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Abstract—With the continuous increase of IoT applications, their ef-
fective scheduling in edge and cloud computing has become a critical
challenge. The inherent dynamism and stochastic characteristics of
edge and cloud computing, along with IoT applications, necessitate
solutions that are highly adaptive. Currently, several centralized Deep
Reinforcement Learning (DRL) techniques are adapted to address the
scheduling problem. However, they require a large amount of experience
and training time to reach a suitable solution. Moreover, many IoT
applications contain multiple interdependent tasks, imposing additional
constraints on the scheduling problem. To overcome these challenges,
we propose a Transformer-enhanced Distributed DRL scheduling tech-
nique, called TF-DDRL, to adaptively schedule heterogeneous IoT ap-
plications. This technique follows the Actor-Critic architecture, scales
efficiently to multiple distributed servers, and employs an off-policy cor-
rection method to stabilize the training process. In addition, Prioritized
Experience Replay (PER) and Transformer techniques are introduced
to reduce exploration costs and capture long-term dependencies for
faster convergence. Extensive results of practical experiments show that
TF-DDRL, compared to its counterparts, significantly reduces response
time, energy consumption, monetary cost, and weighted cost by up to
60%, 51%, 56%, and 58%, respectively.

Index Terms—Edge Computing, Cloud Computing, Deep Reinforce-
ment Learning, Distributed Systems, Internet of Things.

1 INTRODUCTION

The Internet of Things (IoT) paradigm is rapidly emerg-
ing as a transformative force and revolutionizing informa-
tion technology and connectivity. The proliferation of IoT
devices and applications has been exponential, reshaping
the way humans interact and perceive their surroundings.
Cloud computing, as a major driver of the IoT ecosystem,
plays a critical role in the storage and process of the large
volume of data generated by IoT devices [1]. However, due
to the potentially long physical distance between servers
in cloud computing and IoT devices, high latency arises,
thereby impeding the effective implementation of real-time
IoT applications [2]. In response to these challenges, edge
computing, as a decentralized computing paradigm, has
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emerged to provide the ability to process, store, and intelli-
gently control IoT applications [1]. It has quickly become
a popular computing paradigm in the IoT environment,
offering substantial solutions in various domains. For in-
stance, in the healthcare sector, edge computing can enable
real-time monitoring and diagnosis, facilitating faster and
more accurate medical decisions [3]; In smart cities, edge
computing can be applied to real-time traffic management,
improving traffic efficiency, and reducing congestion [4].

However, the considerable increase of IoT applications
and servers within edge and cloud computing environ-
ments has brought new challenges, necessitating innovative
solutions. First, there is an urgent need to minimize the
expected response time of IoT applications to ensure effi-
cient and timely performance [5], [6]. Furthermore, in edge
and cloud computing environments, the imperative need to
minimize server energy consumption and monetary cost is
equally crucial for sustainable and cost-effective operations
[7]. Thus, scheduling IoT applications on distributed servers
to reduce the response time of IoT applications while si-
multaneously minimizing server energy consumption and
monetary cost has become an important and challenging
problem.

Given the inherent complexity of this challenge, which
can be characterized as an NP-hard problem [8], various
solutions have been explored, including heuristic and rule-
based approaches [1]. However, these methods face limi-
tations when dealing with the dynamic and unpredictable
characteristics of servers in edge and cloud computing. The
performance, utilization, and downtime of servers often lack
regularity, and the number of IoT applications and their cor-
responding resource requirements may exhibit randomness.
Additionally, IoT applications typically employ Directed
Acyclic Graphs (DAGs) for modeling, where nodes repre-
sent tasks and edges signify data communication between
related tasks [9]. The dependencies between tasks introduce
further complexity to the application scheduling process,
rendering heuristic and rule-based solutions ineffective in
addressing the scheduling challenges presented by IoT com-
puting environments.

Due to the continuous changes in edge and cloud com-
puting environments, decision-making for scheduling IoT
applications must be capable of adaptive updates. Deep
Reinforcement Learning (DRL), which combines Reinforce-
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ment Learning (RL) with Deep Neural Networks (DNN),
offers a promising solution. DRL agents can dynamically
learn optimal policies and long-term rewards in a stochastic
environment without the need for a prior understanding of
the system. However, DRL agents must invest substantial
time during the exploration phase by collecting extensive
and diverse experience trajectories, which are later used to
learn optimal policies [10]. Hence, the effectiveness of the
DRL technique can be prevented by the high exploration
costs and slow convergence speeds, negatively impacting
the scheduling of IoT applications in highly heterogeneous
and stochastic edge and cloud computing environments.

Existing works have increasingly employed DRL tech-
niques for scheduling IoT applications in edge and cloud
environments. However, these works face several significant
challenges and limitations in practical deployments. Firstly,
most existing studies utilize centralized DRL techniques
(e.g., Deep Q-Network (DQN), Deep Deterministic Pol-
icy Gradient (DDPG)), which require extensive exploration
within complex state spaces to identify optimal schedul-
ing strategies [11]. This can lead to high exploration costs
and slow convergence rates, particularly in dynamic and
heterogeneous edge and cloud environments where explo-
ration costs are further exacerbated. While some works have
explored distributed DRL techniques, they predominantly
use Asynchronous Advantage Actor Critic (A3C). Although
these works leverage multiple parallel agents to collect
experience trajectories, the training process primarily relies
on asynchronous updates based on the local experiences
of individual agents [12]. This limited global knowledge
sharing between agents can result in less efficient conver-
gence and suboptimal overall performance [13]. Secondly,
existing works struggle to capture long-term dependencies
between tasks, especially in the context of scheduling IoT
applications that involve complex task dependency graphs
(i.e., DAGs). This limitation often leads to suboptimal re-
source utilization and increased task completion times in
real-world IoT systems. Thirdly, many existing cost models
focus on optimizing only one or two objectives, such as
minimizing response time or energy consumption. This nar-
row focus restricts their effectiveness in addressing the mul-
tifaceted challenges of dynamic and heterogeneous com-
puting environments. These challenges highlight the need
for a comprehensive solution that can effectively address
multiple optimization objectives while efficiently handling
task dependencies and leveraging distributed learning in
heterogeneous edge and cloud environments.

To address these challenges, we propose a distributed
DRL technique, named TF-DDRL, based on the Impor-
tance Weighted Actor-Learner Architecture (IMPALA) [13],
specifically designed for scheduling IoT applications in edge
and cloud computing environments. Unlike A3C-based ap-
proaches that rely on parameter sharing, IMPALA facilitates
the direct sharing of raw experiences between distributed
agents, allowing them to collaboratively learn policies more
effectively. This enables TF-DDRL to adaptively optimize
scheduling decisions across multiple servers, efficiently han-
dling the dynamic and heterogeneous nature of edge and
cloud environments. To achieve comprehensive optimiza-
tion, we propose a weighted cost model that balances
multiple objectives, including response time, energy con-

sumption, and monetary costs. This model addresses the
limitations of existing models that typically focus on single
objectives, enabling more holistic optimization that better
reflects real-world requirements. To further tackle the chal-
lenge of capturing complex dependencies between IoT tasks
and system states in heterogeneous edge and cloud envi-
ronments, we integrate the Transformer technique [14]. The
self-attention mechanism in the Transformer captures both
local and global relationships among diverse state compo-
nents [15], which is essential for making optimal scheduling
decisions in highly dynamic and stochastic environments.
Additionally, we incorporate Prioritized Experience Replay
(PER) [16] to reduce exploration costs by prioritizing more
informative experiences, thereby expediting the learning
process. The combined use of Transformer and PER not
only accelerates the convergence speed of TF-DDRL but also
enhances its capacity to derive more effective scheduling
strategies, ultimately optimizing response time, energy con-
sumption, and operational costs.

To the best of our knowledge, this is the first work
that integrates distributed DRL with Transformer and PER
techniques for IoT application scheduling in edge and cloud
environments. The main contributions of this paper are as
follows.

• We propose a weighted cost model for scheduling
DAG-based IoT applications in edge and cloud com-
puting. The objective is to optimize the response
time of the application, the energy consumption of
the system, and the monetary cost associated with
execution. Also, we customize this weighted cost
model to comply with DRL algorithms.

• We propose a distributed DRL technique, called TF-
DDRL, to solve the weighted cost optimization prob-
lem. It can adaptively learn the optimal scheduling
policy in response to changes in the computing envi-
ronment, including diverse IoT application requests
and fluctuations of computing resources.

• We design the network structure of TF-DDRL, inte-
grating advanced techniques including PER and the
Transformer. This design can significantly improve
the convergence speed of the TF-DDRL, ensuring
more efficient and effective model performance.

• To evaluate the performance of TF-DDRL, we carry
out extensive practical experiments and employ real
IoT applications. Through comparisons with dis-
tributed DRL techniques including ApeX-Deep Q-
Network (ApeX-DQN) [17] and A3C [18], as well
as centralized DRL techniques including Dueling
Double DQN-RNN (D3QN-RNN) [19], [20] and Soft
Actor-Critic (SAC) [21], we highlight the superior
performance of TF-DDRL in terms of convergence
speed, optimization cost, scalability, and scheduling
overhead.

The remainder of the paper is organized as follows.
The related literature is provided in Section 2, and Section
3 details the system model and formulate the scheduling
problem. The main concepts of the DRL model are presented
in Section 3.3. The TF-DDRL is discussed in Section 4.
Section 5 evaluates the performance of TF-DDRL and its
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counterparts. Finally, the concussion and the future work
are provided in Section 6.

2 RELATED WORK

The related works that research IoT application scheduling
problems in edge and cloud computing environments are
studied. Related work is categorized into two groups: cen-
tralized reinforcement learning and distributed reinforce-
ment learning.

2.1 Centralized Reinforcement Learning

In the category of centralized reinforcement learning, Bansal
et al. [22] proposed a Dueling-DQN-based technique to
place IoT applications in edge and cloud environments. It
aims at optimizing the user-side latency and system energy.
Hoang et al. [23] proposed an online resource management
framework based on the Actor-Critic framework, which
considers the long-term constraints of queue stability and
computational delay of the queuing system to minimize the
average power consumption of the entire system. Huang et
al. [24] focused on the resource allocation problem in edge
computing environments. They developed a DQN-based
approach to minimize a weighted cost, comprising total
energy consumption and task completion delay. Zhao et
al. [25] proposed a mobile-aware dependent task offloading
scheme based on DDPG, with the aim of minimizing the av-
erage response time and the average energy consumption of
the system. Hsieh et al. [26] investigated the task allocation
problem in collaborative Mobile Edge Computing (MEC)
networks, developing and comparing the performance of
Double-DQN, PG, and Actor-Critic in optimizing delay
and task overflow rate. The results demonstrated that the
Actor-Critic approach performed the best in dynamic MEC
network environments. Fan et al. [27] studied the problem
of user task offloading in MEC network environments and
proposed a technique based on Dueling-DQN and Double-
DQN to optimize response time and dropped task ratio.
Zheng et al. [28] defined an optimization problem involving
computational offloading and resource allocation in collab-
orative vehicle networks. A Soft Actor-Critic (SAC)-based
technique is proposed to reduce the overall delay of the
system. Wang et al. [29] proposed a computing resource
allocation solution based on DQN specifically for edge
computing environments. The objective of their research
is to optimize the average time overhead and achieve a
more balanced utilization of resources within edge environ-
ments. Xiong et al. [30] aimed at reducing the average job
completion time within edge computing environments by
employing a DQN-based resource allocation policy. Jie et al.
[31] focused on the time overhead optimization problem in
edge computing environments and employed a DQN-based
method to reduce the task execution time. They formulate
the optimization problem as a Markov Decision Process
(MDP). [32] proposed a dependency-aware task offloading
method with DQN to optimize task offloading in cloud-edge
environments. Their approach models mobile applications
as DAGs and leverages DQN to adaptively handle dynamic
resource changes and parallel task scheduling without pre-
setting task priorities.

2.2 Distributed Reinforcement Learning

Wen et al. [33] introduced an adaptive scheduler based on
environmental changes, aiming to reduce the tail latency of
edge-cloud jobs. The work employs Ape-X DQN to expedite
the training process. Wang et al. [34] proposed an Asyn-
chronous Advantage Actor-Critic (A3C)-based approach to
address the cloud-edge computing network optimization
problem, aiming at satisfying the latency requirements
of applications while reducing the cost of cloud servers.
Garaali et al. [35] investigated the optimization problem of
computational offloading and resource allocation in an MEC
environment and proposed a solution based on the A3C
method. In order to reduce the system latency, each agent
aims to learn the optimal offloading policy independently
of the other agents in an interactive manner. Ju et al. [36]
considered the task offloading problem in vehicular edge
computing networks, where the joint optimization is formu-
lated as MDP. This work proposes an A3C-based approach
to solve the MDP problem, with the goal of minimizing the
system energy consumption while satisfying computational
delay constraints. Sellami et al. [37] investigated IoT applica-
tion scheduling and offloading problems in edge computing
environments. This work introduces a scheduling policy
based on A3C to enhance energy efficiency. Chen et al. [38]
studied the task offloading problem in cloud-edge collabo-
rative mobile computing environments, proposing an A3C-
based algorithm to address the joint optimization problem
involving task execution delay and energy consumption.
Utilizing a distributed learning approach, the algorithm
acquires knowledge about the probability distribution of an
approximate reward and optimizes network parameters us-
ing the computing resource in the cloud, with the objective
of achieving faster and more efficient decision-making.

2.3 A Qualitative Comparison

Table 1 provides a qualitative analysis of current research
work and ours in various dimensions, including application
properties, architectural properties, algorithm properties,
and evaluation. Application properties explore whether the
IoT application has multiple tasks or not and their in-
terdependencies. Architectural properties are divided into
three layers. The IoT device layer identifies the practical
characteristics of the application and the request type of the
IoT devices. The section named real applications provides
information on whether the work utilizes real-world IoT
applications, simulations, or randomly generated data, and
distinct IoT devices with varying quantities of requests and
diverse requirements are classified as heterogeneous request
types. The edge/cloud layer delves into the computing
environment considered by the work and the heterogeneity
of deployment servers. Moreover, the multi-cloud layer
assesses whether the work takes into account cloud com-
puting resources from different providers. In the algorithm
properties section, the focus is on the primary techniques
employed by the work and the optimization objectives.
Finally, the evaluation section determines whether the work
is evaluated through simulation or practical applications.

In the literature, many works (e.g., [23], [24], [26], [28],
[29], [30], [31], [34], [35], [36], and [37]) assume that tasks
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are mutually independent and do not consider the com-
mon occurrence of task dependencies in the real world.
However, in practical scenarios, such dependencies signif-
icantly impact scheduling performance. For example, in
smart city traffic management, vehicle detection relies on
real-time video data collection, while traffic flow predic-
tion depends on the results of vehicle detection. Neglect-
ing these dependencies can lead to processing delays and
reduced system efficiency. Similarly, in healthcare, initial
patient data processing must be completed before cloud-
based analysis, or else diagnoses could be delayed. In in-
dustrial IoT, equipment fault detection is closely linked to
subsequent maintenance tasks, where improper scheduling
could result in production disruptions. Also, works includ-
ing [22], [23], [24], [25], [26], [27], [28], [29], [30], [31], and
[32], adopt centralized DRL techniques, which may incur
high exploration costs and exhibit low convergence speed
[39]. This poses challenges when deployed in highly dis-
tributed computing environments, especially as the number
of features, environmental complexity, and application con-
straints increase. Furthermore, most of the work employing
distributed DRL techniques is based on A3C, including
[34], [35], [36], [37], and [38]. Despite deploying distributed
agents to collect experience trajectories, distributed agents
in A3C train their local policies based on their limited
experiences, subsequently forwarding these parameters to
learners for aggregation and training, diminishing the usage
efficiency of experience trajectories. To address these issues,
we propose a distributed DRL technique, called TF-DDRL,
which learns policies based on direct sharing of original
experience, rather than parameters. Besides, TF-DDRL em-
ploys PER to enhance sampling efficiency and incorporates
the Transformer to capture long-term dependencies between
features, further improving convergence speed and optimiz-
ing performance. Moreover, our work considers inter-task
dependencies when addressing IoT application scheduling
problems in edge and multi-cloud heterogeneous environ-
ments. Also, we establish a practical experimental envi-
ronment employing both real-time and non-real-time IoT
applications to evaluate the performance of TF-DDRL.

3 SYSTEM MODEL AND PROBLEM FORMULATION

This section first describes the topology of IoT systems in
this work. Next, we tackle the scheduling of IoT applications
by formulating it as an optimization problem, aiming at
reducing application response time, system energy con-
sumption, and monetary cost of running applications. Table
2 depicts the key notations used in this paper.

3.1 System Model

Fig. 1 provides a layered perspective of the IoT system in
an edge and cloud environment. Consider A = {Ai|1 ≤
i ≤ |A|} as a collection of |A| applications, with each
application comprising one or more tasks denoted as Ai =
{Aj

i |1 ≤ j ≤ |Ai|}. To model an IoT application, we use a
DAG, as illustrated in Fig. 1, where each vertex Vj = Aj

i

corresponds to a specific task within the application Ai. The
edges, represented as Ej,k, signify the data flow between
tasks Vj and Vk, indicating that successor tasks must follow

the completion of their predecessors. Also, the critical path
of the DAG, denoted as CP (Ai) and marked in red in the
figure, shows the path with the highest cost.

Fig. 1: An overview of Edge and Cloud computing

We consider a server set comprising |N | servers to
handle the application set A, denoted as N = CS ∪ ES =
{Nk|1 ≤ k ≤ |N |}. CS denotes the cloud server set
and ES denotes the edge server set. To consider server
heterogeneity, each server Nk is characterized by different
available CPU frequency (MHz) Freq(Nk) and available
RAM size (GB) Ram(Nk). Also, we consider PNl,Nk

as the
propagation time (ms) and BNl,Nk

as the data rate (b/s)
between server Nl and Nk.

3.2 Problem Formulation
Since an application consists of one or more tasks, it can
run on various servers. Considering server set as N , the
scheduling configuration Cj

i for task Aj
i is defined as:

Cj
i = Nk, k ∈ {1, . . . , |N |}, (1)

where Nk denotes a particular server, and |N | is the to-
tal number of servers. This variable serves as the atomic
decision unit in the scheduling process, determining the
computational resource allocated for each task.

The scheduling configuration Ci for the application Ai

is a collection of the scheduling configurations for the tasks
within Ai, and is defined as:

Ci = {Cj
i |1 ≤ j ≤ |Ai|}, (2)

where |Ai| represents the total number of tasks in applica-
tion Ai. By grouping task-level scheduling configurations,
Ci provides a comprehensive view of how the entire appli-
cation Ai is distributed across available servers.

Also, the task execution model of one application can
exhibit hybrid characteristics, incorporating both sequential
and/or parallel processes. Accordingly, each task cannot
be executed unless all predecessor tasks complete their
execution, while tasks that are not dependent on each other
can be executed in parallel. We use PR(Aj

i ) to denote the
set of predecessor tasks of task Aj

i and use CP (Aj
i ) to

indicate whether task Aj
i is located on the critical path of

the application Ai.

3.2.1 Response Time Model
Assuming that the scheduling configuration for task Aj

i is
Cj
i , the response time model T (Cj

i ) consists of two parts, the
Data Arrival Time (DAT) model T dat(Cj

i ) and the execution
time model T ex(Cj

i ):

T (Cj
i ) = T dat(Cj

i ) + T ex(Cj
i ). (3)
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TABLE 1: A comparison of our work with existing related works

Work

Application Properties Architectural Properties Algorithm Properties

Evaluation
Task Number Dependency

IoT Device Layer Edge/Cloud Layer
Multi-Cloud Layer Main Technique

Optimization Objectives

Real Applications Request Type Computing Environment Heterogeneity Time Energy Finance Multi Objective

[22] Multiple Dependent G# Heterogeneous Edge and Cloud Heterogeneous ×

Centralized

Dueling-DQN ✓ ✓ × ✓ Simulation

[23] Single Independent # Homogeneous Edge Heterogeneous × Actor-Critic × ✓ × × Simulation

[24] Multiple Independent G# Heterogeneous Edge Homogeneous × DQN ✓ ✓ × ✓ Simulation

[25] Multiple Dependent G# Heterogeneous Edge Heterogeneous × DDPG ✓ ✓ × ✓ Simulation

[26] Single Independent G# Heterogeneous Edge and Cloud Heterogeneous ×
Double-DQN, PG,

and Actor-Critic
✓ × × × Simulation

[27] Multiple Dependent # Homogeneous Edge Homogeneous ×
Dueling-DQN

and Double-DQN
✓ × × ✓ Simulation

[28] Single Independent G# Homogeneous Edge Homogeneous × SAC ✓ × × × Simulation

[29] Single Independent G# Homogeneous Edge Homogeneous × DQN ✓ × × ✓ Simulation

[30] Multiple Independent G# Homogeneous Edge Homogeneous × DQN ✓ × × × Simulation

[31] Single Independent G# Homogeneous Edge Homogeneous × DQN ✓ × × × Simulation

[32] Multiple Dependent G# Heterogeneous Edge and Cloud Heterogeneous × DQN ✓ × × × Simulation

[33] Multiple Dependent G# Heterogeneous Edge and Cloud Heterogeneous ×

Distributed

Ape-X DQN ✓ × × × Simulation

[34] Single Independent # Homogeneous Edge and Cloud Homogeneous × A3C ✓ × ✓ ✓ Simulation

[35] Multiple Independent # Homogeneous Edge Homogeneous × A3C ✓ × × × Simulation

[36] Single Independent G# Heterogeneous Edge Heterogeneous × A3C × ✓ × × Simulation

[37] Single Independent G# Heterogeneous Edge Heterogeneous × A3C × ✓ × × Simulation

[38] Multiple Dependent # Homogeneous Edge and Cloud Heterogeneous × A3C ✓ ✓ × ✓ Simulation

Our work Multiple Dependent  Heterogeneous Edge and Cloud Heterogeneous ✓ IMPALA ✓ ✓ ✓ ✓ Practical

 : Real IoT Application and Deployment, G#: Simulated IoT Application, #: Random

TABLE 2: List of key notations

Variable Description Variable Description
A One application set PR(Aj

i ) The set of predecessor tasks of task Aj
i

Ai One application SU(Aj
i ) The set of successor tasks of task Aj

i

Aj
i One single task T The response time model

N The server set T dat The Data Arrival Time (DAT) model
CS The cloud server set T ex The execution time model
ES The edge server set T tr The transmission time model
Nk One single server E The energy consumption model
Freq(Nk) The available CPU frequency (MHz) of server Nk Eex The execution energy model
Ram(Nk) The available RAM size (GB) of server Nk Etr The transmission energy model
Ci The scheduling configuration for application Ai W ex(Nk) The power of the server Nk when executing task
Cji The scheduling configuration for task Aj

i W tr(Nk) The power of the server Nk when transmitting data
PNl,Nk

The propagation time (ms) between server Nl and server Nk F The monetary cost model
DSNl,Nk

(Aj
i ) The data size for task Aj

i sent from server Nl to server Nk CLP (Nk) The pricing of the cloud server Nk

BNl,Nk
The data rate (bits/second) between server Nl and server Nk EP (Nk) The electricity price for running edge server Nk

L(Aj
i ) The required CPU cycles for task Aj

i J The weighted cost model

The DAT model T dat(Cj
i ) signifies the maximum time for

the data, required by task Aj
i , to reach the designated server:

T dat(Cj
i ) = max T dat

Ck
i ,C

j
i

, ∀Ak
i ∈ PR(Aj

i ), (4)

where T dat
Ck
i ,C

j
i

shows the time consumed for the required data

to be transmitted from scheduled server Ck
i to server Cj

i .
Here, Cj

i signifies the server scheduled for the execution of
task Aj

i , while Ck
i corresponds to the server where the pre-

decessor task of task Aj
i is executed. Thus, T dat

Ck
i ,C

j
i

depends

on both the transmission time T tr
Ck
i ,C

j
i

and the propagation

time PCk
i ,C

j
i

for task Aj
i between server Ck

i and server Cj
i :

T dat
Ck
i ,C

j
i

=

{
T tr
Ck
i ,C

j
i

+ PCk
i ,C

j
i

Ck
i ̸= Cj

i ,

0 Ck
i = Cj

i .
(5)

where the transmission time T tr
Ck
i ,C

j
i

is calculated as follows:

T tr
Ck
i ,C

j
i

=
DSCk

i ,C
j
i
(Aj

i )

BCk
i ,C

j
i

, (6)

DSCk
i ,C

j
i
(Aj

i ) denotes the data size for task Aj
i sent from

server Ck
i to server Cj

i , and BCk
i ,C

j
i

denotes the current

bandwidth between server Ck
i and server Cj

i .
The execution time model T ex(Cj

i ) is defined as the time
required to execute task Aj

i based on scheduling configura-
tion Cj

i . It can be calculated as follows:

T ex(Cj
i ) =

L(Aj
i )

Freq(Cj
i )
, (7)

where L(Aj
i ) denotes the necessary CPU cycles for task Aj

i

to be executed and Freq(Cj
i ) shows the CPU frequency of

scheduled server Cj
i (if the CPU has multiple cores, the

model considers the average frequency). Accordingly, the
formulation of the response time model T (Ci) for applica-
tion Ai is expressed as follows:

T (Ci) =
|Ai|∑
j=1

(T (Cj
i )× CP (Aj

i )), (8)
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where CP (Aj
i ) is the critical path indicator. If task Aj

i

belongs to the critical path of application Ai, CP (Aj
i ) is

set to 1; otherwise, it assumes a value of 0.

3.2.2 Energy Consumption Model

In this work, we consider the energy consumption of the
edge layer and the cloud layer. Given that the scheduling
configuration for task Aj

i is Cj
i , the energy consumption

E(Cj
i ) is determined by the energy consumed during the

actual task processing (i.e., the execution energy model)
Eex(Cj

i ), plus the energy consumed by the servers when
transmitting the required data to other servers (i.e., trans-
mission energy model) Etr(Cj

i ):

E(Cj
i ) = Eex(Cj

i ) + (Etr(Cj
i )× ED(Aj

i )), (9)

where ED(Aj
i ) is 0 if Aj

i is the ending task (i.e., has no
successor task) in application Ai and 1 otherwise.

The execution energy model Eex(Cj
i ) is the energy con-

sumed by the server to execute the task, defined as:

Eex(Cj
i ) = T ex(Cj

i )×W ex(Cj
i ), (10)

where T ex(Cj
i ) is obtained from Eq. 7 and W ex(Cj

i ) repre-
sents the power of the server when executing the task.

Considering the dependency between tasks, one task Aj
i

can have one or more predecessor tasks. The transmission
energy model Etr(Cj

i ) is defined as the sum of the energy
consumed to transmit the data to the servers where the
successor tasks are assigned, as follows:

Etr(Cj
i ) =

∑
Al

i∈SU(Aj
i )

DS
Cj
i
,Cl

i
(Aj

i )

B
Cj
i
,Cl

i

×W tr(Cj
i )

×OS(Cj
i , Cl

i),

(11)

where SU(Aj
i ) denotes the set of successor tasks of task Aj

i ,
Cl
i is the scheduling configuration of task Al

i, W
tr(Cj

i ) show
the transmission power of the server when transmitting
data, and OS(Cj

i , Cl
i) is 0 if Cj

i and Cj
i are the same server

and 1 otherwise. Similar to [40], [41], W tr(Cj
i ) is set as a

constant value, but this parameter can also be dynamically
adjusted.

Accordingly, the energy consumption model E(Ci) for
application Ci is formulated as follows:

E(Ci) =
|Ai|∑
j=1

E(Cj
i ), (12)

3.2.3 Monetary Cost Model

The server set N comprises both the cloud server set CS
and the edge server set ES . Without loss of generality, we
assume that the edge servers are on-premises servers and
are owned by users, so their execution cost only depends
on their electricity usage. Otherwise, the cloud-like pricing
model can be used for edge servers. Given that the schedul-
ing configuration for the task Aj

i is Cj
i , the monetary cost

F (Cj
i ) depends both on the cloud server and the edge server

price models. Formally, the monetary cost model F (Cj
i ) is:

F (Cj
i ) =



∑
Cj
i∈CS

T (Cj
i )× CLP (Cj

i ) Cj
i ∈ CS,

∑
Cj
i∈ES

E(Cj
i )× EP (Cj

i ) Cj
i ∈ ES,

(13)

where CLP (Cj
i ) shows the cloud server pricing, and

EP (Cj
i ) denotes the electricity price for running edge server

Cj
i . Consequently, the monetary cost model F (Ci) for the

application Ci is formulated as follows:

F (Ci) =
|Ai|∑
j=1

F (Cj
i ). (14)

3.2.4 Weighted Cost Model
The weighted cost model J(Cj

i ) is defined as the weighted
sum of the normalized response time models, the energy
consumption model, and the monetary cost model. Given
the scheduling configuration for task Aj

i is Cj
i :

J(Cj
i ) = w1

T (Cj
i )−Tmin

Tmax−Tmin + w2
E(Cj

i )−Emin

Emax−Emin+

w3
F (Cj

i )−Fmin

Fmax−Fmin ,
(15)

where Tmin, Tmax, Emin, Emax, Fmin, and Fmax represent
the minimum and the maximum value that can be achieved
by the response time model, the energy consumption model,
and the monetary cost model, respectively. Also, w1, w2, and
w3 are the control parameters used to fine-tune the weighted
cost model. The reason for employing normalized models,
rather than the original models, is that the values of the
models may fall within different ranges.

Accordingly, the weighted cost model for application Ai

is defined as:
J(Ci) = w1 ×Norm(T (Ci)) + w2 ×Norm(E(Ci))+
w3 ×Norm(F (Ci)),

(16)

where T (Ci), E(Ci), and F (Ci) are obtained from Eq. 8 , Eq.
12 and Eq. 14, and Norm represents the normalization.

Therefore, the optimization problem of scheduling IoT
applications can be formulated as:

min J(Ci) (17)

s.t. C1 : Size(Cj
i ) = 1, ∀Cj

i ∈ Ci (18)

C2 : DSCk
i ,C

j
i
(Aj

i ),BCk
i ,C

j
i
> 0, ∀Ck

i , C
j
i ∈ N ,

∀Aj
i ∈ Ai (19)

C3 : Freq(Nk), Ram(Nk) > 0, ∀Nk ∈ N (20)

C4 :
∑

Ai∈A

∑
Aj

i∈Ai

Ram(Aj
i )× SO(Aj

i ,Nk) < Ram(Nk),

∀Nk ∈ N (21)

C5 : T (Aj
i ) ≤ T (Aj

i +Ak
i ),∀A

j
i ∈ PR(Ak

i ) (22)
C6 : w1 + w2 + w3 = 1, 0 ≤ w1, w2, w3 ≤ 1 (23)

where C1 enforces the rule that each task can be assigned
to only one server. C2 specifies the transmission constraints
for data size and bandwidth. Additionally, C3 defines con-
straints related to the available CPU frequency and available
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RAM size of the server by setting a lower bound. Fur-
thermore, C4 ensures that every server has adequate RAM
resources to process all tasks scheduled on it, preventing
resource overutilization. SO(Aj

i ,Nk) equals 1 if task Aj
i is

scheduled on server Nk, otherwise 0. C5 specifies that each
task is eligible for processing only after the completion of
its predecessor tasks, ensuring that the accumulative cost
is no less than that of the predecessor task. Lastly, C6
places restrictions on the control parameters within Eq. 16,
confining them to values between 0 and 1.

The problem under consideration is characterized as
a non-convex optimization problem, primarily due to the
potential existence of an infinite number of local optima
within the feasible domain. Typically, algorithms aimed
at finding the global optimum in such problems exhibit
exponential complexity and are classified as NP-hard [42].
To solve such a non-convex optimization problem, most
approaches decompose these problems into several convex
sub-problems [43], subsequently solving these sub-problems
iteratively until convergence is achieved [44]. However, this
strategy often sacrifices accuracy for reduced complexity
[45]. Also, these approaches are heavily dependent on the
current environment and are not suitable for dynamic en-
vironments with highly heterogeneous computational re-
sources [46]. To tackle this issue, we propose TF-DDRL to
adaptively manage uncertainties in dynamic and stochastic
environments. It can dynamically learn scheduling policies
through continuous interaction with the environment.

3.3 Deep Reinforcement Learning Model
To apply the DRL approach, the optimization problem
should be formulated as a MDP. More specifically, the
problem can be defined by the tuple < S,A,P,R, γ >, where
S signifies a finite set of states, A represents a finite set of
actions, P represents the state transition probability, R stands
for the reward function, and γ ∈ [0, 1] serves as the discount
factor employed in calculating cumulative rewards.

We consider the learning process to be divided into
multiple time steps t within a total time span T. At each time
step, the agent interacts with the environment, resulting in
multiple states St. At time step t, the agent observes the
environment state St = s, where s ∈ S. Guided by the policy
π(a|s), where a ∈ A, the agent chooses an action At = a.
The policy function π(a|s) = Pr[At = a|St = s] explicitly
defines the probability of selecting action a given state s.
Following the execution of action a, the agent receives a
reward r = R[St = s,At = a] from the environment,
determined by the reward function R. The agent then un-
dergoes a state transition to St+1 = s′ based on the state
transition function P a

ss′ = P[St+1 = s′|St = s,At = a].
The ultimate objective of the agent is to acquire a policy
π maximizing the expected cumulative discounted reward,
denoted as Eπ[

∑
t ∈ Tγtrt].

Considering the scheduling problem of IoT applications
in edge and cloud computing environments, the MDP’s
state space S, action space A, and reward function R are
defined as follows:

• State space S: In this work, the formulated problem
pertains to tasks and servers, with the state S con-
taining F for the task feature and G for the server set

state. At time step t, the feature space F of task Aj
i

captures essential details related to the task, defined
as:

Ft(Aj
i ) = {fy

t (A
j
i )|A

j
i ∈ Ai, 0 ≤ y ≤ |F|}, (24)

where y denotes the feature index and |F| represents
the total number of features. Specifically, the feature
space F includes task ID, application ID, required
CPU cycles L(Aj

i ), required RAM size Ram(Aj
i ),

task dependencies (predecessors PR(Aj
i ) and suc-

cessors SU(Aj
i )), previously configured tasks and

their scheduled servers, execution status of depen-
dent tasks, etc. This comprehensive feature space
enables the DRL agent to make informed scheduling
decisions.
Also, in time step t, the state space G of the server
set N contains the number of servers, the CPU fre-
quency, RAM size, label (e.g., cloud or edge), expense
per time unit (for cloud servers), electricity price (for
edge servers), propagation time, bandwidth between
different servers, etc, which is formally defined as:

Gt(N ) = {|N |, gzt (Nk), h
q
t (Nj ,Nk)|

Nj ,Nk ∈ N , 0 ≤ z ≤ |g|, 0 ≤ q ≤ |h|},
(25)

where g is the sub-state set containing states associ-
ated with an individual server (e.g., CPU utilization),
and z corresponds to its index. Additionally, h signi-
fies the sub-state set containing states associated with
two servers (e.g., propagation time), and q denotes
the index. Consequently, S is defined as:

S = {St = (Ft(Aj
i ),Gt(N ))|Aj

i ∈ Ai, t ∈ T}. (26)

• Action space A: In this work, scheduling involves
the action of assigning the current task Aj

i to an
individual server Nk. Consequently, the definition of
the action at time step t is as follows:

At = Cj
i = Nk. (27)

Therefore, the action space A equals to the server set
N :

A = N . (28)

• Reward function R: As outlined in Section 3.2.4, the
primary objective is to minimize the weighted cost
model presented in Eq. 17. Thus, in time step t, the
reward rt can be defined as the negative value of Eq.
15 if the task can be successfully executed. However,
if the task Aj

i fails to be executed on the scheduled
server Cj

i , a substantial negative value is introduced
as a penalty. Formally, rt is defined as:

rt =

{
−J(Cj

i ) succeed

penalty fail,
(29)

4 TF-DDRL: DISTRIBUTED DRL FRAMEWORK

The high-level architecture of the TF-DDRL framework is
depicted in Fig. 2. The architecture comprises multiple
Actors responsible for collecting data to create experience
trajectories and a Learner that leverages the experience
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Fig. 2: High-level architecture of Actors and Learner

trajectories to learn a policy π. The architecture comprises
multiple distributed Actors, which are responsible for inter-
acting with the environment, collecting data, and generating
experience trajectories by executing tasks based on their
local policies. These experience trajectories are then sent to a
Learner, whose role is to aggregate these trajectories, update
the global policy π, and broadcast the updated policy back
to the Actors to ensure consistent and improved decision-
making across the system. Both the Actors and the Learner
can be flexibly deployed on edge or cloud servers, depend-
ing on the system’s requirements. For example, deployment
on cloud servers may be preferred when higher computa-
tional capacity is needed, whereas edge servers may be more
suitable when low latency or data locality is prioritized. The
primary objective is to identify a policy π that maximizes
the expected sum of future discounted rewards:

V π(s) = Eπ[
∑
t∈T

γtrt], (30)

where π represents the policy, γ ∈ [0, 1] is the discount
factor, rt = r(st, at) denotes the reward at time t, st is the
state at time t, s is the initial state s0, and at = π(at|st)
is the action generated by following a specific policy π.
Fig. 3 presents an overview of the TF-DDRL framework. In
what follows, each component and communication process
is discussed in detail.

4.1 Actor: Experience Trajectories Generation

Algorithm 1 describes how the Actor in the TF-DDRL frame-
work generates experience trajectories. In order to improve
the efficiency of sampling and the speed of convergence of
TF-DDRL, PER is introduced to store the trajectory expe-
riences of the Actor. At the beginning, the Actor updates
its local policy µ to the most recent Learner policy π and
initializes a PER buffer P to store the collected transitions.
Before one trajectory, the Actor generates the initial state

Fig. 3: An overview of TF-DDRL framework

based on the information of the current task and server
set. After that, based on the output at of the policy µ, the
Actor schedules the current task to the corresponding server.
Then, the reward rt of the current action at is calculated
based on Eq. 29, and the next state st+1 is also generated
based on the information of the next task and the server
set. Afterward, the Actor calculates the importance measure
mt and stores the current transition (st, at, rt, µ(at|st), st+1)
into P based on mt. After n steps, the Actor sends the tra-
jectory {s1, a1, r1, µ(a1|s1), ..., sn, an, rn, µ(an|sn), sn+1} to
the Learner. The Learner then iteratively updates its policy
π over a batch of trajectories gathered from different Actors.
This framework decouples data collection and learning,
allowing more Actors to be added and distributed across
multiple machines for efficient utilization of computing
resources in edge and cloud IoT systems.

Algorithm 1: Actor: experience generation
Input : the Actors’s local policy µ; the Learner’s policy

π; the Learner’s address Learner; max time
step n;

1 while True do
2 µ← UpdateActorPolicy(π, Learner);
3 P ← InitializePERBuffer();
4 servers← GetServers();
5 task ← GetTask();
6 s1 ← GenerateState(servers, task);
7 for t← x to x+ n− 1 do
8 at ← µ(st);
9 Schedule(task, at);

10 rt ← GetReward();
11 servers← GetServers();
12 task ← GetTask();
13 st+1 ← GenerateState(servers, task);
14 et = (st, at, rt, µ(at|st), st+1);
15 mt = rt + γtV (st+1)− V (st);
16 Store transition et into P based on mt;
17 end for
18 if Length(P) == n then
19 SubmitTrajectory(P, Learner);
20 end if
21 end while

4.2 Learner: Schedule Policy Update

However, it’s worth noting that after a few updates, the
Actor’s strategy µ may fall behind the Learner’s strategy
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π. To address the gap between the Actor’s policy µ and the
Learner’s policy π, an off-policy correction method named
V-trace [13] is introduced to rectify this discrepancy.

4.2.1 V-trace Correction Method
The Learner in TF-DDRL maintains a state value function
V based on the samples from the Actors. The purpose of
the V-trace correction method is to provide an estimate of
the current state value function V , called V-trace target V̂ .
After n steps of interaction with the environment, the Actor
collects a trajectory (st, at, rt, µ(at|st), st+1)

t=x+n
t=x following

its policy µ. The n-steps V-trace target V̂ (sx) for state sx is:

V̂ (sx) = V (sx) +
x+n−1∑
t=x

γt−x(
t−1∏
i=x

ci)δtV, (31)

where δtV is the truncated Temporal Difference (TD) for V ,
and

∏t−1
i=x ci measures the impact of δtV observed at time t

on the update of the value function V at the previous time
x. Specifically, δtV is defined as:

δtV = ρt(rt + γtV (st+1))− V (st)), (32)

and ci and ρt are truncated importance sampling weights,:

ci = min(c̄,
π(ai|si)
µ(ai|si)

), (33)

ρt = min(ρ̄,
π(at|st)
µ(at|st)

), (34)

where c̄ and ρ̄ are the truncation constants with c̄ ≤ ρ̄. c̄
affects the speed of convergence, while ρ̄ affects the solution
to which the value function V converges. Considering ρ̄, the
corresponding target policy πρ̄(a|x) is defines as:

πρ̄(a|x) =
min(ρ̄µ(a|x), π(a|x))∑
b∈A min(ρ̄µ(b|x), π(b|x))

(35)

4.2.2 Actor-Critic-based Algorithm
The implementation of TF-DDRL follows the Actor-Critic
architecture. TF-DDRL optimizes two DNNs, the actor
(policy) network and the critic (value) network. The ac-
tor network focuses on acquiring a policy π to maximize
the expected cumulative discounted reward Eπ[

∑
t∈T γtrt].

Meanwhile, the critic network evaluates the current policy π
by computing the TD error, which measures the difference
between the current reward and the estimate of the value
function V .

Algorithm 2 describes how the Learner in the TF-DDRL
framework updates policies. The Learner first obtains the
collected trajectories from all Actors. In order to improve
the efficiency of sampling and the speed of convergence of
the algorithm, trajectory experiences are sampled based on
importance measure mx. When updating the networks, the
loss function of TF-DDRL is defined as follows:

losstotal = av ∗ lossvalue + ap ∗ losspolicy+
ae ∗ lossentropy,

(36)

where lossvalue is the loss function for value function,
losspolicy is the loss function for policy, lossentropy is the
loss function for entropy bonus, and av, ap, and ae are the
corresponding weights. Considering πϕ is the current policy
parameterized by ϕ, Vθ is the value function parameterized

by θ, and µ is the Actor’s local policy, the value loss function
lossvalue is defined as the L2 loss between the current value
Vθ and the V-trace target value V̂ :

lossvalue = (V̂ (sx)− Vθ(sx))
2, (37)

where V̂ (sx) is from Eq. 31. Considering the objective func-
tion Eq. 30, the policy gradient can be presented as:

∇V π(s) = Eπ[∇logπ(ax|sx)Qπ(sx, ax)], (38)

where Qπ(sx, ax) is the state-value of policy π at (sx, ax).
In TF-DDRL, the truncated importance sampling weight ρx
between the policy πρ̄ and the Actor’s local policy µ is em-
ployed to suppress the divergence. Also, we use rs+ γvs+1,
named as the v-trace advantage, to estimate Qπρ̄

(ax|sx).
Besides, state-dependent baseline Vθ(sx) is subtracted from
the v-trace advantage to reduce bias. Therefore, the policy
loss function losspolicy is defined as:

losspolicy = −ρxlogπϕ(ax|sx)(rx + γvx+1 − Vθ(sx)), (39)

where ρx is from Eq. 34. We also exploit the entropy H(πϕ)
as a bonus to encourage exploration, with the loss function
lossentropy defined as:

lossentropy = −H(πϕ) =
∑
a

πϕ(ax|sx)logπϕ(ax|sx) (40)

Therefore, the value function parameter θ is updated in the
direction of:

∆θ = av ∗ (V̂ (sx)− Vθ(sx))∇θVθ(sx), (41)

and the policy parameter ϕ is updated through policy
gradient:

∆ϕ = apρx∇ϕlogπϕ(ax|sx)(rx + γvs+1 − Vθ(sx))

−ae∇ϕ

∑
a

πϕ(ax|sx)logπϕ(ax|sx). (42)

4.3 Prioritized Experience Replay
The Learner in TF-DDRL relies on the experience trajectories
collected from Actors to update the parameters. However,
in dynamic edge and cloud environments, the experience
changes over time, resulting in significant gaps between
samples. Each sample can contribute to different improve-
ments to the model. To enhance sampling efficiency, expe-
dite convergence, and enable the model to quickly adapt
to changes by focusing on the most pertinent experiences
during the training phase, PER [16] is introduced in both
the data collection phase and the model update phase.

As presented in Algorithm 1, during the data collection
phase, the Actor assigns importance measure mt to each
experience sample when storing it in the buffer. Since the TD
error reflects the difference between the model’s estimated
value of the current state and the next state, and when this
difference is significant, it indicates that the experience sam-
ple provides valuable information for updating the current
policy. Therefore, TF-DDRL uses the TD error as a metric to
measure the importance of samples, defined as:

mt = rt + γtV (st+1)− V (st) + ϵ, (43)

where ϵ is a tiny positive number from 0 to 1, in case
the experience is not sampled when the TD error is 0.
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Algorithm 2: Learner: policy update
Input : current policy πϕ; value function Vθ ; update

epoch X ; buffer size N ; value function loss
coefficient av ; policy objective function loss
coefficient ac; entropy bonus loss coefficient ae;
the Actors set Actors

1 while True do
2 D ← InitializeBuffer();
3 for actor in Actors do
4 D.append(ReceiveTrajectory(actor));
5 end for
6 for trajectory in D do
7 for x← 1 to X do
8 Sample experience

ex = (sx, ax, rx, µ(ax|sx), sx+1) ∼M(x) =
mα

x/
∑

i m
α
i ;

9 wx = (NM(x))−β/maxiwi;
10 V̂ (sx)← Vθ(sx) +

∑x+n−1
t=x γt−x(

∏t−1
i=x ci)δtVθ ;

11 mx ← |δt|;
12 lossvalue ← (V̂ (sx)− Vθ(sx))

2;
13 losspolicy ←

−ρxlogπϕ(ax|sx)(rx + γvx+1 − Vθ(sx));
14 lossentropy ←

∑
a πϕ(ax|sx)logπϕ(ax|sx);

15 losstotal ←
av ∗ lossvalue+ap ∗ losspolicy +ae ∗ lossentropy ;

16 ∆θ ← ∆θ + wxav(V̂ (sx)− Vθ(sx))∇θVθ(sx);
17 ∆ϕ←

∆ϕ+ wx(apρx∇ϕlogπϕ(ax|sx)(rx + γvs+1 −
Vθ(sx))− ae∇ϕ

∑
a πϕ(ax|sx)logπϕ(ax|sx));

18 end for
19 update θ and ϕ by Adam optimizer;
20 end for
21 BroadcastPolicy(Actors, πϕ);
22 end while

As presented in Algorithm 2, when the Learner samples
experience ex from the trajectory, the sampling probability
M(x) is calculated as follows:

ex ∼ M(x) =
mα

x∑
i m

α
i

(44)

where α determines the degree of priority, and α = 0
corresponds to the uniform case (i.e., each experience has
the same probability of being sampled).

However, when experiences are given priority, they have
different probabilities of being sampled, which will intro-
duce bias in the update of the value network, thus changing
the direction of the convergence of the value network. In
order to correct this error, an importance-sampling weight
is added to each empirical sample, calculated as follows:

wx = (
1

NM(x)
)β ∗ (maxiwi)

−1, (45)

where N is the number of experience samples in the PER
buffer, β is a hyperparameter within 0 and 1 that will
gradually increase and finally settle at 1, and (maxiwi)

−1 is
to normalize the weight to improve stability. The purpose of
using the importance-sampling weight is to strike a balance
between prioritizing samples to learn important experiences
and reducing the potential bias. As β continues to rise to 1,
the bias gradually decreases, and the learning process grad-
ually reduces the impact of prioritization, ensuring a more
stable and unbiased learning process. This helps prevent the
model from becoming too sensitive to specific experiences,
encouraging a more robust and accurate learning process.

4.4 Gated Transformer-XL

Due to the heterogeneity and dynamics of edge and cloud
environments, TF-DDRL uses the Gated Transformer-XL
[14] to allow the model to better capture long-term de-
pendencies and global relationships between states. The
network architecture of TF-DDRL is shown in Fig. 4.

Fig. 4: The network architecture of TF-DDRL framework

In the Transformer layer of TF-DDRL, the Multi-Head
Attention block applies the attention mechanism to different
linear mappings (heads) of the input and concatenates them
together, allowing the model to focus on different parts of
the input sequence simultaneously, which helps to capture
the relationships between different features in the input. The
Position-wise Multi-Layer Perceptron (MLP) block is used to
perform independent nonlinear transformations of features
at each position, enhancing the model’s ability to capture
complex patterns and relationships at different positions in
the input sequence, providing a more expressive representa-
tion for downstream processing. The Gating Layer is used to
weight the features of each position when passing through
different blocks. The model can control the flow of input
information by learning the appropriate weights, making it
more suitable for specific tasks and data distribution.

While the inclusion of Transformers in TF-DDRL can
enhance the model’s ability to capture long-term depen-
dencies in scheduling tasks, it also introduces additional
computational overhead due to its multi-head attention
mechanism. However, by leveraging the distributed Actor-
Learner architecture, TF-DDRL distributes the computa-
tional burden across multiple servers, thus mitigating the
impact on individual nodes. This design choice allows the
framework to maintain scalability and efficiency in dynamic
IoT environments, despite the added complexity. Addition-
ally, the use of PER further optimizes sampling efficiency,
reducing the exploration costs associated with training.
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5 PERFORMANCE EVALUATION

This section introduces the experiment configuration, hy-
perparameters of the TF-DDRL, and the performance study.

5.1 Experiment Setup

We discuss the specification of our practical edge-cloud
environment, details of employed real IoT applications, and
baseline techniques.

5.1.1 Practical Experiment Environment

To reflect the heterogeneous computing environments, a
practical experiment environment, containing IoT devices,
edge servers, and cloud servers, is established. Besides, to
build a multi-cloud computing environment, we used three
instances from the Nectar Cloud infrastructure (All AMD
EPYC with 2 cores @2.0GHz, 8GB RAM; 4cores @2.0GHz,
16GB RAM; 8 cores @2.0GHz, 32GB RAM), one instance
from AWS Cloud (Intel Xeon with 1 core @2.4GHz, 1GB
RAM), and one instance from Microsoft Azure Cloud (Intel
Xeon with 1 core @2.3GHz, 1GB RAM).

In the edge computing environment, we used one RPi
3B (Pi OS, Broadcom BCM2837 with 4 cores @1.2GHz, 1GB
RAM), one Macbook Pro (macOS, M1 Pro with 8 cores, 16GB
RAM), and one Dell laptop (Linux, Intel Core i7 with 8 cores
@2.3GHz, 16GB RAM). Also, as IoT devices, we have used
webcams, IP cameras, and docker containers that stream
pre-recorded video files.

Moreover, we used the Victorian Default Offer1 (i.e.,
0.2871 AUD/kWh) in Australia as the electricity price,
and the official price of AWS2 and Microsoft Azure3

cloud servers (i.e., 0.1296 AUD/hour for m6a.large,
0.2592 AUD/hour for m6a.xlarge, 0.5184 AUD/hour for
m6a.2xlarge, 0.0174 AUD/hour for t2.micro, and 0.0156
AUD/hour for B1s) to calculate the monetary cost in the
experiment. In our environment, the servers exhibit the
following average latency and bandwidth (data rate): the
latency between the IoT device and the Nectar cloud server
ranges from 6-12ms, with a bandwidth between 14-20MB/s;
between the IoT device and the AWS cloud server, the
latency ranges from 15-25ms, with a bandwidth between
15-22MB/s; between the IoT device and the Microsoft Azure
cloud server, the latency ranges from 7-15ms, with a band-
width between 15-21MB/s; the latency between the IoT
device and the edge servers ranges from 1-6ms, with a band-
width between 130-140 MB/s. The energy consumed to ex-
ecute applications on servers is monitored using the eco2AI
library [47]. Moreover, the transmission power W tr(Cj

i ) of
servers is obtained similar to [40], [41], and W tr(Cj

i ) is
set between 0.75-1 watt for edge servers and between 3-5
watt for cloud servers. However, these parameters can be
adjusted.

Furthermore, in Eq. 16, w1, w2, and w3 are set to 0.33,
indicating that the importance of response time, energy
consumption, and monetary cost are considered equal.

1. https://www.esc.vic.gov.au/electricity-and-gas/prices-tariffs-
and-benchmarks/victorian-default-offer

2. https://aws.amazon.com/pricing
3. https://azure.microsoft.com/pricing

5.1.2 Sample IoT Applications
To evaluate TF-DDRL’s performance, we utilized four types
of IoT applications, featuring real-time and/or non-real-
time capabilities. Real-time functionality allows applications
to process live streams, while non-real-time functionality
facilitates the processing of pre-recorded video files. These
applications, adhering to a sensor-actuator architecture, are
dynamically distributed across the heterogeneous IoT de-
vices in both edge and cloud environments. Each applica-
tion can operate on multiple devices simultaneously, cre-
ating a realistic and diverse application scheduling envi-
ronment. Additionally, all applications offer an adjustable
parameter known as the application label, which determines
the resolution of the video. The applications are detailed
below:

• Face Detection [48]: Identifies human faces in real-
time, marking them with squares in the video. This
application is implemented using the OpenCV4.

• Color Tracking [48]: Traces colors in a video stream in
real-time. Users have the flexibility to dynamically
configure target colors using the application’s GUI.
This application is developed using OpenCV4.

• Face And Eye Detection [48]: Alongside identifying
human faces in real-time, it detects human eyes. This
application is developed using OpenCV4.

• Video OCR [49]: Retrieves textual content from pre-
recorded video and presents it to the user. It is
designed to automatically filter keyframes for effi-
cient processing. This application is developed using
Google’s Tesseract-OCR Engine5.

5.1.3 Baseline Techniques
To evaluate the performance of TF-DDRL, we implemented
five additional DRL techniques, including centralized and
distributed, as outlined below:

• IMPALA [13]: It is a distributed DRL technique and
is designed for large-scale environments. TF-DDRL is
based on the architecture of IMPALA to enable high
scalability in highly distributed environments.

• ApeX-DQN [17]: It is an improved DRL technique
based on DQN that introduces a distributed learning
architecture, adopted by Wen et al. [33] for schedul-
ing problems.

• A3C [18]: It is one of the most adapted techniques in
the distributed DRL field for scheduling problems.
It has been used by many works in the current
literature, including [34], [35], [36], [37], and [38]. It
combines the Actor-Critic method with the concept
of concurrent execution. We extend this technique to
solve the proposed optimization problem in the het-
erogeneous edge and cloud computing environment.

• D3QN-RNN: Many works ([22], [24], [26], [27], [30],
and [31]) use DQN-based DRL techniques. We ex-
tend the foundation of DQN, incorporating the Du-
eling architecture [19] to decompose the Q values
into state and advantage values for a more accurate
estimation of the relative value of actions. Also, we

4. https://github.com/opencv/opencv
5. https://github.com/tesseract-ocr/tesseract
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TABLE 3: The hyperparameters setting for TF-DDRL

TF-DDRL Hyperparameter Value
Fully Connected Layers 3
Hidden Layer Units [256, 256, 128]
Activation Function ReLU
Learning Rate lr 0.001
Discount Factor γ 0.99
Transformer Unit Number 2
Transformer Head Number 4
Transformer Head Dimension 32
Transformer Position-wise MLP Dimension 32
Optimization Method Adam

TABLE 4: Hyperparameters of baseline techniques

Hyperparameters ApeX-DQN A3C D3QN-RNN SAC
Fully Connected Layers 3 3 3 3
Hidden Layer Units [256,256,128] [256,256,128] [256,256,128] [256,256,128]
Activation Function ReLU TanH ReLU ReLU
Learning Rate 0.001 0.001 0.001 0.0001
Discount Factor 0.99 0.9 0.99 0.99

introduce Double DQN [20], employing two inde-
pendent neural networks to estimate target Q-values
to address the overestimation during training. More-
over, RNN is used in this technique.

• SAC [21]: It is a centralized DRL technique and is
used by Zheng et al. [28]. It combines the Actor-Critic
method with entropy regularization, encouraging ex-
ploration, and enhancing the stability of learning. It
is extended to address our problem within the het-
erogeneous edge and cloud computing environment.

5.2 Technique Hyperparameters
The network architecture of TF-DDRL is depicted in Fig.
4. In our implementation, we used three fully connected
layers, followed by two Gated Transformer-XL-based at-
tention layers, and then two additional fully connected
layers for generating action logits and the value function.
Furthermore, we performed a grid search to fine-tune the
hyperparameters. Accordingly, we set the learning rate (lr)
to 0.001 and the discount factor (γ) to 0.99. Also, the c̄
and ρ̄, governing the V-trace performance, are both set to
1 for optimal results. Table 3 provides a summary of the
hyperparameter settings. Moreover, we conducted hyperpa-
rameter tuning for the baseline techniques to ensure a fair
assessment of their performance, as presented in Table 4.

5.3 Performance Study
The results of our extensive experiments are shown below.

5.3.1 PER and Transformer Analysis
This experiment studies the performance of TF-DDRL com-
pared to native IMPALA. We employ the four applications
detailed in Section 5.1.2 for training. Due to the page limit,
the results are provided exclusively for weighted costs.

Figure 5 shows the outcome of TF-DDRL under various
model configurations. Without the use of both PER and
Transformer, the native IMPALA requires approximately 90
iterations to converge to the optimal solution discovered in
the experiment. The convergence speed slightly improves
when only PER is employed. However, with the exclusive
employment of the Transformer, TF-DDRL demonstrates a

significant acceleration in convergence speed, reaching the
experiment’s optimal solution in around 50 iterations. When
both PER and Transformer are used concurrently, TF-DDRL
converges in approximately 40 iterations.

These results clearly highlight the advantages of inte-
grating both PER and Transformer within TF-DDRL. While
incorporating the Transformer could potentially introduce
challenges such as instability and slower convergence due to
increased model complexity, the V-trace correction mecha-
nism ensures stable learning during the distributed training
process. Additionally, PER further accelerates learning by
prioritizing important experiences. This synergistic combi-
nation enables TF-DDRL to find better scheduling solutions
more efficiently compared to native IMPALA.

Fig. 5: PER and Transformer analysis

5.3.2 Cost vs Policy Update Analysis

This experiment analyzes the performance of TF-DDRL
in various iterations during policy updates. For training
purposes, we utilize four applications as detailed in Section
5.1.2, configuring the resolution as 480. The results, showing
the policy cost versus updating iteration, are presented in
Fig. 6.

As shown in Fig. 6, the optimization costs of all tech-
niques decrease with the increasing number of iterations in
different scenarios. However, under different optimization
objectives, TF-DDRL shows a faster convergence compared
to other techniques. It converges to the best scheduling
solution discovered during training in approximately 40
iterations. ApeX-DQN exhibits a slower convergence speed
than TF-DDRL but eventually converges to the optimal
scheduling solution in 90 iterations. D3QN-RNN converges
to the best scheduling solution under monetary cost op-
timization (Fig. 6c). Although the costs of A3C and SAC
decrease continuously during training, neither of them con-
verges to the optimal solution within 100 iterations.

During evaluation, the resolution is adjusted to 240,
altering the IoT application’s demands for computing re-
sources compared to the training phase. The results, show-
ing the optimization cost versus the policy update for var-
ious algorithms, are presented in Fig. 7. It is obvious that
similar to the results obtained during the training phase,
compared with other techniques, TF-DDRL demonstrates
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(a) Response time (b) Energy Consumption (c) Monetary Cost (d) Weighted cost

Fig. 6: Cost vs policy update analysis - training phase

(a) Response time (b) Energy Consumption (c) Monetary Cost (d) Weighted cost

Fig. 7: Cost vs policy update analysis - evaluation phase

better performance in response time, energy consumption,
monetary cost, and weighted cost in the evaluation phase.
Also, after 100 iterations of updates for all baseline tech-
niques, none of them can achieve results superior to TF-
DDRL. This indicates that TF-DDRL not only converges
faster, with significantly less time compared to other tech-
niques but also provides better scheduling results. Except
for the ApeX-DQN technique, A3C, D3QN-RNN, and SAC
do not converge to the optimal scheduling solution in 100
iterations. Overall, compared to ApeX-DQN results, which
is the only baseline technique that converges to the optimal
scheduling solution found in the evaluation phase across
all optimization objectives, TF-DDRL achieves average per-
formance gains of 60%, 51%, 56%, and 58% in response
time, energy consumption, monetary cost, and weighted
cost, respectively.

These performance advantages of TF-DDRL can be at-
tributed to several key technical designs. The Transformer,
with its multi-head attention mechanism and position-wise
MLP layers, effectively captures complex dependencies be-
tween state features and provides strong non-linear model-
ing capabilities, enabling better generalization to different
resource configurations. The PER mechanism enables more
efficient experience sampling by prioritizing informative
experiences based on TD errors, significantly reducing ex-
ploration costs compared to uniform sampling methods
used in baseline approaches. Additionally, the combination
of distributed experience sharing and V-trace off-policy cor-
rection ensures efficient utilization of collected experiences
while maintaining training stability, addressing the limita-
tions of techniques like A3C that rely on local experiences.
These design elements collectively contribute to TF-DDRL’s
superior convergence speed and scheduling performance in
dynamic edge and cloud environments.

5.3.3 Scalability Analysis

This experiment investigates the impact of different num-
bers of servers on the scheduling technique for IoT appli-
cations. The number of available servers directly impacts
the complexity of IoT application scheduling problems, as
a higher number of servers leads to a larger action space.
To evaluate the scalability performance of TF-DDRL, the
experiment uses varying numbers of servers (e.g., 5, 10, 15,
20, 25, 30). Also, other settings are consistent with Section
5.3.2. Due to space constraints and the fact that the results
for response time, energy consumption, and monetary cost
follow the same patterns as weighted costs, only the results
for weighted costs are presented.

Figure 8 shows the weighted cost optimization results
obtained by various techniques after 100 iterations, consid-
ering the growth of candidate servers. As the number of
servers increases, TF-DDRL consistently outperforms other
techniques, converging more rapidly towards superior so-
lutions. This shows that as the system scales up, TF-DDRL
demonstrates superior scalability, enabling it to make more
effective application scheduling decisions in fewer iteration
cycles. In the baseline techniques, ApeX-DQN outperforms
other techniques, although weighted costs eventually con-
tinue to increase with the growth of available servers.

The superior scalability of TF-DDRL can be attributed
to its architectural advantages in handling large-scale envi-
ronments. The Transformer’s self-attention mechanism effi-
ciently processes the increasing state space by dynamically
focusing on relevant server features, while its position-wise
MLP provides the necessary modeling capacity for complex
server relationships. Moreover, the distributed experience
collection combined with PER ensures efficient exploration
of the expanded action space, as it prioritizes experiences
that are most informative for learning optimal scheduling
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Fig. 8: Scalability analysis Fig. 9: GHE analysis Fig. 10: Speedup analysis Fig. 11: SCO analysis

policies. These design elements allow TF-DDRL to maintain
its performance even as the server count increases, whereas
baseline methods struggle with the exponentially growing
state-action space.

5.3.4 Greenhouse Gas Emission Analysis
This experiment examines the impact of various scheduling
techniques based on Greenhouse Gas Emission (GHE). We
specifically analyze electricity generation patterns in Aus-
tralia6, the US7, and Germany8, considering the associated
GHE of various sources involved in electricity production9.
The total GHE is defined as the sum of GHE from the pro-
duction of electricity from each source [50], shown below:

GHE = EC ∗
∑

i∈Sources

(Ui ∗ Pi), (46)

where EC represents the total electricity consumed, Ui

represents the amount of greenhouse gas emitted per unit
of electricity produced using source i, and Pi represents the
proportion of the source i in producing electricity.

Figure 9 presents the GHE associated with different
scheduling techniques based on electricity generation in
different countries. Notably, TF-DDRL exhibits the lowest
GHE, while A3C has more GHE compared to other tech-
niques. Also, the GHE based on the US power generation
pattern is substantially higher than that of Australia and
Germany. This discrepancy is due to the prevalence of fossil
sources, including coal and natural gas, in the US electricity
generation pattern. The experiment results show that TF-
DDRL can effectively reduce GHE, which can contribute
to collective efforts to address climate change, alleviate the
impacts of global warming, and foster a healthier and more
sustainable natural environment.

TF-DDRL achieves lower GHE through several key tech-
nical advantages in its scheduling decisions. The Trans-
former architecture enables more precise modeling of the
relationship between server power consumption patterns
and application characteristics, leading to more energy-
efficient task scheduling. Additionally, the PER mecha-
nism helps identify and prioritize experiences that lead to
energy-saving scheduling strategies. The distributed learn-
ing framework further allows TF-DDRL to explore and learn

6. https://www.energy.gov.au/data/electricity-generation
7. https://www.eia.gov/tools/faqs
8. https://www.umweltbundesamt.de/themen/co2-emissionen-

pro-kilowattstunde-strom-stiegen-in
9. https://world-nuclear.org/information-library/energy-and-the-

environment/carbon-dioxide-emissions-from-electricity.aspx

from a diverse range of energy-efficient scheduling pat-
terns. These capabilities result in more intelligent resource
utilization and reduced energy waste, thereby effectively
decreasing GHE across different power generation patterns.

5.3.5 Speedup Analysis
With the similar experimental configuration outlined in Sec-
tion 5.3.2, we explore the speedup performance of various
techniques. We define the reference time, denoted as Timer ,
as the time required for the weighted cost of TF-DDRL with
an Actor to reach a value of 0.76. Designating 0.76 as the
reference weighted cost is motivated by the fact that this
particular value serves as the smallest weighted cost that
can be obtained by all baseline techniques. Additionally,
we define Timet as the time required by each technique
to attain the reference weighted cost. So, the speedup SPU
for each technique is defined as follows:

SPU =
Timer
Timet

. (47)

The speedup results for all techniques are illustrated in
Fig. 10. The results demonstrate that TF-DDRL outperforms
A3C, D3QN-RNN, and SAC by 7 to 11 times, and it is
over 40% faster than ApeX-DQN. This significant speedup
advantage can be attributed to several key designs of TF-
DDRL. The Transformer’s parallelism enables efficient pro-
cessing of state information. The PER mechanism further
accelerates learning by focusing computational resources on
the most informative experiences. Moreover, TF-DDRL’s V-
trace correction method effectively addresses the policy lag
between the Actor and Learner, providing more stable and
efficient training. These architectural advantages collectively
enable TF-DDRL to achieve faster learning and better adap-
tation to dynamic edge and cloud computing environments.

5.3.6 Scheduling Overhead (SCO) Analysis
This experiment investigates the SCO of each technique.
We use the same environment settings in Section 5.3.2.
For each technique, we run 100 iterations, each containing
four IoT applications. Also, the average SCO is defined as
Timea = Timeo

100 , where Timeo denotes the total overhead
of the technique to schedule the IoT applications.

Figure 11 illustrates the Timea within the 95% confi-
dence interval for various techniques during the scheduling
of IoT applications. The scheduling overhead of TF-DDRL
is lower compared to ApeX-DQN, D3QN-RNN, and SAC,
but higher than A3C. The higher overhead is expected
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due to the employment of Transformer layers and PER
mechanism. However, this trade-off between overhead and
performance is well justified by TF-DDRL’s significantly
better scheduling decisions and faster convergence. Thus,
in heterogeneous edge and cloud computing environments,
TF-DDRL proves to be more efficient in scheduling IoT
applications.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a distributed DRL technique,
named TF-DDRL, designed to solve DAG-based IoT ap-
plication scheduling in highly heterogeneous and dynamic
edge and cloud computing environments. We formulated
the IoT application scheduling problem as an optimization
problem and then transformed it into an MDP model, aim-
ing to minimize response time, energy consumption, mon-
etary cost, and weighted cost. We proposed the TF-DDRL,
which follows Actor-Critic architecture, incorporating PER
and Transformer techniques to decrease exploration costs
and enhance convergence speed. TF-DDRL allows multi-
ple parallel and scalable Actors to work simultaneously
and share experience trajectories with the Learner, enabling
more effective and efficient learning. Also, we used the V-
trace off-policy correction method to solve discrepancies
between Learner and Actor policies. As demonstrated by ex-
tensive experiments, in highly stochastic and heterogeneous
computing environments, TF-DDRL possesses better scala-
bility and adaptability, compared to its counterparts. The re-
sults indicate that TF-DDRL outperforms other DRL-based
approaches, demonstrating performance improvements of
up to 60%, 51%, 56%, and 58% in terms of response time,
energy consumption, monetary cost, and weighted cost,
respectively.

As part of future work, we will consider more aspects of
the optimization problem, including system load balancing.
Also, we plan to develop a resource management frame-
work based on TF-DDRL for edge and cloud environments,
allowing users to customize and evaluate applications and
scheduling policies in dynamically heterogeneous environ-
ments. Furthermore, we intend to explore the integration of
recent transformer-based DRL advancements, such as [51],
particularly for scenarios involving offline data-driven IoT
application scheduling. Additionally, we plan to investigate
the design and deployment of multi-Learner architectures
within the TF-DDRL framework to improve scalability and
adaptability in large-scale edge and cloud environments.
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