can prevent unstable and long waiting time situ-
ation. One approach to cope with the starvation challenge is restricting the number of requests 
admitted in a distributed system. Salehi et al. [82] have proposed a probabilistic admission control 
policy that restricts the queue length for low-priority requests in a way that they would not su"er 
from starvation.

· Preemption candidates: By allowing preemption in a distributed system, there is a possibility that 
several low priority requests have to be preempted to make su#cient vacant resources for the 
high-priority request. !erefore, there are several sets of candidate requests whose preemption 
can create adequate space for the high-priority request. As it is expressed in Figure 57.6, there are 
several candidate sets (Figure 57.6b) that their preemption can vacate resources for the required 
time interval (i.e., from t1 to t2 as indicated in Figure 57.6a).

Selecting distinct candidate sets a"ects the amount of unused space (also termed scheduling 
fragment) appear in the schedule. Furthermore, preempting di"erent candidate sets imposes dif-
ferent time overhead to the system because of the nature of the requests preempted (e.g., being 
data-intensive). In this situation, choosing the optimal set of requests for preemption is a chal-
lenge that needs to be addressed.

To cope with this challenge, back$lling policy has been extended with preemption ability in Maui 
scheduler [91] to utilize scheduling fragments. Salehi et al. [5] have proposed a preemption policy 
that determines the best set of leases to be preempted with the objective of minimizing preemption 

4

2

3 5 7

1 

6

Requested time  
period 

Time  

Node

t1 t2 

3 2

3 4

2 4

(a) (b)

FIGURE 57.6 Preemption candidates for a request that needs two nodes. (a) Shows collision of the requested time 
interval with running requests within a scheduling queue. (b) Presents di"erent candidate sets that their preemp-
tion creates space for the new request.

AQ1

K14311_C057.indd   16 10/2/2013   1:11:09 PM



57-17Taxonomy of Contention Management in Interconnected Distributed Sy stems

time overhead. A preemption policy is also presented by Walter et al. [109] in a VM-based system 
with the objective of avoiding starvation for batch requests where a combination of batch and 
interactive requests co-exist in the system.

57.4.5.3 Possibilities for Preempted Requests

Issues discussed thus far are related to preemption mechanism and its challenges. However, making a 
proper decision for the preempted request is also important. !is decision depends on the facilities pro-
vided by the resource management system of a distributed system. For example, migration is one choice 
that is viable in some distributed systems but not in all of them.

!anks to the &exibility o"ered by deploying VM-based resource provisioning models, resource 
managers are capable of considering various possibilities for the preempted request. Nonetheless, in job-
based systems, if preemption is possible, the possible action on the preempted job is usually limited to 
killing or suspending and resuming of the preempted job. Over the next paragraphs, we introduce vari-
ous cases that can possibly happen for preempted VMs/leases. Additionally, in Figure 57.7 it is expressed 
that how di"erent possibilities for the preempted VM a"ect the VMs' life cycle.

· Cancelling: VMs can be canceled (terminated) with/without notifying the request owner. VMs 
o"ered in this fashion are suitable for situation that the resource provider does not have to guar-
antee the availability of the resources for a speci$c duration. Spot instances o"ered by Amazon 
EC2 is an example of cancelling VMs. Isard et al. [49] have used cancelling VMs to execute map-
reduce requests. Cancelling VMs imposes the minimum overhead time that is related to the time 
needed to terminate VMs allocated to the request.

   In job-based systems, cancelling (killing) jobs is a common practice [91] because of the dif-
$culty of performing other possible actions.

· Restarting: In both job-based and VM-based systems, the preempted request can be killed (similar 
to cancelling) and restarted either on the same resource or on another resource. !e disadvantage 
of this choice is losing the preliminary results and wasting the computational power. Restarting 
can be applied for best-e"ort and deadline-constraint requests. In the former, restarting can be 
performed at any time whereas, in the latter, deadline of the request has to be taken into account 
for restarting.
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· Malleability (partial preemption): In this manner, the number of nodes/VMs allocated to a 
request might be changed while it is executing. In this approach, the request should be designed 
to adapt dynamically to the changes. !is action can be applied on malleable jobs [72] in job-
based systems. In VM and lease-based systems, frameworks such as Cluster-on-Demand (COD) 
[64], support this manner of preemption via cancelling some of the VMs of a lease. Malleability 
is also known as partial-preemption and can be used to implement dynamic partitioning (see 
Section 57.3.1).

· Pausing: When a VM is paused, it does not get any CPU share, however, it remains in the mem-
ory. Resumption of the VM, in this case, happens by getting CPU share and, thus, is very fast 
(Figure+57.7). Hence, we cannot consider pausing as a complete preemption action.

   Nonetheless, the main usage of pausing is to perform lease-level preemption. In preempting a 
lease (several correlated VMs), to prevent inconsistency or message loss, $rst, all VMs are paused 
and then, suspension takes place [44] (link between pause state and sleep (suspended) state in 
Figure 57.7). In Section 57.4.5.4, we discuss how pausing VMs helps in preempting leases.

· Suspending: When a VM is suspended, the entire state of the VM (including the state of all pro-
cesses running within the VM) is saved to the disk. At resumption time, the VM continues oper-
ating from the suspended point. !e suspended request has to be rescheduled to $nd another free 
time slot for the remainder of its execution. In job-based systems, the operating system should 
retain the state of the preempted process and resume the job.
 An important question a%er suspension is where to resume a VM/lease? Answering this ques-
tion is crucial particularly for data-intensive applications. A suspended request can be resumed in 
one of the three following ways:

 1. Resuming on the same resource; this case does not yield to optimal utilization of whole resources.
 2. Resuming on the same site but not essentially on the same resource; In this case, usually data 

transfer is not required.
 3. Resuming on di"erent site: !is case leads to migrating to another site, which entails data 

 transfer. !is is, particularly, not recommended for data-intensive requests.
· Migrating: VMs of the preempted request are moved to another resource provider to resume the 

computation (also called cold migration). According to Figure 57.7, migrating involves suspend-
ing, transferring, and resuming VMs. Transferring overhead in the worst case includes transfer-
ring the latest VM state in addition to the disk image of the VM. One solution to mitigate this 
overhead is migrating to another site within the same provider which has a high bandwidth con-
nection available (e.g., within di"erent Clusters of a datacenter). In terms of scheduling, multiple 
reservation strategies can be applied to assure that the request will access resources in the destina-
tion resource provider [93].

· Live Migration: Using live migration preemption can be carried out without major interrup-
tion in running VMs involved in preemption (see live migration link in Figure 57.7). !is is 
particularly essential in conditions that no interruption can be tolerated (e.g., Internet  servers). 
For this purpose, the memory image of the VM is transferred over the network. !ere are 
techniques to decrease the live migration overhead, such as transferring just the dirty pages of 
the memory.

Apart from the aforementioned choices, there are requests that cannot be preempted (i.e., nonpre-
emptable requests). For example, critical tasks in work&ows that have to start and $nish at exact times to 
prevent delaying the execution of the work&ow [57]. Another example is secure applications that cannot 
be moved to any other provider and cannot also be interrupted in the middle of execution.

In a particular resource management system, one or combination of the mentioned actions can be 
performed on the preempted request. !e performed action can be based on the QoS constraints of the 
requests or restrictions that user declares in the request. Another possibility is that the resource man-
agement system dynamically decide the appropriate action on the preempted request.
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57.4.5.4 Checkpointing in Distributed Systems

Checkpointing is the function of storing the latest state of a running process (e.g., job, VM, and 
lease). Checkpointing is an indispensable part of preemption, if the preempted request is going to 
resume its execution from the preempted point. In fact, checkpointing is the vehicle of implement-
ing preemption. Apart from preemption, checkpointing has other usages including providing fault-
tolerance for the requests.

Checkpointed process can be stored on a local storage, or carried over the network to a backup 
machine for future recovery/resume. Checkpointing has to be achieved in an Atomic way, which 
means either all or none of the modifications are checkpointed (transferred to the backup machine). 
There are various approaches to achieve checkpointing which are presented brief ly in Figure 57.8. 
In this section, we explain checkpointing strategies for different provisioning models in distrib-
uted systems.

57.4.5.4.1 Checkpointing in Job-Based Provisioning Model

Checkpointing approaches are categorized as application-transparent and application-assisted (see 
Figure 57.8). In application-assisted (user-level) checkpointing, the application de$nes the neces-
sary information (also called critical data area) that have to be checkpointed. !e disadvantage of 
this approach is that it entails modifying the application by the programmer. However, this approach 
imposes little overhead to the system because it just checkpoints the necessary parts of the application; 
additionally, the frequency of performing checkpointing is determined by the user. User-level check-
pointing can be further categorized as follows:

· Source-code level: In this manner, checkpointing codes are hard-coded by developers. However, 
there are some source code analysis tools [21,30] that can help developers to $gure out the suitable 
places that checkpointing codes can be inserted.

· Library level: !ere are ready-made libraries for checkpointing, such as Libckpt [74] and Condor 
libraries [62]. To use this kind of checkpointing, developers have to recompile the source code by 
including the checkpointing library in their program.

As noted in Figure 57.8, checkpointing can also be done in application-transparent manner. !is 
approach is also known as system level, Operating System level, or kernel level in the literature. As the 
name implies, in this approach the application is not aware of checkpointing process. !erefore, the 
application does not need to be modi$ed to be checkpointable. Application-transparent checkpointing 
technique is particularly applied in preemption whereas application-assisted scheme is more used in 
fault-tolerance techniques. Examples of system level checkpointing in the system level are BLCR [41] 
and CRAK [111].

Checkpointing

Application
 assisted

Application
transparent

Library level

Source code
 level

Thorough

Incremental 

FIGURE 57.8 Checkpointing methods in distributed systems.
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Since the application-transparent checkpointing methods have to checkpoint the whole applica-
tion state, they impose signi$cant time overhead to the system. Another drawback of this approach 
is that the system-level checkpointing methods are dependent on a speci$c version of the operating 
system that they are operating on and, hence, are not entirely portable.

In order to mitigate the checkpointing overhead, incremental checkpointing technique is used [43] 
in which just the changes since the previous state are checkpointed. Typically, a page-fault technique is 
used to $nd the dirty pages and write them to the backup [43,50].

Checkpointing of the distributed applications that run in a distributed system, such as a Cluster, is 
more complicated. For these applications, not only the state of the application on each running node 
should be checkpointed, but it has to be assured that the state of the whole application across several 
nodes remains consistent. !erefore, the checkpointing process across nodes that run the applica-
tion must be synchronized in a way that there would be neither message loss nor message reordering. 
Checkpointing of the distributed applications (also termed coordinated checkpointing) tradition-
ally is developed based on the global distributed snapshot concept [22]. !ese solutions are generally 
application-level, dependent on a speci$c version of operating system, and also dependent on the 
platform implementation (e.g., MPI implementation). Cocheck [95], BLCR [41], and MPICHV [24] are 
examples of these solutions.

!ere are various approaches for managing the connections between processes running on di"erent 
nodes while the checkpointing is performed. In MPICHV [24], the connection among processes has to 
be disconnected before each process saves its local state to the checkpoint $le. In this approach, con-
nections should be re-established before processes can resume their computation. Another approach, 
which is used in LAM/MPI, uses bookmarking mechanism between sender and receiver processes to 
guarantee message delivery at the checkpointing time.

57.4.5.4.2 Checkpointing in VM-Based Systems

Virtualization technique provides application-transparent checkpointing as an inherent feature that 
involves saving (suspending) and restoring (resuming) of the VM state [14,20,55].

In a virtualized platform, hypervisor (also called virtual machine monitor) is an essential compo-
nent that manages di"erent VMs concurrently running on the same host. Generally, the hypervisor is 
in charge of VM checkpointing. To checkpoint a VM, its internal state including memory, cache, and 
data related to the virtual devices have to be stored on the disk. Disk image snapshot also has to be 
stored, specially when the checkpointed VM is transferred and sharing image is not possible. Current 
virtual machine monitors, such as VMware, Xen, and KVM, support saving/restoring the state of VMs 
to/from a $le. However, taking a copy of the disk image is not practically possible because of the size of 
the disk [69]. !erefore, currently, checkpointing is mostly carried out within resources with a shared 
storage, such as NFS.

Accordingly, distributed applications running on VMs across several nodes within a Cluster can be 
checkpointed [46]. Checkpointing of such applications is complicated because of the possible correla-
tions between VMs (e.g., TCP packets and messages exchanged between VMs). !e checkpointing pro-
cess should be aware of these correlations, otherwise the checkpointing process leads to inconsistency 
in running the distributed applications.

To handle the checkpointing, when a checkpointing event is initiated, all the nodes that run 
a process of the distributed application receive the event. Upon receiving the event, the hypervi-
sor pauses computation within VMs in order to preserve the internal state of VM and also to stop 
submitting any new network message (see Figure 57.7). In the next step, checkpointing protocols 
save the in-&ight messages (i.e., network packets). For this purpose, the hypervisor collects all the 
incoming packets and queue them. Finally, a local VM checkpointing is performed through which 
the VM's internal state, VM disk image, and queued messages for that VM are saved in the check-
point $le [44].
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57.5 Contention Management in Practice

Various types of distributed systems for resource sharing and aggregation have been developed. !ey 
include Clusters, Grids, and Clouds. In this section, we study these systems from the resource conten-
tion perspective. We identify and categorize properties of the reviewed systems and summarize them in 
Table 57.2 for Clusters and in Table 57.3 for Grids and Clouds.

57.5.1 Contention Management in Clusters

Compute Clusters are broadly categorized as dedicated and shared Clusters. In dedicated Clusters a 
single application exclusively runs on the Cluster's nodes. Mail servers, and web servers are examples of 
dedicated Clusters.

By contrast, in a shared Cluster the number of requests is signi$cantly higher than the number of 
Cluster nodes. !erefore, nodes have to be shared between the requests by means of a resource manage-
ment system [100]. From the resource contention perspective, shared Clusters are generally prone to 
request-initiated contention.

Virtual Clusters are another variation of Clusters that work based on VMs. Although users of these 
Clusters are given root access to the VMs, these resources are not dedicated to one user in hardware level 
(i.e., several VMs on the same node can be allocated to di"erent users).

A multicluster is an interconnected distributed system that consists of several Clusters possibly 
in di"erent organizations. Multiclusters are prone to origin-initiated contentions as well as request- 
initiated contention.

TABLE 57.2 Role of Di"erent Components of Cluster Management Systems in Dealing with Resource 
Contentions

System
Provisioning 

Model
Operational 

Model Context
Contention 
Initiation

Contention 
Management

RMS 
Component

Haizea [93] Lease Reactive Cluster Request PreemptionLocal sched

VioCluster [79] VM Proactive 
and reactive

MultiCluster Origin Preemption Local sched

Snell et al. [91] Job Reactive Cluster Request Preemption Local sched

Lawson Smirni [59] Job Proactive 
and reactive

Cluster Request Partitioning Local sched

Walters et al. [109] VM Reactive Cluster Request Preemption Local sched

Scojo-PECT [92] VM Reactive Cluster Request Di"Serv and 
preemption

Local sched

MOSIX [4] VM Reactive Cluster Origin Fairness and 
(preemption)

Local sched

Sharc [100] Job Reactive Cluster Request Partitioning Local sched and 
Admission ctrl

COD [64] Lease Reactive Cluster Request Partial 
preemption

Local sched

Cluster reserves [10] Job Proactive Cluster Request Partitioning Local sched

Muse [23] Job Reactive Cluster Request Economic 
(utility)

Local sched

Shirako [48] Lease Reactive MultiCluster Interdomain Token Local sched

Lee et al. [60] Job Proactive 
and reactive

MultiCluster Request Fairness Global and 
Local sched

MUSCLE [42] Job Proactive MultiCluster Request Utility Global sched

Percival et al. [73] Job Reactive Cluster Request Economic 
(utility)

Admission ctrl

AQ2

AQ3

K14311_C057.indd   21 10/2/2013   1:11:11 PM



57-22 Operating Systems

Shirako [48] is a lease-based platform for on-demand allocation of resources across several Clusters. 
In Shirako, a broker receives user's application and provides it tickets that are redeemable at the provider 
Cluster. In fact, Shirako brokers handles interdomain-initiated contentions by coordinating resource 
allocation across di"erent Clusters. However, the user application should decide how and when to use 
the resources.

VioCluster [79] is a VM-based platform across several Clusters. It uses lending and borrowing poli-
cies to trade VMs between Clusters. VioCluster is equipped with a machine broker that decides when to 
borrow/lend VMs from/to another Cluster. Machine broker also has policies for reclaiming resources 
that reacts to origin-initiated contention by preempting a leased VM to another domain. Machine prop-
erty policy monitors the machine properties that should be allocated to the VMs such as CPU, memory, 
and storage capacity. Location policy in the VioCluster proactively determines if it is better to borrow 
VMs from other Cluster or waiting for nodes on a single domain.

Haizea [93] is a lease manager that is able to schedule combination of Advanced Reservation, Best 
E"ort, and Immediate leases. Haizea acts as a scheduling back-end for OpenNebula [32]. !e advantage 
of Haizea is considering and scheduling the preparation overhead of deploying VM disk images. For 
scheduling Advanced Reservation and Immediate leases, leases with lower priority (i.e., Best E"ort) 
are preempted (i.e., suspended and resumed a%er the reservation is $nished). In fact, Haizea provides a 
reactive resource contention mechanism for request-initiated contentions.

Sharc [100] is a platform that works in conjunction with nodes' operating system and enables resource 
sharing within Clusters. Architecturally, Sharc includes two components, namely, control plane and 
nucleus. !e former is in charge of managing Cluster-wide resources and removing request-initiated 
contentions, whereas the latter, interacts with the operating system of each node and reserves resources 
for requests. Control plane uses a tree structure to keep information of resources are currently in use 
in the Cluster. !e root of the tree shows all the resources in the Cluster and each child indicates one 
job. !e nucleus uses a hierarchy that keeps information about what resources are in use on a node and 

TABLE 57.3 Role of Di"erent Components of Grid/Cloud Resource Management Systems in Dealing 
with+Resource Contentions

System
Provisioning 

Model
Operational 

Model Context
Contention 
Initiation

Contention 
Management

RMS 
Component

GridWay [103] Job Reactive Grid Federation Request Outsourcing Global sched 
(outsourcing)

Amazon Spot Market VM Reactive Cloud Request Economic (auction) Global sched

Van et al. [101] VM Reactive Cloud Request Economic (utility) Global sched

OurGrid [9] Job Reactive Grid Interdomain Incentive Global sched

Ren et al. [76] Job Proactive Desktop Grid Origin Preemption Local sched

Salehi et al. [6] Lease Proactive Grid Federation Origin Preemption Global sched

InterGrid [26] Lease Proactive Grid Federation Origin Partitioning Global sched

InterCloud [97] VM Reactive Cloud Federation Request Economic (utility) Admission ctrl

RESERVOIR [78] VM Reactive Cloud Federation Request Outsourcing Outsourcing

Sandholm et al. [86] VM Reactive Grid Request Partial preemption Admission ctrl

InterGrid Peering [26] Lease Reactive Grid Federation Interdomain Global scheduling Global sched

Salehi et al. [82] Lease Proactive Grid Federation Origin Preemption Admission ctrl

NDDE [67] VM Reactive Desktop Grid Origin Preemption Local sched

Gong et al. [38] Job Proactive NOW Origin Preemption Local sched

Delegated-
matchmaking [47]

Job Reactive Grid Federation Request Outsourcing Outsourcing

Gruber [28] Job Reactive Grid Interdomain 
and Request

Global scheduling 
and outsourcing 

Global sched 
and 
outsourcing
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by whom. !e root of hierarchy shows all the resources on that node and each child represents a job on 
that node. In fact, there is a mapping between the control plane hierarchy and the nucleus hierarchy that 
helps Sharc to tolerate faults.

Cluster-on-Demand [64] (COD) is a resource management system for shared Clusters. COD sup-
ports lease-based resource provisioning in the form of virtual Clusters where each Virtual Cluster is an 
isolated group of hosts inside a shared hardware base. COD is equipped with a protocol that dynami-
cally resizes Virtual Clusters in cooperation with middleware components. COD uses group-based 
priority and partial preemption scheme to manage request-initiated resource contention. Speci$cally, 
when resource contention takes place, COD preempts nodes from a low-priority Virtual Cluster. For 
preemption the selected Virtual Cluster returns those nodes that create minimal disruption to the 
Virtual Clusters.

Cluster Reserves [10] is a resource allocation for Clusters that provides services to the clients based on 
the notion of service class (partitioning). !is is performed by allocating resource partitions to parallel 
applications and dynamically adjusting the partitions on each node based on the user demand. Indeed, 
Cluster Reserve applies partitioning scheme to cope with the request-initiated contention problems. !e 
resource management problem is considered as a constrained optimization problem where the inputs of 
the problem are periodically updated based on the resource usage.

Muse [23] is an economy-based architecture for dynamic resource procurement within a job-based 
Cluster. Muse is prone to request-initiated contention and applies a utility-based, economic solution to 
resolve that. In the model, each job has a utility function based on its throughput that re&ects the reve-
nue earned by running the job. !ere is a penalty that the job charges the system when its constrains are 
not met. Resource allocation is worked out through solving an optimization problem that maximizes 
the overall pro$t. Muse considers energy as a driving issue in resource management of server Clusters.

MUSCLE [42] is an o"-line, global scheduler for multiclusters that batches parallel jobs with high 
packing potential (i.e., jobs that can be packed into a resource space of a given size) to the same Cluster. 
In the next step, a local scheduler (called TITAN) performs further tuning to run the assigned jobs with 
minimized make span and idle times.

Lee et al. [60] have proposed a global and a local scheduler for a multicluster. !e local scheduler 
is a variant of back$lling that grants priority to wide jobs to decrease their waiting time and resolves 
the request-initiated contention. !e global dispatcher assigns requests to the proper Cluster by com-
paring the proportion of requests with the same size at each participant Cluster. !erefore, a fairly 
uniform distribution of requests in the Clusters is created which leads to a considerable impact on 
the performance.

Percival et al. [73] applied an admission control policy for shared Cluster. !ere is a request- initiated 
contention because some large jobs takes precedence over many small jobs that are waiting in the 
queue. Resource providers determine the resource prices based on the degree of contention and instan-
taneous utilization of resources. Consumers also bid for the resources based on their budget. In gen-
eral, a job can get a resource if it can compensate the loss of earning resulting from not admitting 
several small jobs.

57.5.2 Contention Management in Desktop Grids

!is form of distributed computing (also known as volunteer computing) inherently relies on partici-
pation of resources, mainly Personal Computers. In desktop Grids, participants become available dur-
ing their idle periods to leverage the execution of long running jobs. !ey usually use speci$c events 
such as screen-saver as an indicator for idle cycles. SETI@home [8] is a famous desktop Grid project 
that works based on BOINC [7] so%ware platforms and was originally developed to explore the exis-
tence of life out of the earth. Desktop Grids are prone to origin-initiated resource contentions that take 
place between the guest requests (come from the Grid environment) and local requests (initiated by the 
resource owner) in a node.

K14311_C057.indd   23 10/2/2013   1:11:11 PM



57-24 Operating Systems

In desktop Grids, the guest applications are running in the user (owner) environment. Running 
the external jobs along with other owner's processes, raised the security concern in desktop Grids and 
became an obstacle in prevalence of these systems. However, using the emulated platforms, such as Java, 
and sand-boxing the security concern were mitigated.

Another approach in desktop Grids is rebooting the machine and run an entirely independent oper-
ating system for the guest request. As a result, the guest request does not have access to the user environ-
ment. Instances of this approach include HP's I-cluster [77] and vCluster [27]. However, this approach 
can potentially interrupt the interactive user (owner). !erefore, idle cycle prediction has to be done 
conservatively to avoid interrupting the interactive user (owner). Both of these approaches are heavily 
dependent on the e#cient predicting and harvesting of the idle cycles. Indeed, these approaches func-
tion e#ciently where there are huge idle cycles.

Recently, VM technology has been used in desktop Grids. !e advantages of using VMs in these envi-
ronments are threefolds. First and foremost is the security that VMs provide through an isolated execu-
tion environment. Second, VMs o"er more &exibility in terms of the running environment demanded 
by the guest application. !e third bene$t is that by using VMs fragmented (unused) idle cycles, such as 
cycles at the time of typing or other light-weight processes, can be harvested.

NDDE [67] is a platform that utilizes VMs to exploit idle cycles for Grid or Cluster usage in corpora-
tions and educational institutions. !is system is able to utilize idle cycles that appear even while the user 
is interacting with the computer. Indeed, in this system the guest and owner applications are run concur-
rently. !is approach increases the harvested idle cycle to as many as possible with minor impact on the 
interactive user's applications. NDDE has more priority than idle process in the host operating system 
and, therefore, will be run instead of idle process when the system is idle. At the time the owner has a new 
request, the VM and all the processes belong to NDDE are preempted and changed to ªready-to-runº state.

Fine-grained cycle sharing system (FGCS) [76] runs a guest request concurrently with the local 
request whenever the guest process does not degrade the e#ciency of the local request. However, FGCS 
are prone to unavailability because of the following reasons:

 1. Guest jobs are killed or migrate o" the resource because of a local request
 2. Host suddenly discontinue contributing resource to the system

To cope with these problems, they de$ne unavailabilities in the form a state diagram where each state is 
a condition that resource becomes unavailable (e.g., contention between users, and host unavailability). 
!e authors have applied a Semi-Markov chain Process to predict the availability. !e goal of this predic-
tor engine is determining the probabilities of not transferring to unavailable states in a given time period 
of time in future.

57.5.3 Contention Management in Grids

Grids are initially structured based on the idea of the virtual organizations (VOs). A VO is a set of users 
from di"erent organizations who collaborate towards a common objective. Several organizations con-
stitute a VO by contributing share of their resources to that and as a result their users gain access to the 
VO resources. Contributing resources to a VO is carried out via an agreement upon that an organization 
gets access to the VO resources according to the amount of resources it o"ers to the VO.

Organizations usually retain part of their resources for their organizational (local) users. In other 
words, VO (external) requests are welcome to use resources if they are available. However, VO requests 
should not delay the execution of local requests.

Indeed, Grids are huge interconnected distributed systems that are prone to all kinds of resource con-
tentions [85]. Particularly, interdomain-initiated resource contention arises when organizations need to 
access VO's resources based on their contributions. Origin-initiated resource contention occurs when 
there is a con&ict between local and external users within the resources of an organization. Finally, 
request-initiated contention exists between di"erent types of requests (short/long, parallel/serial, etc.).
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Gruber/Di-Gruber [28] is a Grid broker that deals with the problem of resource procurement form 
several VOs and assigns them to di"erent user groups. Gruber provides monitoring facilities that can be 
used for interdomain-initiated contentions. It also investigates the enforcing of usage policies (SLA) as 
well as monitoring the enforcement. Another component of Gruber sought to cope with request-initiated 
resource contention through monitoring resources' loads and outsource jobs to a suitable site (site selec-
tor component). Di-Gruber is the distributed version of Gruber which supports multiple decision points.

InterGrid [26] is a federation of Grid systems where each Grid receives lease requests from other 
Grids based on peering arrangements between InterGrid Gateways (IGG) of the Grids. Each Grid serves 
its own users (e.g., organizational/local users) as well as users coming from other Grids (external). 
InterGrid is prone to origin-initiated (between local and external requests) and interdomain-initiated 
(between di"erent Grids) resource contentions.

Peering arrangements between Grids coordinate exchanging resources and functions based on peer-
to-peer relations established among Grids. Each peer is built upon a prede$ned contract between Grids 
and handles interdomain-initiated contentions between the two Grids. Outsourcing unit of InterGrid 
is incorporated in the scheduling and determines when to outsource a request. Salehi et al. [6] have 
utilized probabilistic methods and proposed contention-aware scheduling that aims at minimizing the 
number of VM preemptions (and therefore minimizing contention) in a Grid.

!ey have also come up [82] with an admission control policy to reduce origin-initiated contention in 
InterGrid. !e admission control policy works based on limiting queue length for external requests in a 
way that their deadline can be met. For that purpose they anticipate the average response time of exter-
nal requests waiting in the queue by considering characteristics of local requests such as  interarrival rate 
and size. In this situation, the external requests are accepted up until the response time is less than the 
average deadline.

Delegated-matchmaking [47] proposes an architecture that delegates the ownership of resources to 
users in a transparent and secure way. More speci$cally, when a site cannot satisfy its local users, the 
matchmaking mechanism of Delegated-matchmaking adds remote resources to the local resources. In 
fact, in Delegated-matchmaking the ownership of resources are delegated in di"erent sites of Grids. 
From the resource contention perspective, matchmaking mechanism is in charge of dealing with 
request-initiated contentions through outsourcing scheme.

GridWay [103] is a project that creates loosely coupled connection between Grids via connecting 
to their meta-schedulers. GridWay is speci$cally useful when a job does not get the required process-
ing power or the job waiting time is more than an appointed threshold. In these situation, GridWay 
migrates (outsource) the job to another Grid in order to provides the demanded resources to the job. 
We can consider GridWay as a global scheduler that deals with request-initiated resource contentions.

OurGrid [9] is a Grid that operates based on a P2P network between sites and share resources based on reci-
procity. OurGrid uses network of favors as the resource exchange scheme between participants. According to 
this network, each favor to a consumer should be reciprocated by the consumer site at a later time. !e more 
favor participants do, the more reward they expect. From the resource contention perspective, OurGrid uses 
incentive-based approach to $gure out the problem of interdomain-initiated contentions in a Grid.

Sandholm et al. [86] investigated how admission control can increase user ful$llment in a computa-
tional market. Speci$cally, they considered the mixture of best e"ort (to improve resource utilization) 
and QoS-constrained requests (to improve revenue) within a virtualized Grid. !ey applied a reactive 
approach through partial preemption of best-e"ort requests to resolve request-initiated contentions. 
However, the admission control proactively accepts a new request if the QoS requirements of the current 
requests can still be met.

57.5.4 Contention Management in Clouds

Advances in virtual machine and network technologies has led to appearing commercial providers 
that o"er numerous resources to users and charge them in a pay-as-you-go fashion. Since the physical 
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infrastructure is unknown to the users in these providers; they are known as Cloud Computing [18]. !ere 
are various fashions for delivering Cloud services, which are generally known as XaaS (X as a Service). 
Among these services Infrastructure as a Service (IaaS) o"ers resources in the form of VM to users.

From the availability perspective, Cloud providers are categorized as public, private, and hybrid 
Clouds [19]. To cope with the shortage of resource availability, particularly in private Clouds, the idea of 
federated Cloud has been presented [18]. Cloud federation is a possible solution for a Cloud provider in 
order to access to a larger pool of resources.

Similar to Grid environments, Clouds are also prone to di"erent types of resource contentions. 
However, as Clouds are more commercialized in comparison with Grids, the resource contentions solu-
tions are also mostly commercially driven.

Recently, Amazon started to o"er spot instances to sell the unused capacity of their data centers 
[110]. Spot instances are priced dynamically based on users' bids. If the bid price is beyond the current 
spot instance price, the VM instance is created for the user. !e spot instance's price &uctuates and if 
the current price goes beyond the bid price, the VM instance is canceled (terminated) or alternatively 
suspended up until the current price becomes lower than the bid. Indeed, the spot market presents 
a request-initiated resource contention where the contention is solved via an auction-based scheme. 
Kondo and Andryejak [110] have evaluated the dynamic checkpointing schemes, which is adaptive to 
the current instance price, and achieves cost e#ciency and reliability in dealing with spot instances.

Van et al. [101] have proposed a multilayer, contention-aware resource management system for Cloud 
infrastructure. !e resource management system takes into account both request's QoS requirements and 
energy consumption costs in VM placement. In the request (user) level, a local decision module (LDM) mon-
itors the performance of each request and calculates a utility function that indicates the performance satis-
faction of that request. LDM interacts with a global decision module (GDM) which is the decision-making 
component in the architecture. GDM considers the utility functions of all LDMs along with system-level per-
formance metrics and decides about the appropriate action. In fact, GDM provides a global scheduling solu-
tion to resolve request-initiated contentions between requests. !e output of the GDM can be management 
commands to the server hypervisor and noti$cations for LDMs. !e noti$cations for LDM includes adding 
a new VM to the application, upgrading or downgrading an existing VM, preempting a VM belonging to a 
request. Management actions for hypervisors include the starting, stopping, or live migration of a VM.

RESERVOIR [78] is a research initiative that aims at developing the technologies required to address 
the scalability problems existing in the single provider Cloud computing model. To achieve this goal, 
Clouds with excess capacity o"er their resources, based on an agreed price, to the Clouds that require 
extra resources. Decision making about where to allocate resources for a given request is carried out 
through an outsourcing component, which is called placement policy. !erefore, the aim of project is 
providing an outsourcing solution for request-initiated resource contention.

InterCloud [18] aims to create a computing environment that o"ers dynamic scaling up and down 
capabilities (for VMs, services, storage, and database) in response to users' demand variations. !e 
central element in InterCloud architecture is the Cloud Exchange, which is a market that gathers ser-
vice providers and users' requests. It supports trading of Cloud services based on competitive eco-
nomic models, such as $nancial options [98]. Toosi et al. [18,97] consider circumstances that each 
Cloud o"ers on-demand and spot VMs. !e admission control unit evaluates the cost±bene$t of out-
sourcing an on-demand request to the InterCloud or allocating resource to that via terminating spot 
VMs (request-initiated contention). !eir ultimate objective is to decrease the rejection rate and having 
access to seemingly unlimited resources for on-demand requests.

57.6 Conclusions and Future Research Directions

Due to resource shortage as well as surge in demand, distributed systems commonly face contention 
between requests to access resources. Resource contentions are categorized as request-initiated, when 
a user request cannot be admitted or cannot acquire su#cient resources because the resources are 
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occupied by other requests. Origin-initiated resource contention refers to circumstances that requests 
are from di"erent sources with distinct priorities. Interdomain-initiated resource contentions take place 
when the proportion of shared resources to the consumed resources by a resource provider is low.

Resource contention can be handled by di"erent components of resource management system. 
!erefore, solutions for resource contention depends on the structure of resource management in a 
distributed system. In this research, we recognized the role of resource provisioning model, local sched-
uling, global scheduling, and admission control unit in a resource management system on various 
types of resource contentions. We also realized that the emergence of VM-based resource provisioning 
model has posed the preemption as a predominant solution for di"erent types of resource contentions. 
!erefore, in this survey we also investigated the challenges and opportunities of preempting VMs.

We reviewed systems in Clusters, Grids, and Clouds from the contention management perspec-
tive and categorized them based on their operational model, the type of contention they deal with, the 
component of resource management system involved in resolving the contention, and the provisioning 
model that contention is considered. We also closely investigated preemption mechanism as the sub-
stantial resolution for resource contention.

!ere are avenues of future research works in managing resource contentions that can be pursued 
by researchers. Proactive resource contention management methods are required speci$cally for inter-
domain-initiated contentions. !is means that in an interconnected distributed system when resource 
management system decides to outsource a request, contention probability in the destination provider 
has to be considered.

Combination of di"erent resource contentions (hybrid contention) requires further investigation. 
For example, resolving contention where there is a combination of origin-initiated and request-initiated 
contentions. Moreover, economical solutions can be taken into consideration to resolve the origin- 
initiated and interdomain-initiated resource contentions.

We also enumerated several options that can be considered for resuming a preempted request. 
Current systems usually choose one of these options. However, it will be interesting to come up with a 
mechanism that dynamically (e.g., based on the request condition) chooses one of the available options. 
A more speci$c case is when preemption via suspension happens. In this situation, determining the 
appropriate place to resume the preempted request is a challenge. For instance, if it is data-intensive 
request, then it might be better to wait in the queue instead of migrating to another resource.
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