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Abstract—In the multi-tenant architecture of cloud computing, different applications have different requirements and priorities. In the
case of network congestion within a data center, failure of transferring data on time may cause a significant performance degradation of
an application. It may result in a severe failure for a critical application that needs a certain level of QoS satisfaction, therefore, efficient
resource provisioning techniques are vital to ensure transferring the high-priority data over the other traffics even in network
congestion. In Software-Defined Networking (SDN)-enabled clouds, this is possible by reconfiguring network flows dynamically
adapting to network traffics. In this paper, we propose priority-aware resource placement algorithms considering both host and network
resources. Our priority-aware VM allocation (PAVA) algorithm places VMs of the high-priority application to closely connected hosts to
reduce the chance of network congestion caused by other tenants. The required bandwidth of a critical application is also guaranteed
by bandwidth allocation with a configuration of priority queues on each networking device in a data center network managed by SDN
controller. Our experiment results show that the combination of proposed approaches can allocate sufficient resources for high-priority
applications to meet the application’s QoS requirement in a multi-tenant cloud data center.

Index Terms—Cloud computing, software-defined networking, resource management, energy efficiency

1 INTRODUCTION

MA]ORITY of the recent Internet applications utilize cloud
computing infrastructure to provide elastic and cost-
effective services [1]. Cloud providers provision computing,
memory, storage, and networking resources for tenants to
serve their applications with different requirements. These
applications require different amounts of resources with a dif-
ferent priority. Compute-intensive applications such as large
scientific application require more computing and memory
power than networking resources, while network-intensive
applications need more networking bandwidth than comput-
ing power. Cloud providers should allocate and provision
resources efficiently in the data center to satisfy various
requirements.

Cloud providers also need to guarantee the Service Level
Agreement (SLA) for customers to ensure a different level of
reliability and Quality-of-Service (QoS) requirements. For
example, QoS-critical (higher-priority) applications such as
medical software for cyber surgery, loT applications for real-
time disaster management, or deadline constrained scientific
applications, need more strict policies in cloud resource
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management, while normal (lower-priority) applications
may have a loose requirement. With the mixed applications
with different QoS requirements sharing the same data cen-
ter, providers should provision the resources efficiently to
satisfy various QoS requirements of different applications.

However, it is difficult to guarantee such QoS in clouds
because resources in a data center are shared by multiple
tenants and applications, which are often over-booked to
save the operational cost of a cloud provider [2]. Network
resources, in particular, are oversubscribed in many data
center designs to reduce the total cost of the design [3]. A
simple method for providers to guarantee the QoS is to
assign dedicated hosts and networks solely for a certain ten-
ant, but it is deprived of all the benefits of clouds such as
elasticity, low-cost, and dynamic provisioning of the resour-
ces. Although the dedicated resources can maximize the
application performance as the allocated resources are only
utilized for a specific application, it is a costly solution los-
ing many advantages of cloud computing paradigm.

Unless assigning dedicated physical networking solely
for certain applications, clouds tenants shall share the net-
work resource. In cloud data centers, there are trade-offs
between network proportionality, minimum guarantee, and
high utilization [4]. This limitation lets cloud providers inca-
pable of guaranteeing a minimum bandwidth for a certain
tenant while targeting network proportionality and high
utilization at the same time. For example, when a provider
guarantees a minimum bandwidth for certain traffic by
reserving bandwidth, the overall network utilization would
be decreasing due to the unused reserved bandwidth. Thus,
most public cloud providers including Amazon, Microsoft
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and Google do not guarantee the network bandwidth and
only provides best-effort performance in their networking
service. However, a certain type of applications in need of
timely responsiveness (e.g., medical and disaster manage-
ment applications) require more reliable networking perfor-
mance in clouds.

The emergence of Software-Defined Networking (SDN)
enables a fulfillment of network QoS satisfaction by the
introduction of dynamic network reconfiguration based on
the network traffic. SDN has brought many opportunities in
networking with centralized manageability and program-
mable control logic. In SDN, a controller oversees the entire
network by gathering all information of every network
device and manages the network traffics dynamically with
the customized control logic. SDN integration in a cloud
data center has shown to be effective to improve the energy
efficiency [5], [6], [7], the network performance [8], [9], [10],
the network availability [11], and the security [12]. It also
enables network slicing and dynamic bandwidth allocation
which can be exploited for QoS satisfaction [13], [14].

In this work, we propose a novel VM and network alloca-
tion approach (PAVA+BWA) in the combination of a priority-
aware VM allocation algorithm (PAVA) considering network
connection between VMs on the application level with a net-
work bandwidth allocation algorithm (BWA) to differentiate
the higher-priority flows over normal network traffics. These
algorithms are to allocate enough resources for QoS-critical
applications in cloud environments where the computing
and networking resources are shared with other tenants. We
distinguish such applications to give the higher priority
over the other tenants for resource provisioning and network
transmission.

We model an application based on its priority to differenti-
ate in VM capacity and network bandwidth. Our approach
can allocate sufficient computing and networking resources
for a critical application with high priority even in a busy
data center. We employ a network bandwidth allocation
strategy enabled by SDN for the critical application traffic so
that the application can complete network transmission on
time regardless of the network condition. With our approach,
QoS-critical applications can be served in-time on clouds,
while other applications can still share the resources for the
rest of time. It considers host and networking resources
jointly to prevent the network delay which can cause QoS fail-
ure. The applications” QoS requirements are assumed to be
provided to the cloud management at the time of the request.
Using the metrics of QoS requirements including computing
capacity and network bandwidth, the proposed algorithm
determines where to place VMs and flows. The algorithm
considers both computing and networking requirements
jointly to select the host to place the VM and the links between
hosts. After selecting the network links, we use dynamic
bandwidth allocation to meet the networking requirement.

The key contributions of the paper are:

e a priority-aware VM placement algorithm that places
VMs of a critical application into proximity hosts
with enough resources;

e a bandwidth allocation method for higher-priority
flows to guarantee the minimum bandwidth in over-
loaded data center networks;
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e a system that provisions both compute and network
resources jointly to offer quality of service to critical
applications in SDN-enabled cloud data centers;

e a performance evaluation of our proposed algorithm
that is compared with related approaches and depi-
cted its effectiveness through detailed simulation exp-
eriments using both synthetic and real (Wikipedia)
workloads.

The rest of the paper is organized as follows. We discuss
the state-of-the-art approaches in Section 2. The overall sys-
tem architecture is explained in Section 3 followed by a
detailed explanation of the proposed algorithm along with
baselines in Section 4. Section 5 presents experiment config-
uration and evaluation results. Finally, Section 6 concludes
the paper with future directions to the potential extension
of the proposed approach.

2 RELATED WORK

Many approaches have been proposed to network-aware
VM placement and SDN-based network flow scheduling.
Wang et al. proposed MAPLE [15], [16], a network-aware
VM placement system that exploits an estimated bandwidth
usage of a VM. In MAPLE, authors calculated estimated
bandwidth based on empirical traces collected from the
servers. The algorithm uses First Fit Decreasing approach in
order to determine a host to place the VM. MAPLE focuses
on per-VM network requirement and assumes that all VMs
have a homogeneous processing requirement.

MAPLE project is extended to MAPLE-Scheduler, a flow
scheduling system that dynamically reschedule the network
flows based on QoS requirement of each VM [9]. The authors
implemented dynamic network flow scheduler to relocate
flows based on the estimated bandwidth usage. At the begin-
ning, the system finds a default route using equal-cost multi-
path (ECMP) protocol [20] which is a widely adopted proto-
col for multi-path routing that distributes network traffics
evenly over multiple paths. Then, the system detects poten-
tial flows that can violate the QoS and reschedules them to
an alternate path where the QoS can be satisfied.

EQVMP is another VM placement approach that is aware
of energy efficiency and QoS [17]. EQVMP partitions VMs into
groups based on traffic matrix to reduce the inter-group traffic
and balance the load in each group. VM groups are placed
onto hosts using bin packing algorithm to reduce the number
of hosts and minimize the energy consumption. After the
placement, EQVMP performs load balancing which detects
over-utilized network link and relocates flows in the link. The
authors assume that the capacity requirement of VMs are
homogeneous and considers only network requirement.

S-CORE has been proposed for SDN-based VM manage-
ment that exploits a VM migration technique to minimize
the network-wide communication cost for cloud data cen-
ters [18]. The system monitors VM traffic flows periodically
and migrates VMs with large network traffics into close
hosts to reduce the network cost. The prototype is imple-
mented both on a KVM-based test-bed and in a simulation
and evaluated with synthetic workloads. Although the sys-
tem considers network traffics of VMs to minimize the total
network cost through the network monitoring capability of
SDN, it is incapable of dynamic traffic management in the
congested network.
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TABLE 1
Summary of Related Works

Work VM allqcation VM placement VM type Traffic Parameters Epe.rgy

unit method management efficiency
MAPLE [9], Connected VMs Network-aware Homogeneous Dynamic routing Estimated effective X
[15], [16] bandwidth
EQVMP [17]  Connected VMs Hop reduction Homogeneous Dynamic routing VM traffic v
S-CORE [18] = Not Applicable = Migration only Homogeneous VM migration to VM traffic X

(NA) close hosts
QVR[10] NA NA NA Dynamic routing &  Delay, jitter, packet loss X

Bandwidth allocation

FCTcon [7] NA NA NA Bandwidth allocation ~ Flow completion time v
DISCO [19] NA NA NA Flow consolidation  Traffic correlation, delay v
PAVA+BWA Application level Priority-aware Heterogeneous Bandwidth allocation  Priority, VM capacity, v

bandwidth requirement

Lin et al. proposed QoS-aware virtualization and routing
method (QVR) that isolates and prioritizes tenants based on
QoS requirements and allocates network flows dynami-
cally [10]. The system supports fine-grained network virtuali-
zation based on tenants and the network requirement. The
flows are allocated dynamically onto physical links consider-
ing the minimum arrival rate and maximum utilization. The
system also uses adaptive feedback traffic engineering to
ensure the end-to-end QoS. The proposed approach is
applied to a wide area network and compared with other
routing protocols in a simulation. Their approach is applica-
ble to different network topology but more focused on wide
area network.

FCTcon has been proposed to improve energy efficiency
in data center networks by dynamically managing the flow
completion time [7]. The proposed method consolidates net-
work flows into a smaller set to save energy usage in a data
center. In order to prevent performance degradation, the sys-
tem calculates an expected flow completion time and
dynamically adapts the flow bandwidth to meet the required
completion time for delay-sensitive flows. In their system,
the controller receives feedback of flow completion time
from a monitor constantly monitoring the data center net-
work and updates bandwidth allocation and flow paths to
consolidate flows while preventing delay of sensitive flows.

DISCO is also proposed by the same authors to increase the
scalability of traffic flow consolidation technique for energy
efficient data center networks [19]. In this work, the authors
addressed the trade-offs between scalability, network perfor-
mance, and energy efficiency in a large-scale data center
network. Network traffics within a data center can be consoli-
dated into a smaller number of network links and switches to
save power consumption by turning off unused switches.
However, the high complexity of the consolidation algorithm
in SDN’s centralized model can result in a scalability issue for
a data center. The authors proposed a distributed traffic man-
agement system to support a scalable traffic consolidation
technique. The proposed system also considers network delay
as a constraint to improve the network performance. Never-
theless, only network traffic is taken into account in this work
without consideration of computing resources.

Table 1 summarizes related works and compares with
our approach (PAVA+BWA). Unlike the aforementioned
studies, our approach prioritizes critical applications over
the other applications considering application-level resource

requirements. Instead of considering individual VMs and
flows, a set of multiple VMs consisting of the same applica-
tion (e.g., web and database servers for a web application, or
mappers and reducers for a MapReduce application) are
taken into the consideration for resource provisioning. In our
model, VMs can be heterogeneous, i.e., each VM can have
different computing and networking requirements which are
managed by our VM allocation and network bandwidth
allocation system. Parameters considered in the proposed
method includes priority, VM processing capacity, and flow
bandwidth requirements. We also consider the energy effi-
ciency of a data center which may be affected by the imple-
mentation of the algorithm.

3 SYSTEM ARCHITECTURE

Fig. 1 shows overall architecture of our system along with
flows of interaction between different components. In brief,
application requests are submitted to the system with a prior-
ity information (critical or normal). Each application request
consists of an arbitrary number of VMs and flows with
detailed specifications. Priority of an application is then ana-
lyzed for VM and flow placement to provide sufficient
resources for a critical application as well as to prioritize net-
work traffic over normal applications. Based on the analyzed
information, the host and link selection algorithm determines
where to place VMs and flows. Flow information is also sent
to the network manager to communicate with the SDN con-
troller for dynamic bandwidth allocation and flow schedul-
ing. The detail of each component is explained below.

At first, application requests are created by cloud tenants
to serve their applications and include VM types and flow
information. A VM type consists of the number of process-
ing cores, each core’s processing capacity, the amount of
memory, and the storage size. In this research, we focus on
computing power and ignore memory and storage size in
order to reduce the problem complexity. An application
request also includes flow specification consisting of a
source and destination VM and the required bandwidth.
VM and flow specifications are modeled based on com-
mercialized cloud providers such as Amazon AWS and
Microsoft Azure who provide predefined VM types and
customizable virtual networks. We add an extra entity,
application priority, to this model to differentiate applica-
tions. Note that either critical or normal application request
can be submitted at arbitrary time, and the system
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Fig. 1. Architectural design of priority-aware VM and flow management system.

provisions the resources available at the time of the applica-
tion submission. If a critical application is submitted after a
normal one, the system allocates residual resources to the
critical one with a different provisioning method.

Given the VM and flow requests, the system analyzes
QoS requirements and prioritizes the VMs and flows
accordingly. The priority of an application can be deter-
mined with various methods by either the cloud provider
or the tenants. For example, a global priority from all the
tenants can be determined by local prioritization require-
ments submitted by individual tenants [21]. The amount of
the requested resources, such as VM capacity and network
requirements, can also be exploited, so that applications
requesting more resources can be prioritized over the other
applications. Application priorities can be differentiated by
the class of tenants [22], e.g., premium tenants paying extra
service charge for application prioritization or government
tenants in need of running time-critical applications for
emergency. Although our system model is capable of any
prioritization method, in this paper we assume that the
application priority is specified by user in binary value (crit-
ical or normal) and supplied to the system along with the
application request. This is to simplify the prioritization
process and focus on the resource prioritization method.

After the analysis of an application priority, the system
selects a host and links to place the requested application by
running the VM placement algorithm, which is proposed in
this paper that jointly considers computing and networking
requirements. Once the selection is done, the result is
passed to the network manager for network resource config-
uration and to the physical resources for actual allocation of
the VM and flow.

Network manager ensures to allocate minimum band-
width for a critical application even in network congestion. It
is in charge of SDN controller that dynamically allocates
bandwidth for each flow. By default, the bandwidth of a link
is equally shared among the flows passing the link, but a
higher-priority flow can acquire more bandwidth through

implementing a priority queue on switches such as queuing
disciplines (gdisc) and Hierarchy Token Bucket (HTB) imple-
mented in Linux’s traffic control (fc) suite. In order to control
flows and their network bandwidths, the network manager
communicates with SDN controller to provision the net-
working resources dynamically. SDN controller manages all
switches in the data center through OpenFlow protocol.

4 PRIORITY-AWARE RESOURCE PROVISIONING
METHODS

In this section, we explain the strategy for computing and
networking resource allocation in aware of application’s pri-
ority. We model the priority of application discretely. Each
application provides its priority as a critical (higher-priority)
or normal (lower-priority) application. It can be manually set
up by tenants who submit the application request to a cloud
provider or automatically configured by cloud provider
based on the application information. We assume that there
is a reasonable mixture of critical and normal application
requests in a data center so that not all the applications run-
ning in a data center are set to be critical applications. If all of
them have the same priority, they will be served equally.
Resources are allocated without any special consideration
for normal applications, whereas critical applications are
ensured to get sufficient computing power and prior net-
work transmission over the normal applications.

4.1 Priority-Aware VM Allocation (PAVA)

For VM allocation, we propose Priority-Aware VM Alloca-
tion (PAVA) algorithm (shown in Algorithm 1) which allo-
cates a closely connected host for a critical application with
the information of network topology. In this method, we
consider the priority of application as well as the network
connectivity of physical hosts in a data center. Before allo-
cating VMs, the system gathers the network topology of the
data center. All hosts in a data center are grouped by their
connectivity. For example, hosts in the same rack connected
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to the same edge switch will be grouped together. VMs are
also grouped based on the application.

After grouping hosts, PAVA algorithm is running to find
a suitable VM-host mapping to place a VM for a critical
application. PAVA tries to place a set of VMs for the critical
application onto the host group which has more computing
and networking resources. If the group of VMs cannot be fit
in a single host group, VMs will be placed across multiple
host groups with the closest proximity (e.g., under a different
edge switch in the same pod). In this way, VMs in the same
application will be closely placed to maintain the minimal
number of hops for network transmission. For example, a
network traffic between VMs placed within the same host is
transferred through the host memory without incurring any
traffic to networking devices. Similarly, if the VMs are hosted
under the same edge network or in the same pod, a cost for
network transmission between those VMs can be reduced
with a lower probability of interference by the other applica-
tions. PAVA guarantees VMs for the critical application to be
placed on not only the host with the sufficient capacity but
also within the same or closer hosts in network topology to
reduce the communication cost. We use First Fit Decreasing
(Algorithm 3) for normal applications.

Algorithm 1. Priority-Aware VM Allocation (PAVA)

: Input: vm: VM to be placed.

: Input: rd: Resource demand of vm;

: Input: app: Application information of vm.

: Input: H: List of all hosts in data center.

: Output: VM placement map.

¢ Hyoup < Group H based on edge connection;

Qn — Empty non-duplicated queue for candidate hosts;
: placed « false;

: if app is a higher-priority application then

10:  H,y, < list of hosts allocated for other VMs in app;
11:  if H,, is not empty then

12: Qn.enqueue(H,,);

13: for each h, in H,, do

WN DU AN~

\O

14: H.qge < A host group in Hg,,,, where h, is included ;
15: Qp.enqueue(H,q.);

16: end for

17: for each h, in H,,, do

18: H,,q < Hosts in the same pod with h,;

19: Qu.enqueue(H,.q);

20: end for

21:  endif

22:  sort Hy.,,, with available capacity, high to low;
23:  Qpu.enqueue(Hyoup);

24:  while Qy is not empty and placed = false do
25: hy = Qu.dequeue()

26: C), — free resource in host h,;
27: if rd < (), then

28: Place vm in hy;

29: C}L — Ch — T‘d;

30: placed — true;

31: end if

32: end while

33: end if

34: if placed = false then
35:  Use FFD algorithm to place vm;
36: end if

4.2 Bandwidth Allocation for Priority Applications
(BWA)

As cloud data center’s network infrastructure is shared by
various tenants, providing constant network bandwidth is
crucial for application’s QoS to avoid performance degrada-
tion in traffic congestion caused by other tenants. We pro-
pose bandwidth allocation (BWA) approach to allocate the
required bandwidth for a critical application. This approach
utilizes per-flow traffic management feature for virtualized
network [23], [24]. SDN controller can manage switches
to allocate requested bandwidth by configuring priority
queues in switches to ensure privileged traffic transmitting
over the other lower-priority traffics.

After VM placement process is completed, the band-
width requirement and the virtual network information of a
critical application are sent to the SDN controller. SDN con-
troller then establishes priority queues (e.g., Linux qdisc
and HTB) for the critical application flows on every switch
along the link. Network traffic generated from VMs of the
critical application will use the priority queue so that the
required bandwidth can be obtained for the critical applica-
tions. This method is only applied to critical applications in
order to prioritize network transmission over the normal
traffic in the shared nature of data center networking. It
ensures that the critical application can get enough band-
width even in a congested network caused by the other
application. Algorithm 2 explains the detailed procedure of
BWA method. For all flows, the algorithm sets the default
path using ECMP, which distributes network traffic based
on the address of the source and destination hosts. For
higher-priority flows, the algorithm sets up an extra flow
rule in each switch along the path. The priority queue set
for the higher-priority flow can guarantee the minimum
bandwidth required by the application. For lower-priority
flows, the algorithm only sets a default path using ECMP
without a further configuration.

Algorithm 2. Bandwidth Allocation for Critical Applica-
tions (BWA)

1: Input: F: List of network flows.

2: Input: topo: Network topology of the data center.
3: Output: Priority queue configuration in switches.
4: for each flow fin F' do

5:  hg. < the address of the source host of f;

6:  hgg < the address of the destination host of f;
7
8

Sy « list of switches between hy,. and hgg in topo;
for each switch s in Sy do
9: if f is a higher-priority flow then

10: s.setPriorityQueue(hy,., has, fulanld, f.bandwidth);
11: end if

12:  end for

13: end for

4.3 Baseline Algorithms
The proposed approaches are compared with three baseline
algorithms: exclusive resource allocation, random alloca-
tion, and state-of-the-art heuristic.

Exclusive resource allocation (ERA) is to allocate dedi-
cated hosts and networks exclusively for a critical applica-
tion, thus resources are not shared with any other tenants.
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The application can fully utilize the capacity of the dedicated
resources to process its workloads, as the required comput-
ing and networking resources can be obtained without any
interference from other applications. However, all the bene-
fits of cloud computing will be lost including elasticity and
dynamicity in this method. It is impractical in reality because
exclusively allocated resources will result in an extravagant
cost for cloud providers which will be passed on to the cus-
tomers. In this paper, we use this algorithm only for measur-
ing the expected response time of a critical application to
calculate QoS violation rate. Details of how to calculate QoS
violation rate is explained in Section 5.3.

Algorithm 3. First-Fit Decreasing for Bandwidth
Requirement (FFD)

1: Input: VM: List of VMs to be placed.

2: Input: H: List of hosts where VMs will be placed.
3: Output: VM placement map.

4: for each vm in VM do

5. sort H with available resource, low to high;

6: foreachhin H do
7
8

C}, « free resource in host h;
: rd < resource demand of vm;
9: if rd < C), then

10: Place vm in h;
11: Cy — Cy —rd;
12: placed — true;
13: break;

14: end if

15:  end for

16: end for

Random allocation (Random) is to place a VM on a ran-
dom host capable of providing enough resources for the
VM. In this method, a host is randomly selected with no
intelligence but solely based on the resource capacity.

The state-of-the-art heuristic baseline algorithm is to
place VMs in First Fit Decreasing (FFD) order determined
by the amount of required bandwidth, which is combined
with a dynamic flow (DF) scheduling method for network
traffic management. FFD and DF are derived from MAPLE
project [9], [15], [16], where the applications are equally con-
sidered for VM allocation and flow scheduling based on
their bandwidth requirement regardless of applications’
priority. Details of baselines are explained below.

First Fit Decreasing (FFD). FFD searches a host to place the
VM in the first fit decreasing order based on the bandwidth.
It consolidates more VMs into a host with enough resources
and does not distribute them across the data center. Thus,
VMs are placed into a smaller set of hosts, whereas other
empty hosts can put into an idle mode which can increase
the energy efficiency of the entire data center. This baseline
is derived from MAPLE [15], [16], but instead of Effective
Bandwidth, we use the VM’s requested bandwidth to deter-
mine the resource sufficiency of a host for a VM. In our sys-
tem, we do not need to calculate a separate Effective
Bandwidth because the required bandwidth is predefined
in the application specification.

In addition to the power saving at hosts, FFD can also
reduce the energy consumption of switches. When more VMs
are placed on the same host, the possibility of in-memory
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transmission between VMs in the same host is increased
which emits the network transmission over the switches.
Although the algorithm does not consider the network condi-
tion in itself, it can affect the amount network traffic to some
extent from the nature of the algorithm. The pseudo-code of
the algorithm is presented in Algorithm 3.

Dynamic Flow Scheduling (DF). On multi-path network
topology, dynamic flow scheduling is a common approach
to find an alternate path for a flow in case of network con-
gestion or link error suggested in multiple studies [9], [17].
This method detects a congested link and relocates the flows
in the congested link into an alternate path with more
capacity. However, based on our observation, this approach
is less effective for short-distance flows in Fat-tree topology
due to Fat-tree’s architectural advance which can achieve a
network over-subscription ratio of up to 1:1 [3]. For an edge
switch in Fat-tree, the number of downlinks to the con-
nected hosts are same as the number of up-links to the
aggregation switches, and the traffic flows are equally dis-
tributed based on the address of the source and the destina-
tion host. Thus, the network traffic is already balanced
among the links between edge and aggregation switches in
the same pod. The algorithm is still effective for inter-pod
traffics because the number of links between aggregation
and core switches is less than the ones between aggregation
and edge switches. When the link to a core switch is con-
gested, DF algorithm can relocate the flows into an alternate
link to the other core switch with less traffic.

The pseudo-code of dynamic flow scheduling algorithm
(DF) is described in Algorithm 4 which is derived from
MAPLE-Scheduler [9]. DF is used as a baseline to compare
with our bandwidth allocation approach. The algorithm is
applied periodically to find the least busy path for higher-
priority traffics, while normal traffics still use the default
path determined by ECMP based on the source address.

Algorithm 4. Dynamic flow Scheduling Algorithm (DF)

: Input: f: A network flow to be scheduled.

Input: hg,: the address of the source host of f.
Input: hgs: the address of the destination host of f.
Input: topo: Network topology of the data center.
Output: Network path from hg,. to hgg.

: s < next hop from hy,. for flow f in topo

: while s is not hyy do

L «+ available links on s for flow f.

INext — hge mod L.size() (default path);

10:  if fis a priority flow then

11: for each link / in L do

12: if [.utilization() < [ye,.utilization() then
13: INext — 1;

14: end if

15: end for

16:  end if

17:  s.updateNextHop(f, Ine.t);

18: s« Ineat

19: end while

PN RN

©

5 PERFORMANCE EVALUATION

The proposed algorithms are evaluated in a simulation envi-
ronment. Two use-case scenarios are prepared to show the
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Fig. 2. 8-pod fat-tree topology setup for experiments.

effectiveness of PAVA and BWA: a straightforward network-
intensive application and more practical 3-tier application.
We measure the response time of workloads to check the
impact of the algorithms on both critical and normal appli-
cation’s performance. Energy consumption of the data center
and the number of active hosts and their up-time are also
measured to consider the cost of cloud providers.

5.1 Experiment Configuration and Scenarios
For evaluation, we implemented the proposed method and
baselines on CloudSimSDN [25] simulation environment.
CloudSimSDN is an extension of CloudSim [26] simulation
tool that supports SDN features for cloud data center net-
works. CloudSimSDN has been modified and updated to
support the application prioritization. The priority informa-
tion has been supplied along with the application request,
which is read and exploited by the modified modules that
store and retrieve the application priority. In the simulation,
we generated an 8-pod fat-tree topology data center net-
work with 128 hosts connected through 32 edge, 32 aggrega-
tion, and 16 core switches. Thus, each pod has 4 aggregation
and 4 edge switches, and each edge switch is connected to 4
hosts. Fig. 2 shows the topology of the configured cloud
data center for the experiment. All physical links between
switches and hosts are set to 125 MBytes/sec.

In the aforementioned simulation environment, we eval-
uate our approach in two scenarios.

5.1.1  Scenario 1: Synthetic Workload

The first scenario is to place a critical application in an over-
loaded data center environment. To make the data center
overloaded, 15 lower-priority applications consisting of 16
VMs in each application are first placed in the data center
that constantly generates network traffics. After these VMs
are placed, the higher-priority application consisting of the
same number of VMs is submitted to the data center. Once
all VMs are placed using our proposed VM placement algo-
rithm (PAVA), synthetically generated workloads are sub-
mitted to the critical application, which has both computing
and networking loads. The bandwidth allocation method
(BWA) is applied to transfer the networking part of the criti-
cal application workloads. This scenario is to test the effec-
tiveness of PAVA and, especially, BWA in a condition that
the higher-priority application is significantly interfered by
other applications.

Core

Aggregation

Edge

1]
1]

—
11

Host

FAE FEFE) FFIFR AR

B0 5 o

5.1.2 Scenario 2: Wikipedia Workload

The second scenario reflects a more practical situation where
applications are placed on a large-scale public cloud that a
massive number of VM creation and deletion requests are
submitted every minute. Frequent VM creation and deletion
result in a fragmented data center. Network traffics gener-
ated by the scattered VMs can increase the overall load of the
data center network, which makes the network traffic man-
agement more critical in applications” performance.

We create 10 different application requests modeled from
three-tier web applications. Each application consists of 2
database, 24 application, and 8 web servers communicating
to one another. One out of the 10 applications is set to be criti-
cal, while the rest to be normal. The size of VMs are varied
based on the tier, e.g., database tier servers are defined hav-
ing 2 times more processing capacity than application tier
servers. Virtual networks are also defined between all VMs
in the same application so that any VMs can transfer data to
any other VMs in the same application. Required bandwidth
for the critical application is set to the half of physical link
bandwidth, while the normal application is set to be a fourth
of the physical bandwidth to differentiate the priority.

We also generate workloads for the second scenario from
three-tier application model [27] based on Wikipedia traces
available from Page view statistics for Wikimedia projects.
Every application receives approximately between 80,000
and 140,000 web requests generated from traces in a differ-
ent language, each of which consists of processing jobs in
VM servers and network transmissions.

For both scenarios, we measure the response time of both
critical and normal applications, the QoS violation rate of
the critical application, and the power consumption of the
data center.

5.2 Analysis of Response Time
At first, we evaluate the performance of the proposed algo-
rithm by measuring the average response time of the critical
application, and VM processing and network transmission
time in detail with each algorithm. Note that QoS violation
is not considered for calculating the averages in this section.
Fig. 3 shows the results in Scenario 1 where the data cen-
ter network is constantly overloaded by other applications.
The average response time (Fig. 3a) is significantly reduced
by 38.4 percent in PAVA+BWA (both PAVA and BWA
algorithms applied) compared to the Random algorithm,
mainly resulting from 52.1 percent reduction in network
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Fig. 4. Performance matrices of the critical application in Scenario 2 (Wikipedia workload).

transmission time (Fig. 3b). VM processing time remains
same regardless of algorithm combination which shows
that VMs acquire enough processing resources.

For FFD, the average response time is 10.2 percent incre-
ased compared to Random method due to the increased net-
work transmission time. Since FFD consolidates more VMs
into a smaller number of hosts without consideration of their
connectivity, network transmissions within the critical appli-
cation are significantly interfered by other applications
placed on the same host. Similarly, applying PAVA without
network bandwidth allocation cannot improve overall per-
formance substantially due to the consolidation of VMs into
shared hosts, although the average response time is still
shorter than the one from FFD.

With the implementation of DF in addition to FFD,
the average network transmission time is reduced to
10.68 seconds from 13.24 of FFD. Although dynamic flow
scheduling can find a less crowded path, it is ineffective in
this scenario where all the alternate paths are busy. On the
other hand, BWA provides the best result in network trans-
mission time reduced to almost half of all the other meth-
ods. This shows that our bandwidth allocation method can
significantly improve the critical application’s network per-
formance in the overloaded network environment.

Fig. 4 depicts the results from Scenario 2 where more
complex applications and workloads are submitted to a
large-scale cloud data center. In this scenario, the average
response time is reduced by 3.3 percent in PAVA, and BWA
is not shown as effective as the previous scenario. Note that

the network is not so frequently overloaded in Scenario 2,
which limits the effectiveness of BWA method. On the other
hand, PAVA becomes more effective on account of the prox-
imity of VMs. As the VMs of the same application have been
placed closely with PAVA, the network transmission time
between them is reduced by 25 percent from 0.80 seconds in
Random to 0.60 seconds in PAVA. The critical application’s
network workloads pass through only low-level switches
(edge and/or aggregation switches) as the VMs are placed
under the same edge network or the same pod, and thus not
interfered by other traffics.

Similar to the previous scenario, FFD increases the average
response time due to the VM consolidation to shared hosts.
Implementation of DF also reduces the network transmission
time, which makes the average response time of FFD+DF
become similar to the Random method. VM processing times
are almost same no matter which algorithm is being used. In
short, the proposed algorithm (PAVA+BWA) improves the
response time of the critical application by 34.5 percent for
Scenario 1 and 3.8 percent for Scenario 2 compared to the
state-of-the-art baseline (FFD+DF). The improvement in Sce-
nario 2 is not as significant as Scenario 1 due to the origin of
workloads, e.g., network-intensive workloads can be more
beneficial from the proposed algorithm.

Additionally, we measure the average response time of
normal (lower-priority) applications to see the effect of our
algorithm on the other normal applications. Fig. 5 shows
the measured response time of normal applications in both
scenarios. Compared to the Random algorithm, PAVA and
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Fig. 6. QoS violation rate of critical application workloads.

PAVA+BWA actually result in improving the performance
of lower-priority applications by reducing the average resp-
onse time by 13.8 and 4.9 percent respectively in Scenario 1
and 2. The baseline algorithm FFD+DF also reduces the
response time of lower-priority applications. In short, our
algorithm maintains or even improves the performance of
lower-priority applications, while improving the perfor-
mance of a critical application.

5.3 Analysis of QoS Violation Rate

QoS violation rate is calculated by comparing the response
time from ERA algorithm with the one from other algo-
rithms. We assume that the expected response time can be
fully achieved in ERA because it allocates dedicated servers
with enough resource for every VMs required in the appli-
cation. We compare the response time of each workload
and count the QoS violated workload if the response time
exceeds the one from ERA. Equation (1) shows the calcula-
tion of QoS violation rate (r,) from workloads set (IV),
where tx and tpra denote the response time of a workload
(w,) measured from the designated algorithm and ERA
respectively. It counts the number of workloads whose
response time from the designated algorithm is exceeding
the response time from ERA and divides by the total num-
ber of workloads.

_ |{wv € W|tX(wv) > tERA(wv)H
TU -
Wi

1)

Average QoS violation rate of the critical application is
shown in Fig. 6. In Scenario 1, PAVA results in 34.38 percent
QoS violation whereas PAVA+BWA has no violation at all
(see Fig. 6a). As we discussed in the previous section, BWA
is more effective in overloaded networks where other

BPAVA+BWA

ORandom

(b) Scenario 2 (Wikipedia workload).

BFFD B@FFD+DF @PAVA

tenants generate heavy traffic loads. The baseline (FFD+DF)
also reduce the QoS violation rate from Random’s 53.13 to
43.75 percent but not as significant as BWA.

Similar results can be found in Scenario 2 (see Fig. 6b)
where PAVA and PAVA+BWA show the lowest QoS viola-
tion rate reaching 1.34 and 1.26 percent respectively. Interest-
ingly, overall violation rate is much lower, ranging between
1.26 and 3.70 percent in Scenario 2 compared to between 0
and 65.36 percent of Scenario 1. This is due to the significant
degradation of the network performance in Scenario 1 where
network overload by other applications interferes the appli-
cation. Although the QoS violation rate in Scenario 2 is not as
high as in Scenario 1, the impact of our algorithm is still sig-
nificant to improve the violation rate by 51.5 percent reduc-
ing from 2.60 to 1.26 percent. It is a crucial improvement for
critical applications that should guarantee the QoS require-
ment. Although BWA is not as beneficial as Scenario 1, it can
still reduce the violation rate by 0.08 percent compared to
PAVA alone.

Compared to the state-of-the-art baseline, our proposed
algorithm combination, PAVA+BWA, can reduce QoS
violation rate from 43.75 to 0 percent for heavy network traf-
fic scenario and from 2.22 to 1.26 percent (reduction by
43.2 percent) for large-scale complex application scenario.

5.4 Analysis of Energy Consumption

Energy consumption is evaluated to find the influence of the
proposed algorithm to the operational cost of a cloud data
center. We measured the utilization of hosts and switches
over time and used power model of hosts [28] and
switches [29] respectively to calculate the overall power
consumption, using the same model and method exploited
in our previous paper [2]. Unused hosts and switches are
assumed to be in an idle mode to save energy, and the
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Fig. 7. Detailed power consumption of hosts and switches in a data center.

power consumption of active hosts and switches is calcu-
lated based on the utilization of a host and the active ports
of a switch.

Fig. 7 shows the measured energy consumption of the
entire data center and the detailed power consumption in
hosts and switches for both scenarios. In Scenario 1 (see
Fig. 7a) both PAVA and PAVA+BWA save 14.2 percent of a
total data center energy usage compared to the Random
algorithm, whereas FFD and FFD+DF save 8.6 and 25.9 per-
cent of power cost respectively. The difference mainly
comes from switches, because workloads in Scenario 1 con-
sist of marginally huge network traffics combined with a
small computation load on VMs.

In Scenario 2, PAVA and PAVA+BWA consume the least
amount of energy among all algorithms. For host energy con-
sumption, all the four algorithm combinations (FFD, FFD
+DF, PAVA, and PAVA+BWA) consume less energy com-
pared to Random, since both PAVA and FFD consolidate
VMs into the smaller number of hosts and turn off many
unused hosts. For switches, however, FFD (28.61 kWh) and
FFD+DF (29.39 kWh) consume more amount of energy com-
pared to Random (26.96 kWh), while the consumption in
PAVA (25.97 kWh) and PAVA+BWA (25.98 kWh) is lower
than the Random. As those VMs in the same application
group are closely placed with PAVA mostly within the same
edge network or within the same pod, the network traffics are
consequently consolidated passing through fewer switches.
Thus, the energy consumption is lowered resulting from the
decreased number of active switches.

Nevertheless, the results show that the proposed algo-
rithm at least will not increase the power consumption of
the data center. In fact, it can help to reduce the operational
cost by consolidating VMs into a smaller number of hosts
while providing the required QoS for a critical application.
In Wikipedia workload, the energy consumption is even
reduced compared to the state-of-the-art baseline.

5.5 Analysis of Algorithm Complexity
We analyze the time complexity of the proposed algorithm.
First, the greedy bin-packing FFD algorithm (Algorithm 3)
takes O(|H|log|H|) time to place one VM in a data center
with |H| number of available hosts. In order to place |VM]|
number of VMs, the algorithm takes O(|VM|- |H|log|H|)
which is feasible for online dynamic VM placement.

PAVA is based on FFD algorithm with an extra computa-
tion for critical applications. For each VM in critical applica-
tions, PAVA needs an additional sorting time, O(|H|log |H|),
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to find a closely connected host from the previously placed
VMs. Thus, given VMs in critical applications (VM, € VM),
the overall complexity of PAVA including the additional
computation for critical VMs along with the basic FFD is:

O(|VM.| - |Hlog |H|) + O(|VM] - |H[log |H|)
= O(|VM] - |H[log|H]),

which is same as the time complexity of FFD algorithm.

The time complexity of BWA algorithm is O(|S] - |F.|)
where |F.| number of flows for critical applications are
placed in a data center network consisting of |.S| number of
switches. This is also a small addition compared to dynamic
scheduling algorithm where flows are periodically re-
routed by running routing algorithms to find the best route.
However, the overhead of BWA may occur at the time of
packet forwarding in switches because of extra forward-
ing rules and queues configured for critical applications.
Although we could not simulate this overhead in our
evaluation environment, the extra overhead is negligible
when the proportion of higher-priority flows is significantly
smaller than the data center. The number of switches instal-
ling the extra queues will be minimized especially with
PAVA where the priority VMs are placed in close hosts,
thus network traffics are transmitted through the minimal
number of network hops.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we presented a priority-based VM allocation
and network traffic management scheme with bandwidth
allocation and dynamic flow pathing mechanism. The algo-
rithms are evaluated in a simulation environment with a
large-scale fat-tree topology and multiple applications with a
different priority. The results show that the proposed priority-
aware VM allocation method actually places the critical appli-
cation into the closer hosts so that it reduced both the energy
consumption and the average response time for the critical
application. The bandwidth allocation method is specifically
effective in the overloaded network scenario where the
higher-priority traffic is interfered by other applications. Our
algorithm is outperformed the state-of-the-art approaches
and able to deal with applications with varied priorities and
QoS requirements. Such feature will be useful in critical appli-
cations in need of strict timeliness such as a disaster manage-
ment or other emergency alert applications.

To further extend the algorithm, the priority of applica-
tion can be modeled more fine-grained values instead of the
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binary priority. In the current algorithm, priority is set to a
binary value, i.e., an application is either critical or not.
Instead, we can define the priority in multi-degree values
which can allocate differentiated amounts of resources to
applications with a different level of priority. The algorithm
needs to be modified to support the multi-degree priorities
and function to convert from the priority value to the
amount of allocated resource. It is also possible to comb-
ine the proposed algorithm with a resource overbooking
method [2]. For example, a critical application is assigned
with lower overbooking ratio so that more resources can be
utilized, while lower-priority applications are more over-
booked to save the operational cost of cloud providers. The
algorithm can further broaden to include multiple QoS
parameters such as throughput, latency, and response time
to be considered as priority factor to enable the system to
determine a proper amount of resources autonomously. As
the use of SDN in edge clouds is getting popular, our
approach can be utilized by them for supporting mobile
applications [30].
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