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57.1 Introduction

Scientists and practitioners are increasingly reliant ogelamounts of computational resources to
solve complicated problems and obtain results in a timehnera To satisfy the demand for large com-
putational resources, organizations build or utilize distridutemputing systems.

A distributed computing system is essentially a set of ctargpthat share their resources via a com-
puter network and interact with each other toward achieviognamon goal [31]. e shared resources
in a distributed system include data, computational poart, storage capacity. le common goal can
also range from running resource-intensive applicatiorisrdating faults in a server, and serving scal-
able Internet applications.

Distributed computing systems such as Clusters, Gridsreseahtly Clouds have become ubiquitous
platforms for supporting resource-intensive and scalgipéaations. However, surge in demand is still
a common problem in distributed systems [26] in a way that mglesisystem (specially Clusters and
Grids) can meet the needs of all users. !erefore, the notibmterconnected distributed computing
systems has emerged.

In an interconnected distributed computing systeas, depicted in Figure 57.1, organizations
share their resources over the Internet and consetdy are able to access larger resources. In fact,

57-1

K14311_CO57.indd 1 @ 10/2/2013 1:11:04 PM



57-2 Operating Systems

FIGURE 57.1 Interconnected distributed computing systems.

interconnected distributed systems construct arrlayenetwork on top of the Internet to facilitate
resource sharing between the constituents.

However, there are concerns in interconnected distribstesilems regarding contention between
requests to access resources, low access level, secdritgliability. lese concerns necessitate a
resource management platform that encompasses thesdsadpeway current platforms consider
these concerns depends on the structure of the intercogshdettributed system. In practice, intercon-
nection of distributed systems can be achieved in di"eexm$. !ese approaches are categorized in
Figure 57.2 and explained over the following paragraphs.

User level (Broker-based): Is useful for creating looselgled interconnected distributed sys-
tems. In this approach, users/organizations are intereoted through accessing multiple dis-
tributed systems. lis approach involves repetitive e"orts develop interfaces for di"erent
distributed systems and, thus, scaling to many distribugstesis is di#cult. Gridway [103]
and GridBus broker [104] are examples of broker-based ameection approach. e former,
achieves interconnection in organization level, whereas the lateks in the enduser level.
Resource level: In this approach, di"erent interfacesdaveloped on the resource side and con-
sequently the resource can be available to multiple digtdbsystems. lis approach involves
administration overhead, since the resource administrassrtb be aware of well-known ser-
vices. lis approach is di#cult to scale to many distributed ®rmss, hence, it is suggested mostly
for large distributed systems. Interconnection of EGEEdiN®rid, and D-Grid is done based on

— User level

— Resource level
Interconnection |
mechanism

—— Platform level

L Standardizatior

FIGURE 57.2 Interconnection mechanisms in distributed computing systems.
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this approach [31]. Particularly, D-Grid [35] leveragésriconnectivity via implementing inter-
faces of UNICORE, gLite, and Globus on each resource prowidevay that resources can be
accessed by any of the middlewares.
Platform level (Gateways): A third platform (usually @dlh gateway) handles the arrangements
between distributed systems. Ideally, the gateway ispeer® both from users and resources
and makes the illusion of single system for the user. Howevhisiapproach gateways are single
point of failure and also a scalability bottleneck. Inté&@@®6] and the interconnection of Naregi
and EGEE [65] are instances of this approach.
Standardization: Common and standard interfacasehbeen accepted as a comprehensive and
sustainable solution for interconnecting distritiitgystems. However, current distributed systems
(e.g., current Grid platforms) have already beeeldped based on di"erent standards and it is a hard
and long process to change them to a common stamderface. Issues regarding creating standards
for interconnecting distributed systems are alsovikim as interoperability of distributed systems.
UniGrid [88] is a large-scale interconnected diaited system implemented based on a stan-
dard and connects more than 30 sites in Taiwan'disoa web interface that bridges the user
and the lower-level middleware. !e core of UniGridchestrates di"erent middlewares, includ-
ing Globus Toolkit [33], Condor [96], and GanglBO[ transparently from the user. Another
project that sought to achieve the idea of WorldigVGrid through developing standards and
service-oriented architecture is GRIP [25].

Grid computing is a prominent example of intercootesl distributed systems. Grids are usually coragris
of various organizations that share their resou(eggs, Clusters or SMPs) and form Virtual Orgationa
(VOs). e concept of Grid has speci$cally been fastimafor users/organizations that did not have huge
resources available or did not have the budgetaioage such resources. Nowadays, Grids are utiliezed p
dominantly in scienti$c communities to run high f@mance computing (HPC) applications. Over the
last decade, variety of Grids have emerged basetieoentiinterconnection mechanisms. TeraGrid in the
United States [102], DAS in the Netherlands [61d, @rid5000 in France [17] are such examples.

Generally, in an interconnected environment, requesta fiderent sources co-exist and, therefore,
these systems are prone to contention between di"erent segjuempeting to access resources. lere
are various types of contentions that can occur in an int@eected distributed system and, accord-
ingly, there are di"erent ways to cope with these contentions.

le survey will help people in the research community and isthy to understand the potential ben-
e$ts of contention-aware resource management systemstiibdied systems. For people unfamiliar
with the $eld, it provides a general overview, as well as detailed case. studi

le rest of this chapter is organized as follows: $ection 57.2, an overview on resource manage-
ment systems of interconnected distributed systemsesented. Next, in Section 57.3 contention in
interconnected distributed systems is discussed wisi¢bllowed by investigating the architectural
models of the contention-aware resource managemergragsh Section 57.4. In Section 57.5, we dis-
cuss about di"erent approaches for contention manageimemell-known interconnected distributed
systems. Finally, conclusion and avenues of future Workesearchers are provided in Section 57.6.

57.2 Request Management Systems

Interconnected distributed systems, normally, encouvégious users and usage scenarios from users.
For instance, the following usage scenarios are expectable:

Scientists in a research organization run scienti$c sitionks, which are in the form of long run-
ning batch jobs without speci$c deadlines.

A corporate web site needs to be hosted for a long period ofiitine guaranteed availability
and low latency.

A college instructor requires few resources @aaetimes every week for demonstration purposes.
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57-4 Operating Systems

In response to such diverse demands, interconnected ditsdisystems o"er di"erent service levels
(also called multiple quality of service (QoS) levels).

For example, Amazon EC2* supports reserved (availahiléyagteed), on-demand, and spot (best-
e"ort) virtual machine (VM) instances. O"ering a combinatiof advance-reservation and best-e"ort
schemes [93], interactive and batch jobs [109], tight-de@adind loose-deadline jobs [37] are common
practices in interconnected distributed systems.

lese diverse service levels usually imply di"erent priced ariorities for the services that have to be
managed by the resource management system. Additiomadisgannected distributed systems can be
aware of the origin of the requests and they may discrimiegtests based on that. Another challenge
in job management of interconnected distributed systemsaisaging accounting issues of sending/
receiving requests to/from peer distributed systems.

lere are many approaches for tackling these challenges sousce management systems of inter-
connected distributed systems. One common approach istfmiileg requests based on criteria, such
as service (QoS) or origin. For example, in an intercondetistributed system usually local requests
(i.e., local organizations' users) have priority over thaeasts from external users [5]. Another example
is in urgent computing [15] (urgent applications), suchashgjuake and bush-$re prediction applica-
tions where the applications intend to acquire many ressurcan urgent manner. In circumstances
that there is surge in demand, requests with di"erent gi@gicompete to gain access to resources. lis
condition is generally known as resource contention between rsquest

Resource contentigsmthe main challenge in request management of intercemahedstributed sys-
tems and occurs when a user request cannot be admitted amtecaneive adequate resources, because
the resources are occupied by other (higher priority) requests.

In the remainder of this survey, we explore di"erent aspggtsource contention in interconnected
distributed systems and also we investigate the possible solutionerfor t

57.3 Origins of Resource Contentions

lere are various causes for resource contention in intenceated distributed systems. ley broadly
can be categorized as request-initiated, interdomaimaied, origin-initiated and hybrid. A taxonomy
of di"erent contention types along with their solutions is shown in FEdin 3.

57.3.1 Request-Initiated Resource Contention

Request-initiated resource contention occurs if any ofeélhj@ests monopolizes resources to such an
extent that deprives other requests from gaining accesertu this prevalent in all forms of distributed
systems, even where there is no interconnection. !ere averse scenarios that can potentially lead to
request-initiated resource contention. One importantaiton is when there is an imbalance in request
sizes, mainly, in terms of required number of nodes or exectitiee (duration). In this circumstance,
small requests may have to wait for a long time behind a long job to access resources.

Another cause for request-initiated resource content@msifuation that requests have QoS con-
straints and they sel$shly try to satisfy them. Generallipuree management systems can support
three types of QoS requirements for users' requests:

1. Hard QoS: Where the QoS constraints cannot be negbtlate systems are prone to QoS
violation and, hence, managing resource contention is critical [73]

2. S0% QoS: Where the QoS constraints are &exible andnemotigged based upon the resource
availabilities or when there is a surge in demand. !e &ekiipiénables resource management
systems to apply diverse resource contention solutions [73].

* http://aws.amazon.com/ec2/
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FIGURE 57.3 Taxonomy of di"erent types of resource contentions and possikigasts in interconnected dis-
tributed computing systems.

3. Hybrid QoS: Where the resource management systemrssijgpocombination of Hard QoS and
S0% QoS requirements for the user requests. lis fashionrismmm in commercial resource
providers such as Cloud providers. For instance, AmazonsE@orts services with distinct
QoS requirements including reserved (hard QoS), and sp¥i (30S) VM instances. Another
example, are the resource management systems that suppuinetion of interactive (hard
QoS) and batch requests (usually so% QoS) [109].

Solutions for managing request-initiated contentionsraostly achieved in the context of schedul-
ing and/or admission control units of resource managemestesys. Over the next paragraphs, we
categorize and describe di"erent solutions for resource contentio

Dilerentiated service®i"Serv) technique that initially was used in ComputetwWarks and devel-
oped to guarantee di"erent QoS levels (with di"erent pries} for various Internet services, such as
VOIP and web. In Computer Networks, Di"Serv guaranteesraiieQoSs through dividing the ser-
vices into distinct QoS levels. According to IETF RFC 2474 leaa is supported by dropping TCP
packets of lower priority levels.

Similar approach can be taken in the context ofiesginitiated resource contentions in distrib-
uted systems. For this purpose, the resource maragesystem presents di"erent QoS levels for user
requests. len, requests are classi$ed in one of thesels at the admission time. However, in thigsth
there is no control on the number of requests assiga each QoS level. As a result, QoS requirements
of request cannot be guaranteed. !erefore, Di"Secheme is appropriate for so% QoS requirements.

Variations of Di"Serv technigue can be applied whkentention occurs due to imbalanced requests.

Silberstein et al. [89] also sought to decreasespense time of short requests in a multigrid emment.
For that purpose, they apply a multilevel feedioaekie (MLFQ) scheduling. In their policy, Gridsjglexed
in di"erent categories based on their response sjiEggliests are all sent to the $rst queue uporabemd
if they cannot get completed in the time limit oéitlevel, then they are migrated to the lower lguelie
which is a larger grid. !e process continues up iithe task $nishes or reaches down the hierarchy.

In the Partitioning schemethe resources are reserved for requests withretiteQoS levels.
Unlike Di"Serv scheme, in this approach boundanéshe reservations (partitions) can adaptively
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move, based on the demand in di"erent QoS levelis. $olution can also be considered as a type of
Di"Serv that is suitable for requests with hard Qeguirements.

Economic schenselutions either work in an auction-based or utility-basexhner. In the former,
both resource provider and resource consumer have theimagents. !rough an auctioneer the con-
sumer bids on the resources and also provides a valuatiotidinnlen, the provider agent tries to
maximize the utility based on the valuation function and esmp with a set of resources for the user.
In the latter, a utility function that generally re&ectsrthenue earned by running a request is calcu-
lated for all contentious requests. !en, the request thatanaizes the utility function has the priority
of accessing resources. !ese approaches are commonly applied in roaideted scheduling [36].

Fair scheméhat guarantees contentious requests receive their shdre system resources [3]. lis
scheme is used to resolve resource contentions resultimgiftbalanced requests in the system and
assures starvation-free scheduling of the requests.

Outsourcing scheménterconnection of distributed systems creates the dppdy to employ
resources from other distributed systems in the case afrmsoontention. Outsourcing is applied for
both causes of request-initiated resource contention equest imbalance and QoS levels). Specially,
Cloud providers have been extensively employed for outisgurequests [84]. lis issue has helped in
emergence of hybrid clouds, which are a combination of atpri@eganizational) resources and public
Clouds [12]. Although we categorize outsourcing as a Ie@olior request-initiated contentions, it can
be applied for interdomain and origin initiated contentions as will bewdised in the next parts.

57.3.2 Interdomain-Initiated Resource Contention

Interdomain-initiated resource contention occurs, whia proportion of shared resources to the con-
sumed resources by a constituent distributed system idriavther words, this resource contention
happens when a resource provider contributes few resowtdgssdemand more resources from other
resource providers in an interconnected distributed systénlike request-initiated contention, which
merely roots in request characteristics and can take plaogyidistributed system, interdomain con-
tention is based on the overall consumption and contribution of eachreesprovider.

lere are several approaches for handling interdomain-iated contentions, namely, global sched-
uling, incentive, and token-based schemes (see Figurdé&se3ypproaches are discussed in detail in
what follows .

Global schedulertn this approach, which is appropriate for large-scalgibliged systems, there are
local (domain) schedulers and global (meta) schedulenbaG$chedulers are in charge of routing user
requests to local schedulers and, ultimately, local sawsdsuch as Condor [96] or Sun Grid Engine
(SGE) [16], allocate resources to the requests.

Global schedulers can manage the interdomain resourcertmntt by admitting requests from dif-
ferent organizations based on the number of requests it Hasated to the resources of each organi-
zation. Since global schedulers usually are not aware wfstamtaneous load condition in the local
schedulers, it is di#cult for them to guarantee QoS requirgmef users [11]. lus, this approach is
useful for circumstances where requests have so% QoS requirements.

Incentive schemin this approach, which is mostly used in peer-to-peerrmagsfél], resource provid-
ers are encouraged to share resources to be able to accesssmorese Reputation Index Scheme
[58] is a type of incentive-based approach in which the ozgéon cannot submit requests to another
organization while it has less reputation than that org#tion. !erefore, in order to gain reputation,
organizations are motivated to contribute more resources to the imexiciosharing environment.

Quality service incentive scheme [70] is a famgps ©f incentive-based approach. Quality ser-
vice is an extension of Reputation Index Schemedl&erence is that depending on the number of
QoS levels o"ered by a participant, a set of distiatings is presented where each level has its ow
reputation index.
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Token-based schen@perates based on the principle where a certain atrafutokens, which are
allocated to an organization, is proportional to its resewcontribution. If a user wants to get access to
another organization resources, its consumer agent spestd amount of tokens to get the access. lis
scheme encompasses request-initiated and interdomaauree contentions. To address the request-
initiated resource contention, valuation functions canuBed to translate the QoS demands of user
to the number of tokens to be used for a request.pi®vider agent can then use its own valuation
functions to compute the admission price for the regueisally, the request will be admitted only if
the admission price is less or equal to the numbtakeis that the requesting organization is willing
to pay [73].

57.3.3 Origin-Initiated Resource Contention

In interconnected distributed systems, users' requesgsnate from distinct organizations. More
importantly, these systems are prone to resource conteb&bmeen local requests of the organiza-
tion and requests from other organizations (i.e., exterequests). Typically, local requests of each
organization have priority over external requests [5]. threowords, the organization that owns the
resources would like to ensure that its community has pyi@iicess to the resources. Under such a
circumstance, external requests are welcome to use resdutmy are available. Nonetheless, external
requests should not delay the execution of local requests.

In fact, origin-initiated resource contention is a speaé&se of interdomain-initiated and request-
initiated resource contentions. Consequently, the apres of tackling this type of resource conten-
tion is similar to the already mentioned approaches. Paatilytilpartitioning approach both in static
and dynamic forms and global scheduling are applicableifpnenitiated resource contentions. lere
are also other approaches to cope with origin-initiated contentiaatsatl discuss in this part.

Preemption schemiés mechanism stops the running request and free the resesiffor another, pos-
sibly higher priority, or urgent request. !e higher priorityequest can be a local request or a hard
QoS request in an interconnected distributed system. !egonpted request may be able to resume its
execution from the preempted point. If suspension is not sue@adn a system, then the preempted
request can be killed (canceled) or restarted. For pamdle¢stsfull preemptiorusually is performed,
in which whole request leaves the resources. However, gsteens supporpartial preemptionin
which part of resources allocated to a parallel request is preempted [86].

Although preemption mechanism is a common solution for origitiated contentions, it is also
widely applied to solve request-initiated resource coitest Due to the prominent role of preemption
in resolving these types of resource contentions, in Section 57.4.plaia preemption in details.

Partitioning schemd3oth static and dynamic partitioning of resources, as iomeed in Section 57.3.1,
can be applied to tackle origin-initiated contentions.

In dynamic partitioning of resources, the local and extiepaatitions can borrow resources from
each other when there is a high demand of local or external requests [11].

Several queugs this approach when requests arrive [59], they are aaedon distinct queues, based
on their origin. Each queue can independently have its oledsting policy. 'en, another scheduling
policy determines the appropriate queue that can dispatch a request ésdbeces.

Combinations of the aforementioned contentions (meméd as hybrid in Figure 57.3) can occur
in an interconnected distributed system. !le mostmonon combination is the origin-initiated and
request-initiated resource contentions. For ins&rio federated Grids and federated Clouds, origin-
initiated contention occurs between local and exaérequests. At the same time, external and local
requests can also have distinct QoS levels, whiahréquest-initiated resource contention [5,6,81].
Generally, Resolution of hybrid resource contergio®m a combination of di"erent strategies men-
tioned earlier.
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57.4 Contention Management

Resource management system is the main component of @ufistrisystem that is responsible for
resolving resource contentions. Various elements of amesmanagement system contribute in resolv-
ing di"erent types of resource contentions. !ey apply di'&mt approaches in managing contentions.
Di"erent components of resource management systems andayéhey deal with resource contention
is presented in Figure 57.4.

57.4.1 Resource Provisioning

Resource provisioning component of a resource managengansis in charge of procuring resources
based on user application requirements. Resource proiwigi@s performed based on a provisioning
model that de$nes the execution unit in a system. In faatestg are allocated resources based on the
resource provisioning model.

Resource provisioning models do not directly de#h wasource contentions. However, the way other
components of resource management system functiamgyr depends on the resource provisioning
model.

Provisioning resources for users' requests in distributed systentlriea dimensions as follows:

1. Hardware resources
2. So%ware available on the resources
3. Time during which the resources are available (availability)

Satisfying all of these dimensions in a resour@eigioning model has been challenging. In pracpast
resource provisioning models in distributed systemese unable to ful$ll all of these dimensions [93].
Emergence of virtual machine (VM) technology as aues provisioning model recently has posed an
opportunity to address all of these dimensions.r@ve next subsections, we discuss common resource
provisioning models in current distributed systems.

57.4.1.1 Job Model

In this model, jobs are pushed or pulled across di"erent sdbein the system to reach the destination
node, where they can run. In job-based systems, schedulingsdahelzonsequence of a request to run

Job-based
Provisioning VM-based
model
Lease-based
Local scheduling
Level
Off-line
Scheduling Global scheduling{

Contention Reactive On-line
management Operational 4l _
in resource model Proactive
management

system

Global scheduling

| Admission level

control
Local scheduling
level

Outsourcing

FIGURE 57.4 Components of a resource management system and their approach for dedliognientions.
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the job. Job model resource provisioning has been widely yedpio distributed systems. However,
this model cannot perfectly support all resource contention salsitio

Job-based systems provision hardware for jobs while they difaited support for so%ware avail-
ability. In fact, in job-based model users do not have roosagctieerefore it is di#cult to install and
use required so%ware packages. Many job-based systemg auppability based on queuing the-
ory along with scheduling algorithms. However, queue-bagstems usually do not assure speci$c
time+availabilities.

To support availability and hardware dimensions, Nurmi €68, present advance reservation (AR)
model over the job-based provisioning model. ey support ARdhgh predicting waiting time of jobs
in the queue. Hovestadt et al. [45] propose plan-based dofg¢opposite to queue-based) that $nds
the place of each job (instead of waiting in the queue) to btoahlpport AR model. In this system, on
the arrival of each job the whole schedule is re-planned to optimize the eestliration.

Falkon [75], Condor glidin [34], MyCluster [108],@&¥irtual Workspace [53] have applied a multilevel/
hierarchical scheduling on top of a job-based system to o"er ptbeisioning models (such as lease-
based model, which is described in Section 57.4.1.3).de flystems, one scheduler allocates resources
to another scheduler and the other scheduler runs the jobs on the allocatedess

57.4.1.2 Virtual Machine Model

Virtual machines (VMs) are considered as an ideal vehictesource provisioning in distributed sys-
tems. le reason is that, in VM model, unlike the job model, haede, so%ware, and availability can be
provisioned for user requests. Additionally, VMs' capgpili getting suspended, resumed, or migrated
without major utilization loss have proved to be useful inussmmanagement. !erefore, VM-based
provisioning model is commonly used in current distributed systems.

le VM-based resource provisioning model is used in creatingual Clusters on top of an existing
infrastructure. Virtual clusters (VC) are usually utiizer job-based batch processing. For example,
in MOSIX [13], Clusters of VMs are transparently created mohigh performance computing (HPC)
applications. 'e Nimbus toolkit [52] provides 2one-click vimal Cluster® automatically on heteroge-
neous sites through contextualizing disk images. Amazon @62des VM-based Cluster instances*
that 0"er supercomputing services to expedite executiorRs Hpplications, without delaying the user
in a queue or acquire expensive hardware. Automatic VM creatid con$guration in short time is
also considered in In-VIGO [2] and VMplants [56]. An extensibMoab [29] creates VM-based virtual
Clusters to run HPC batch applications.

Many commercial datacenters use VM-based provisioning niogebvide their services to resource
consumers. Such datacenters o"er services such as Viflusi€IC or hosting servers including web,
email, and DNS.

Datacenters usually contain large scale computing andgsteesources (order of 100s+1000s) and
consume so much energy. A remarkable bene$t of deploying aédebprovisioning model in data-
centers is the consolidation feature of VMs that can patbytsaves the energy consumption [105].
However, VM consolidation requires accurate workload jotézh in the datacenters. Moreover, the
consolidation impact on service level agreements (SLAJsrteebe considered. VM consolidation can
be performed in a static (also termed cold consolidatiodypamic (hot consolidation) manner. In the
former, VMs needs to be suspended and resumed on anotheraesbat involves time overhead. In
the latter approach, live migration [107] of VMs is used, thus, is tragrsigfaom the user.

Solutions such as VMware, Orchestrator, Enomalism, and Rgana [32] provide resource man-
agement for VM-based data centers.

lere are also concerns in deploying VM-based provisioning raband Virtual Clusters. Networking
and load balancing among physical Clusters is one of thewged that is considered in Vio-Cluster+[79].
Power e#ciency aspect and e"ectively utilizing VMs cajitghiih suspending and migrating are also

* http://aws.amazon.com/hpc-applications/
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considered by many researchers [51,66,106]. Overhead dodmmnce issues involved in applying
VMs to run compute-intensive and 10-intensive jobs, fault toleea and security aspects of VMs are
also of special importance in deploying VM-based provisioning model.

57.4.1.3 Lease Model

lis model is considered as an abstraction for utility compugiin which the user is granted a set of
resources for speci$c interval and agreed quality of 8ef88¢. In this model, job execution is inde-

pendent from resource allocation, whereas in the job modelree allocation is the consequence of
running a job.

Formally, deasas de$ned by Sotomayor [93] as 2a negotiated enélgotiable contract between a
resource provider and a resource consumer, wheréottmer agrees to make a set of resources avail-
able to the latter, based on a set of lease tel@ssmted by the resource consumer.? If lease @atens
is supported by resource management system, thers wguld be able to extend their lease for a
longer time. lis is particularly useful in circumstnces that users have inaccurate estimation of
required time. Virtual machines are suitable vedgdo implement lease-based model. Depending
on the contract, resource procurement for leaseshbmaachieved from a single provider or from
multiple providers.

57.4.2 Scheduling Unit

le way user requests are scheduled in an interconnectedilliged system a"ects types of resource
contentions occurring. E#cient scheduling decisions cagvent resource contention or reduce its
impact whereas poor scheduling decisions can lead to more resourceioosten

In an interconnected distributed system, we can rei@egtwo levels of scheduling, namely, local
(domain level) scheduling and global scheduling (nsetaeduling). 'e global scheduler is generally
in charge of assigning incoming requests to resopraeiders within its domain (e.g., Clusters or
sites). In the next step, the local scheduler perfdurtber tuning to run the assigned requests e#-
ciently on resources.

From the resource contention perspective, scheduling adstban either react to resource conten-
tion or proactively prevent the resource contention to occur.

57.4.2.1 Local Scheduling

Local scheduler deals with scheduling requests within @iattibuted system (e.g., Cluster or site).
Scheduling policies in this level can mainly deal with retgju@iated and origin-initiated contentions.
Indeed, there are few local schedulers that handle interdomaiat@utcontention.

Back$lling is a common scheduling policy in local resource manageyseésins (LRMS). le aims
of back$lling are increasing resource utilization, minimgzaverage request response time, and reduc-
ing queuing fragmentation. In fact, back$lling is an imgversion of FCFS in which requests that
arrive later, possibly are allocated earlier in the quetleeré is enough space for them. Variations of
back$lling policy are applied in local schedulers:

Conservative: In which a request can be brought forwatdiddas not delay any other request in
the queue.

Aggressive (EASY): le reservation of the $rst element in theeue cannot be postponed.
However, the arriving request can shi% the rest of scheduled requests.

Selective: If the slowdown of a scheduled request excémdstald, then it is given a reservation,
which cannot be altered by other arriving requests.

lere are also variations of back$lling method thate speci$cally designed to resolve request-
initiated resource contentions. Snell et al. [¢9}l&ed preemption on back$lling policy. ey pro-
vide policies to select the set of requests foerpption in a way that the requests with higher
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priority are satis$ed and, at the same time, tBeuece utilization increases. le preempted request
is restarted and rescheduled in the next avail@ivle slot.

Multiple resource partitioning is another schedgliapproach for local schedulers by Lawson and
Smirni [59]. In this approach, resources are divided inttifi@ns that potentially can borrow resources
from each other. Each partition has its own scheduling seh&ar example, if each partition uses
EASY back$lling, then one request from another QoS levélareow resources, if it does not delay the
pivot request of that partition.

In FCFS or back$lling scheduling policies, the start timee refjuest is not predictable (not deter-
mined). Nonetheless, in practice, we need to guaranteeytamekss to resources for some requests
(e.g., deadline-constraint requests in a QoS-based sy&esfre, many local schedulers support
Advance Reservation (AR) allocation model that guaramésesirce availability for a requested time
period. Resource management systems such as LSF, PBSPRO, and MAtUASuppo

Advance Reservation is prone to low-resource utilizati@tigfly if the reserved resources are not
used by the users. Additionally, it increases the responseof normal requests [63,90]. !ese side-
e"ects of AR can be minimized by limiting the number of AR, armdraging &exible AR (in terms of
start time, duration, or number of processing elements needed).

57.4.2.2 Global Scheduling (Meta-Scheduling)

Global scheduler in an interconnected distributed systsoally has two aspects. On the one hand,
the scheduler is in charge of assigning incomimgests to resource providers within its domain
(e.g., Clusters). On the other hand, it is responsible tondsabther distributed systems such as sched-
ulers or gateways that delegate other peer distributeehsystis aspect of global schedulers can par-
ticularly resolve interdomain-initiated and origin-initiat@esource contentions.

le global scheduler either works o"-line (i.e., batches intimg requests and assigns each batch to a
Cluster), or is online (i.e., assign each request to a loegldehas it is received). e global schedulers
can proactively prevent resource contentions.

57.4.3 Admission Control Unit

Controlling the admission of requests preventsfigalanced deployment of resources. By employing an
appropriate admission control policy di"erent typeafsresource contentions can be avoided. An example
of the situation without admission control in plasavhen two requests share a resource but omef t
demands more time. In this situation, the otherures} will face low-resource availability and subsstiy,
high response time. lus, lack of admission contean potentially lead to request-initiated contention

Admission control behavior should depend on the workloaddid@n in a resource provider.
Applying a strict admission control in a lightly loaded systesults in low resource utilization and
high rejection of requests. Nonetheless, the consequeapplging less strict admission control in a
heavily loaded resource is more QoS violation and less user satigfek?]o

Admission control can function in di"erent ways. To tacklguest-initiated contention, admission
control commonly carried out via introducing a valuatiomdtion. !e valuation function relates the
quality constrains of users to a single quantitative valuevdkie indicates the amount a user is willing
to pay for a given quality of service (Q0S). Resource management systeenvadesttfion functions to
allocate resources with the aim of maximizing aggregate valuatidruséed.

Admission control also can be applied in interdomain-in@&thcontentions to limit the amount of
admitted requests of each organization to be proportionahéar resource contribution. Similarly,
admission control can be applied to avoid origin-initiatesbtece contention. For this purpose, admis-
sion control policy would not admit external requests where there is pedabkfliocal requests.

Placement of admission control component in a resonr@ragement system of a interconnected dis-
tributed system can be behind the local scheduiéfoa behind the global scheduler. In the former, f
rejecting a request there should be an alternptliey to manage the rejected request. In facGtiagby
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a local scheduler implies that the request haa@rbeen admitted and, hence, has to be takenkare.
instance, the rejected request can be redirectaddiiher resource provider or even queued in a sépar
gueue to be scheduled later. Deploying admissiorraldmehind the global scheduler is easier in terms
of managing the rejected requests. However, thelmrek of employing admission control with global
scheduler is that the global scheduler may not bpdated information about site's workload situatio

57.4.4 Outsourcing Unit

Interconnectivity of distributed systems creates the opmity to resolve the resource contention via
employing resources from other distributed systems. !@mef, resource management systems in inter-
connected distributed computing systems usually havetahatidecides about details of outsourcing
requests (i.e., redirecting arriving requests to otheritdigerd systems) such as when to outsource and
which requests should be outsourced. In terms of implertientan many systems, the outsourcing
unit is incorporated into either admission control or schéuwLinit. However, it is also possible to have
it as an independent unit in the resource management system.

Outsourcing is generally applied when there is a peak deorahdre is a resource contention (spe-
cially request-initiated contention). In this situation &rge requests without resource contention, some
requests (e.g., starved requests) are selected to be redirected to othetedisystems.

Cloud computing providers have been of special interestémpéyed for outsourcing (0"-loading)
requests [84]. lis issue has pushed the emergence of hylmidls, which are a combination of a private
(organizational) Cloud and public Clouds.

57.4.5 Preemption Mechanism

Preemption mechanism in a resource management system niekessources free and available for
another, possibly higher priority, request. Preemption isediul mechanism to resolve request-initiated
and origin-initiated contentions. Preemption of a runninggess can be performed manually or auto-
matically through the resource management system.

le way preemption mechanism is implemented, depends on thg efeeckpointing operation is car-
ried out. If the checkpointing is not supported, then theeprpted process has to be killed and restarted
at a later time. If checkpointing is supported (both by theniug process and by the scheduler), then
the preempted request can be suspended and resumed at aratdddwever, checkpointing is not a
trivial task in distributed systems. We will deal with checkpointinglles in Section 57.4.5.4.

Due to the critical role of preemption in solving di"erent tgpesource contentions, in this sec-
tion, we investigate preemption in distributed systems fddkarent angles. Particularly, we consider
various usages of preemption and the way they solve resamteatons. !en, we investigate pos-
sible side-e"ects of preemption. Finally, we discuss how mpted request (i.e., job/VM/lease) can be
resumed in a distributed system.

57.4.5.1 Applications of Preemption Mechanism

Preemption in distributed systems can be applied for reabansre presented in Figure 57.5. As we
can see, preemptions can be used to resolve resource caontéltveever, there are other usages of
preemption in distributed systems that we will discuss them in this part.

Preemption is used to resolve request-initiateduesocontentions. One approach is employing preemp-
tion in local scheduler along with the schedulintigy (e.g., back$lling) to prevent unfairness.iRstance,
when a back$lled request exceeds the allocatedittrand interferes with the reservation of otleguests
preemption mechanism can preempt the back$lledestpand therefore the reservations can be semved o
time. le preempted request can be allocated anottiere slot to $nish its computation [40].

A preemptive scheduling algorithm is implemented in MOSIXt¢4allocate excess (unclaimed)
resources to users that require more resources than thed. sfmwvever, these resources will be released
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FIGURE 57.5 Di"erent usages of preemption in distributed systems.

as soon as they are reclaimed. MOSIX also support situatibthdre are local and guest jobs and can
consider priority between them (origin-initiated contention).

Scojo-PECT [92] provides a limited response time for sgjadralasses within a virtualized Cluster.
It employs Di"Serv solution that is implemented via coagsgned preemption to cope with the
request-initiated resource contention. 'e preemptive sdiaider aims at creating a fair-share schedul-
ing between di"erent job classes of a Grid. !e scheduler wdr&sed on a coarse-grained time sharing
and for preemption it suspends VMs on the disk.

Walters et al. [109] introduced a preemption-basgteduling policy for batch and interactive jobs
within a virtualized Cluster. In this work, batabbg are preempted in favor of interactive jobs. le
authors introduce di"erent challenges in preemptiogg including selecting a proper job to be pre-
empted, checkpointing the preempted job, VM provisig, and resuming the preempted job. !eir
preemption policy is based on weighted summatiofaofors such as the time spent in the queue.

Haizea [93] is a lease scheduler that schedules a combiofatidmanced reservation and best e"ort
leases. Haizea preempts best e"ort leases in favor of ades@oation requests. Haizea also considers
the overhead time imposed by preempting a lease (suspending and reswhidgd VMSs).

Preemption of parallel jobs has also been implegceint the Catalina job scheduler [63] in San-Diego
Supercomputer Center (SDSC). ley have added preeanpto conservative back$lling. e job preemp-
tion is carried out based on job priorities whistdetermined based on weighted summation of fastarls
as the time a request waits in the queue, thersineber of processing elements) required by the que
and expansion factor of the request. In generalpdiiey tries to preempt jobs that require fewergarss-
ing elements because they impose less overheagldgdiem for preemption. In fact, preempting joitk w
larger size (wide jobs) implies more overhead lsscaithe time needed for saving messages betodes n

Isard et al. [49] have investigated the problem of optimadiding for data intensive applications,
such as Map-Reduce, on the Clusters where the computingaadesresources are close together. To
achieve the optimal resource allocation, their schedulatigyppreempts the currently running job in
order to maintain data locality for a new job.

Preemption can be applied to resolve the origin-initiatedues contentions. Ren et al. [76] have
proposed a prediction method for unavailable periods ingméned cycle sharing systems where there
are mixture of local jobs and global (guest) jobs. !e predictie used to allocate global requests in a
way that do not disturb local requests.

Gong et al. [38] have considered preemption ofrestetasks in favor of local tasks in a Network
of Workstations (NOW) where local tasks have preweppriority over external tasks. ley pro-
vided a performance model to work out the run tiaoi@n external task that is getting preempted by
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local tasks in a single processor. e performancedel also covers the average runtime of the whole
external job which is distributed over NOW.

lere are other research works such as [5,6,81,8%ttapply preemption for removing origin-
initiated contentions.

Apart from removing resource contention, preemption haseptisages in resource management
systems. More importantly, preemption can be applied to ingthe quality of scheduling policies. In
fact, preemption can be used as a tool by scheduler to enforce its policy.

Scheduling algorithms in distributed systems are highpedéent on user runtime estimation.
lere are studies (e.g., [99]) that demonstrate the ine#cigruf these estimations and how these wrong
estimation can compromise the scheduling performancédptesence of inaccurate estimations, pre-
emption can be deployed to help the scheduler in enforcingdisidn through preempting the process
that has wrong estimations. Particularly, this is crificasystems that support strict reservation model
such as advanced reservation. In this situation, preemphistraets the scheduling policy from the
obstacles in enforcing that policy [44].

Preemption can be applied to improve the optimality of resoscbeduling. Speci$cally, online
scheduling policies are usually not optimal because jobsoastaatly arriving over time and the
scheduler does not have a perfect knowledge about them §kfbre, preemption can potentially
mitigate the nonoptimality of the scheduling policy.

Preemption mechanism can be employed for managinglpadkin these systems, resource-intensive
applications or batch applications are preemptddee the resources during the peak time. Accordingly,
when the system is not busy and the load is lowgrdrempted requests can be resumed [69].

Preemption can be employed to improve the system and/or usticceriteria, such as resource
utilization and average response time. Kettimuthu et 4].Have focused on the impact of preempting
parallel jobs in supercomputers for improving the averagevanst-case slowdown of jobs. ey sug-
gest a preemption policy, call8élective Suspensiarere an idle job can preempt a running job if the
suspension factor is adequately more than the running job.

A recent application of preemption is in energy conservatiatatacenters. In fact, one prominent
approach in energy conservation of virtualized datacerieM consolidation, which takes place
when resources in the datacenter are not utilized e#ciehtl}M consolidation, VMs running on
under-utilized resources are preempted (suspended) andhegson other resources. VM consolida-
tion can also occur through live migration of VMs [107] to mirde the unavailability time of the VMs.
When a resource is evacuated, it can be powered 0" to reduerettyy consumption of the datacenter.

Salehi et al. [83] have applied VM preemption to save energdataeenter that supports requests
with di"erent SLAs and priorities. !ey introduce an energyanagement component for Haizea [93]
that determines how resources should be allocated for ghigfity request. !e allocation can be car-
ried out through preempting lower-priority requests or t@zating powered 0" resources. !e energy
management component can also decide about VM consolidaticircumstances that powered on
resources are not being utilized e#ciently.

Preemption can be used for controlling administrative (ptetmined) thresholds. !e thresholds
can be con$gured on any of the available metrics. For irestirectemperature threshold for CPUs can
be established that leads to the system automatically prepamptsf the load and reschedule on other
available nodes. Bright Cluster Manager [1] is a commeZtiater resource management system that
o"ers the ability to establish preemption rules by de$ning metrics andrbids.

57.4.5.2 Preemption Challenges

Operating systems of single processor computers haen applying preemption mechanism for a
long time to o"er interactivity to the end-user. tever, since interactive requests are not prevalent
in distributed systems, there has been less derfmmateemption in these systems. More impor-
tantly, achieving preemption in distributed systeemgails challenges that discourage researchers
to investigate deeply on that. lis challenges aiitedlent based on the resource provisioning model.
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TABLE 57.1 Preemption Challenges in Di"erent Resource
Provisioning Models

Resource Provisioning Model

Challenge Job-Based VM-Based Lease-Based

Coordination !
Security !
Checkpointing !
Time overhead !
Permission !
Impact on queue !
Starvation !
Preemption candidates !

In this part, we present the detailed list of challengedibatbuted systems encounter in preempt-
ing requests in various resource provisioning models. Merea summary of preemption challenges
based on di"erent provisioning models is provided in Table 57.1.
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Coordination Distributed requests (jobs/VMs/leases) are scattere@wsra nodes by nature.
Preemption of the distributed requests have to be coorditegdeen the nodes that are execut-
ing them. Lack of such coordination leads to inconsistenttgituée.g., because of message loss)
for the running request.

Security Preemption in job-based systems implies security concegasdiag $les that remain
open and swapping-in the memory contents before job resumgticother words, in job-based
systems operating system has to provide the security of cedsiicg $les and data of the pre-
empted processes. Since VM- and lease-based systems eoata@ied (isolated) by nature,
there is not usually security concern in their preemption.

CheckpointingLack of checkpointing facilities is a substantial chgdlén job-based resource
provisioning model. Because of this problem, in job-basedragsthe preempted job is gener-
ally killed, which is a waste of resources [91]. Checkpgirngiroblem is obviated in VM and
lease-based resource provisioning models [94]. Due to theffuwemntal role of checkpointing for
preemption mechanism, in Section 57.4.5.4 we discuss it in details.

Time overheadn VM- and lease-based resource provisioning models, tierd@ad imposed to
the system to perform preemption is a major challenge. If préeemjatkes place frequently and
the time overhead would not be negligible, then the resource utiliaatibbe a"ected.

Additionally, disregarding the preemption time overheaddhesiuling, prevents requests to
start at the scheduled time [94]. In practice, resource genant systems that support preemp-
tion, must have an accurate estimation of the preemption tweehead. Overestimating the
preemption time overhead results in idling resources. Heweaiwnderestimating the preemp-
tion time overhead ends up in starting leases with delaghvsuibsequently might violate SLA
agreements.

Sotomayor et al. [94] have presented a model thigrthe preemption time overhead for VMs.
ley identi$ed that the size of memory that should loe-allocated, number of VMs mapped to
each physical node, local or global memory useallimcating VMs, and the delay related to com-
mands being enacted are e"ective on the time oeerloé preempting VMs. To decrease the pre-
emption overhead, the number of preemptions thiétplace in the system has to be reduced [87].
Permissiontn the lease-based resource provisioning model, preempgi@isg$ is not allowed by
default. In fact, one di"erence between lease-based andretioeirce provisioning models is that
jobs and VMs can be preempted without notifying the user (stgqde whereas leases require
the requester's permission for preemption [39]. lereforegtlh must be regulations in the lease
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terms to make lease preemption possible. lese terms can be fortimeof QoS constraints of the
requests or can be bound to pricing schemes. For instancesteqvith tight deadline, advance
reservations, or requests with tight security possibly sthéo pay more instead of getting pre-
empted while they are running.

Impact on other requestdost of the current distributed systems use a variatiorack$iling
policy as the scheduling policy. In back$lling, future ues® availabilities are reserved for other
requests that are waiting in the queue. Preempting the rgnmiocess and allocating resources
to a new request a"ects the running job/lease as well as theateses waiting in the queue.
Re-scheduling of the preempted requests in addition to thet@deeservations are side-e"ects
of preemption in distributed systems.

Starvation Preemption leads to increasing the response time and, in teecsse, starvation for
low-priority requests [5]. lere is a possibility that low-frity requests get preempted as soon
as they start running. lis leads to unpredictable waiting Brand unstable situation for low-
priority requests. E#cient scheduling policies can préwsrstable and long waiting time situ-
ation. One approach to cope with the starvation challengesisiating the number of requests
admitted in a distributed system. Salehi et al. [82] haymopeal a probabilistic admission control
policy that restricts the queue length for low-priorityuests in a way that they would not su"er
from starvation.

Preemption candidateBy allowing preemption in a distributed system, there isailpitity that
several low priority requests have to be preempted to makeent#zacant resources for the
high-priority request. lerefore, there are several setahdidate requests whose preemption
can create adequate space for the high-priority requefitisfexpressed in Figure 57.6, there are
several candidate sets (Figure 57.6b) that their preempaiovacate resources for the required
time interval (i.e., from;tto t, as indicated in Figure 57.6a).

Selecting distinct candidate sets a"ects the amount ofeghsigace (also termed scheduling
fragment) appear in the schedule. Furthermore, preemptitegeht candidate sets imposes dif-
ferent time overhead to the system because of the nature r&foiests preempted (e.g., being
data-intensive). In this situation, choosing the optimal seeqfiests for preemption is a chal-
lenge that needs to be addressed.

To cope with this challenge, back$lling policy heertextended with preemption ability in Maui
scheduler [91] to utilize scheduling fragmentse&iadt al. [5] have proposed a preemption policy
that determines the best set of leases to be preemjitethe objective of minimizing preemption
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FIGURE 57.6 Preemption candidates for a request that needs two nodes. (a) SHsieaaf the requested time
AQ1l interval with running requests within a scheduling queugPglesents di"erent candidate sets that their preemp-
tion creates space for the new request.
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time overhead. A preemption policy is also presebie@/alter et al. [109] in a VM-based system
with the objective of avoiding starvation for bateguests where a combination of batch and
interactive requests co-exist in the system.

57.4.5.3 Possibilities for Preempted Requests

Issues discussed thus far are related to preemption mechanésits challenges. However, making a
proper decision for the preempted request is also importarg.decision depends on the facilities pro-
vided by the resource management system of a distributesirsy=or example, migration is one choice
that is viable in some distributed systems but not in all of them.

lanks to the &exibility o"ered by deploying VM-based resourpeovisioning models, resource
managers are capable of considering various possibilitigefpreempted request. Nonetheless, in job-
based systems, if preemption is possible, the possible actibe preempted job is usually limited to
killing or suspending and resuming of the preempted job. Qheenéxt paragraphs, we introduce vari-
ous cases that can possibly happen for preempted VMs/ledd@smelly, in Figure 57.7 it is expressed
that how di"erent possibilities for the preempted VM a"ect the VMs' lifeecycl

Cancelling VMs can be canceled (terminated) with/without notifyihg request owner. VMs
o"ered in this fashion are suitable for situation that th@uese provider does not have to guar-
antee the availability of the resources for a speci$c darépot instances o"ered by Amazon
EC2 is an example of cancelling VMs. Isard et al. [49] hadecareelling VMs to execute map-
reduce requests. Cancelling VMs imposes the minimum oadrtime that is related to the time
needed to terminate VMs allocated to the request.

In job-based systems, cancelling (killing) jobs is a conpraxtice [91] because of the dif-
$culty of performing other possible actions.
Restartingln both job-based and VM-based systems, the preempted reqodst killed (similar
to cancelling) and restarted either on the same resourceasrather resource. le disadvantage
of this choice is losing the preliminary results and wastiegcomputational power. Restarting
can be applied for best-e"ort and deadline-constraint estgL In the former, restarting can be
performed at any time whereas, in the latter, deadline aktheest has to be taken into account
for restarting.
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FIGURE 57.7 VM life cycle by considering di"erent possible preemption degssio a resource management
system.
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57.4.5.4 Checkpointing in Distributed Systems

Checkpointing is the function of storing the latessate of a running process (e.g., job, VM, and
lease). Checkpointing is an indispensable part of preempifi the preempted request is going to
resume its execution from the preempted point. In fact, ghwoking is the vehicle of implement-
ing preemption. Apart from preemption, checkpointing haseothsages including providing fault-
tolerance for the requests.

Checkpointed process can be stored on a localg#o@ carried over the network to a backup
machine for future recovery/resume. Checkpointires io be achieved in &tomic way, which
means either all or none of the modifications dreakpointed (transferred to the backup machine).
There are various approaches to achieve checkpginthich are presented briefly in Figure 57.8.
In this section, we explain checkpointing stratedi@ different provisioning models in distrib-
uted systems.

57.4.5.4.1 Checkpointing in Job-Based Provisioning Model

Checkpointing approaches are categorized as applicaiosparent and application-assisted (see
Figure 57.8). In application-assisted (user-level) cheokipg, the application de$nes the neces-
sary information (also called critical data area) that haviee checkpointed. !e disadvantage of
this approach is that it entails modifying the applicatigrtiee programmer. However, this approach
imposes little overhead to the system because it just chetkfee necessary parts of the application;
additionally, the frequency of performing checkpointisgdetermined by the user. User-level check-
pointing can be further categorized as follows:

Source-code level: In this manner, checkpointing codefard-coded by developers. However,
there are some source code analysis tools [21,30] that catehelppers to $gure out the suitable
places that checkpointing codes can be inserted.

Library level: lere are ready-made libraries for checkpiong, such as Libckpt [74] and Condor
libraries [62]. To use this kind of checkpointing, develgpave to recompile the source code by
including the checkpointing library in their program.

As noted in Figure 57.8, checkpointing can also be done licain-transparent manner. lis
approach is also known as system level, Operating Systdnotekernel level in the literature. As the
name implies, in this approach the application is not awaheckpointing process. !erefore, the
application does not need to be modi$ed to be checkpointapfgicAtion-transparent checkpointing
technique is particularly applied in preemption whereadiegion-assisted scheme is more used in
fault-tolerance techniques. Examples of system level ptietkg in the system level are BLCR [41]
and CRAK [111].
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FIGURE 57.8 Checkpointing methods in distributed systems.
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57.4.5.4.2 Checkpointing in VM-Based Systems

Virtualization technique provides application-transpat checkpointing as an inherent feature that
involves saving (suspending) and restoring (resuming) of the VM s#ia®®[55].

In a virtualized platform, hypervisor (also calledwal machine monitor) is an essential compo-
nent that manages di"erent VMs concurrently runningtbe same host. Generally, the hypervisor is
in charge of VM checkpointing. To checkpoint a \iMd,internal state including memory, cache, and
data related to the virtual devices have to be storetth@mlisk. Disk image snapshot also has to be
stored, specially when the checkpointed VM is tramefl and sharing image is not possible. Current
virtual machine monitors, such as VMware, Xen, and K$tpport saving/restoring the state of VMs
to/from a $le. However, taking a copy of the diskgma not practically possible because of the size of
the disk [69]. 'erefore, currently, checkpointing is ostly carried out within resources with a shared
storage, such as NFS.

Accordingly, distributed applications running on VMs asscseveral nodes within a Cluster can be
checkpointed [46]. Checkpointing of such applicationomplicated because of the possible correla-
tions between VMs (e.g., TCP packets and messages excheivgesehib/Ms). !e checkpointing pro-
cess should be aware of these correlations, otherwiseetigpointing process leads to inconsistency
in running the distributed applications.

To handle the checkpointing, when a checkpointingne is initiated, all the nodes that run
a process of the distributed application receive ¢kient. Upon receiving the event, the hypervi-
sor pausesomputation within VMs in order to preserve theéemal state of VM and also to stop
submitting any new network message (see Figurg. 3i.The next step, checkpointing protocols
save the in-&ight messages (i.e., network paclketsthis purpose, the hypervisor collects all the
incoming packets and queue them. Finally, a loddlctieckpointing is performed through which
the VM's internal state, VM disk image, and quenezksages for that VM are saved in the check-
point $le [44].
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57.5 Contention Management in Practice

Various types of distributed systems for resource sharidgaggregation have been developed. ley
include Clusters, Grids, and Clouds. In this section, weygtiese systems from the resource conten-
tion perspective. We identify and categorize properti¢iseofeviewed systems and summarize them in
Table 57.2 for Clusters and in Table 57.3 for Grids and Clouds.

57.5.1 Contention Management in Clusters

Compute Clusters are broadly categorized as dedicatedhaneldsClusters. In dedicated Clusters a
single application exclusively runs on the Cluster's node#.9drvers, and web servers are examples of
dedicated Clusters.

By contrast, in a shared Cluster the number of requests i$signly higher than the number of
Cluster nodes. lerefore, nodes have to be shared betweeretheests by means of a resource manage-
ment system [100]. From the resource contention persgecihvared Clusters are generally prone to
request-initiated contention.

Virtual Clusters are another variation of Clusters thatknmased on VMs. Although users of these
Clusters are given root access to the VMs, these resouroes @edicated to one user in hardware level
(i.e., several VMs on the same node can be allocated to di"erent users).

A multicluster is an interconnected distributed tgys that consists of several Clusters possibly
in di"erent organizations. Multiclusters are prote origin-initiated contentions as well as request-
initiated contention.

TABLE 57.2 Role of Di"erent Components of Cluster Management Systems in Dealing veitlifiee
Contentions

Provisioning  Operational Contention Contention RMS
System Model Model Context Initiation Management Component
Haizea [93] Lease Reactive Cluster Request Preemption|_ocal sched AQ2
VioCluster [79] VM Proactive MultiCluster ~ Origin Preemption Local sched
and reactive
Snell et al. [91] Job Reactive Cluster Request Preemption Local sched
Lawson Smirni [59] Job Proactive  Cluster Request Partitioning Local sched
and reactive
Walters et al. [109] VM Reactive Cluster Request Preemption Local sched
Scojo-PECT [92] VM Reactive Cluster Request Di"Serv andLocal sched
preemption
MOSIX [4] VM Reactive Cluster Origin Fairness and  Local sched AQ3
(preemption)
Sharc [100] Job Reactive Cluster Request Partitioning Local sched and
Admission ctrl
COD [64] Lease Reactive Cluster Request Partial Local sched
preemption
Cluster reserves [10] Job Proactive Cluster Request Partitioning Local sched
Muse [23] Job Reactive Cluster Request Economic Local sched
(utility)
Shirako [48] Lease Reactive MultiCluster  Interdomain  Token Local sched
Lee et al. [60] Job Proactive  MultiCluster Request Fairness Global and
and reactive Local sched
MUSCLE [42] Job Proactive MultiCluster Request Utility Global sched
Percival et al. [73] Job Reactive Cluster Request Economic Admission ctrl
(utility)
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TABLE 57.3 Role of Di"erent Components of Grid/Cloud Resource Management Systemalinde
with+Resource Contentions

Provisioning Operational Contention Contention RMS
System Model Model Context Initiation Management Component
GridWay [103] Job Reactive  Grid Federation Request Outsourcing Global sched
(outsourcing)
Amazon Spot Market VM Reactive  Cloud Request Economic (auction) Global sched
Van et al. [101] VM Reactive  Cloud Request Economic (utility)  Global sched
OurGrid [9] Job Reactive  Grid Interdomain  Incentive Global sched
Ren et al. [76] Job Proactive  Desktop Grid Origin Preemption Local sched
Salehi et al. [6] Lease Proactive  Grid Federation  Origin Preemption Global sched
InterGrid [26] Lease Proactive  Grid Federation ~ Origin Partitioning Global sched
InterCloud [97] VM Reactive  Cloud Federation Request Economic (utility) ~ Admissibn ctr
RESERVOIR [78] VM Reactive  Cloud Federation Request Outsourcing Outsourcing
Sandholm et al. [86] VM Reactive  Grid Request Partial preemption  Admission ctr
InterGrid Peering [26] Lease Reactive  Grid Federation Interdomain Global schedulirighal Gched
Salehi et al. [82] Lease Proactive  Grid Federation  Origin Preemption Admission ctrl
NDDE [67] VM Reactive Desktop Grid Origin Preemption Local sched
Gong et al. [38] Job Proactive  NOW Origin Preemption Local sched
Delegated- Job Reactive  Grid Federation Request Qutsourcing QOutsourcing
matchmaking [47]
Gruber [28] Job Reactive  Grid InterdomainGlobal scheduling Global sched

and Request and outsourcing  and
outsourcing
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57.5.2 Contention Management in Desktop Grids

lis form of distributed computing (also known as volunteeomputing) inherently relies on partici-
pation of resources, mainly Personal Computers. In desktms Garticipants become available dur-
ing their idle periods to leverage the execution of long mmiobs. !ey usually use speci$c events
such as screen-saver as an indicator for idle cycles. SEiéd8jds a famous desktop Grid project
that works based on BOINC [7] so%ware platforms and wasalligdeveloped to explore the exis-
tence of life out of the earth. Desktop Grids are prone to enigfiated resource contentions that take
place between the guest requests (come from the Grid emeérgphand local requests (initiated by the
resource owner) in a node.
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57.5.3 Contention Management in Grids

Grids are initially structured based on the idea of the alrtuganizations (VOs). A VO is a set of users
from di"erent organizations who collaborate towards a comrabjective. Several organizations con-
stitute a VO by contributing share of their resources to thdtes a result their users gain access to the
VO resources. Contributing resources to a VO is carried auiviagreement upon that an organization
gets access to the VO resources according to the amount of resources it 0"ersto the V

Organizations usually retain part of their resources feirtbrganizational (local) users. In other
words, VO (external) requests are welcome to use resouthey dre available. However, VO requests
should not delay the execution of local requests.

Indeed, Grids are huge interconnected distributed systieatsre prone to all kinds of resource con-
tentions [85]. Particularly, interdomain-initiated ragae contention arises when organizations need to
access VO's resources based on their contributions. @nijiated resource contention occurs when
there is a con&ict between local and external users withineBources of an organization. Finally,
request-initiated contention exists between di"erent types afests (short/long, parallel/serial, etc.).
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57.5.4 Contention Management in Clouds

Advances in virtual machine and network technolodias led to appearing commercial providers
that o"er numerous resources to users and charga ihea pay-as-you-go fashion. Since the physical
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57.6 Conclusions and Future Research Directions

Due to resource shortage as well as surge in demand, distribystems commonly face contention
between requests to access resources. Resource contargicasegorized asquest-initiatedwhen
a user request cannot be admitted or cannot acquire su#odsoiurces because the resources are
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