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Abstract—Cloud data centers consume a large amount of energy that leads to a high carbon footprint. Taking into account a carbon
tax imposed on the emitted carbon makes energy and carbon cost play a major role in data centers’ operational costs. To address this
challenge, we investigate parameters that have the biggest effect on energy and carbon footprint cost to propose more efficient VM
placement approaches. We formulate the total energy cost as a function of the energy consumed by servers plus overhead energy,
which is computed through power usage effectiveness (PUE) metric as a function of IT load and outside temperature. Furthermore, we
consider that data center sites have access to renewable energy sources. This helps to reduce their reliance on “brown” electricity
delivered by off-site providers, which is typically drawn from polluting sources. We then propose multiple VM placement approaches to
evaluate their performance and identify the parameters with the greatest impact on the total renewable and brown energy consumption,
carbon footprint, and cost. The results show that the approach which considers dynamic PUE, renewable energy sources, and changes
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in the total energy consumption outperforms the others while still meeting cloud users’ service level agreements.

Index Terms—Cloud computing, green computing, energy consumption, data centers, VM placement

1 INTRODUCTION

LOUD computing is considered a big step towards the
long held dream of delivering computing as a utility to
users [1]. The cloud enables access to hardware resources,
infrastructure, and software anytime and anywhere on a
pay-as-you-go model. Services by cloud computing are
delivered by data centers that are distributed across the
world, which can host small numbers to thousands of serv-
ers. A major issue with these data centers is that they con-
sume a large amount of energy. According to a report from
NRDC [2], US data centers power consumption estimation
alone in 2013 was 91 billion kilowatt-hours of electricity.
This is equivalent to two years’ power consumption of New
York City’s households and is estimated to increase to
140 billion kilowatt hours by 2020, which is responsible for
emission of nearly 150 million tons of carbon pollution.
The high energy consumption by data centers incurs
high costs to cloud providers, since energy related costs are
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the most significant cost for a data center [3]. Furthermore,
to enforce the environmental sustainability, some countries
set carbon tax on the emitted CO; [4]. Therefore, monitoring
the amount of energy consumed by a data center and the
source of the energy, which directly affects the carbon foot-
print and carbon tax, helps cloud providers to reduce the
energy and carbon cost as a major sector of their total cost.
In this paper, we investigate parameters that affect the
total cost associated with the energy consumption and car-
bon footprint for a cloud provider. Here, we only consider
the cost of these two parameters, unless otherwise men-
tioned. A cloud provider often maintains geographically
distributed data center sites, similar to popular cloud pro-
viders (e.g., Amazon, Google, and Microsoft). Having sev-
eral sites not only increases the availability, it also gives the
cloud provider the option of choosing the destination site
based on different criteria upon the reception of the user
request (virtual machine requests in this paper). There are
different challenges a cloud provider faces to make the deci-
sion regarding VM placement and scheduling. In this paper,
we study the selection process among several data center
sites. Each data center can get its electricity from different
electricity providers, we refer to this as off-site brown
energy sources, or even can draw the required electricity
from on-site renewable (“green”) energy sources, such as
solar and wind. Having data center sites that can get their
power from renewable sources partially or completely helps
the provider decrease its dependency on the electricity
drawn from off-site grids, which is costly and less clean.
Second, off-site brown energy at different locations have
different carbon intensities and carbon taxes. Therefore, by
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the change of the availability of renewable energy during
the day and in the case that they are not available, cloud
provider can select the cleanest source of electricity with
less carbon tax. The third advantage of having different
energy sources at different locations is changes in electricity
price, as we consider variable energy pricing during times
of the day, i.e., on-peak and off-peak prices.

The last and one of the most important parameters that
affects data centers energy consumption, carbon footprint,
and their associated cost is the overhead power, e.g., power
supplies, cooling, lightning, and UPS. The metric used to dem-
onstrate the overhead is known as Power Usage Effectiveness
(PUE) that is defined by The Green Grid consortium [5]. PUE
is equal to the data center’s total power consumption, which is
the input power that goes to the data center, divided by the IT
devices power consumption (PUE=TotalPower/ITDevices-
Power). If PUE is equal to 1 it means that the data center is per-
fectly efficient, which is not practically attainable. An increase
in PUE indicates more waste of power to support IT devices
in the data center. Although state of the art cloud-scale
data centers can achieve a PUE of 1.1 [6] or 1.2 [7], cloud pro-
viders often collocate with smaller data centers, which can still
have PUEs up to 2 [8]. To increase a data center’s efficiency,
we should identify variables that have the highest impact on
the increase of the system’s overhead power. The main vari-
able that affects efficiency and PUE value is IT load. When the
IT load is increased, CPUs perform in higher frequencies and
servers consume more power. This leads to increase in
data center’s overall load and inside temperature; accordingly
the need arises for more power for the cooling of the infra-
structure. The second important variable that affects PUE is
the outside temperature, which has a great effect on the cool-
ing system power consumption. As outside temperature
increases, the data center needs to use the chillers along with
the computer room air handler (CRAH), which leads to a sig-
nificant increase in the power consumption and PUE value.
We exploit a model for PUE as a function of IT load and out-
side temperature and perform VM placement based on
dynamic changes of PUE.

The key contribution of this paper is a new method for the
initial placement of VMs in geographically distributed
cloud data centers that simultaneously considers the cost of
1) overhead energy 2) servers’ energy and 3) carbon foot-
print. Moreover, the proposed VM placement method maxi-
mizes renewable energy utilization at each data center to
minimize the total cost. Finally, we present efficient two-
stage VM placement approaches that respond to dynamic
PUEs. We also present variations of our method, which
explore the effects of different parameters in minimizing
energy and carbon cost for a cloud computing environment.
To achieve this, we have carried out the following;:

e Developed an analytical model of the total cost
incurred by the energy consumption and carbon
footprint for the data centers.

e Modeled PUE as a function of IT load and outside tem-
perature to incorporate overhead energy consump-
tion, e.g., power supplies, cooling, lightning, and UPS,
along with the energy consumed by the servers.

e Used different carbon intensities and carbon taxes
for energy sources at each data center site.

e Analyzed the effect of distributing load among
data center sites with access to intermittent renew-
able energy sources.

The reminder of the paper is organized as follows: In
Section 2, the related work is discussed. Section 3 discusses
the system model, parameters, objective function and con-
straints. The proposed VM placement approaches are dis-
cussed in Section 4. The experimental environment and the
performance analysis of the proposed VM placement
approaches are presented in Section 5. Finally, Section 6
concludes the paper and presents future directions.

2 RELATED WORK

Over the last few years, there have been extensive studies
on reducing energy consumption of cloud data centers.
Recently, there has been much interest in reducing
data center carbon footprints and energy consumption due
to the environmental concerns (specifically around global
warming), social pressure, and the prospect of a carbon tax.
Most of the early work focuses on making a single server
energy efficient by considering hardware aspects and using
techniques such as CPU DVFS (dynamic voltage and fre-
quency scaling) [9], [10]. Moreover, virtualization [11] as the
foundation of cloud computing systems, enables consolida-
tion [12] and VM migration [13]. There is ongoing research
on the later techniques, but the main issue is that they are
reactive and require resume and suspension of VMs which
cause overhead to the system [14]. Therefore, these techni-
ques should be applied only when they are cost-effective.
Lin et al. [15] and Shen et al. [16] used a pro-active tech-
nique, known as dynamic right-sizing, to predict the num-
ber of active servers needed to host the incoming workload.
Since idle servers consume almost half of the peak
power [17], this technique could reduce the energy
consumption significantly. Lefevre et al. [18] proposed an
advanced resource reservation architecture to have a better
prediction of the incoming requests by users. The above-
mentioned techniques are in the scope of a single
data center and they only consider the aspect of reducing
energy consumption; which does not necessarily lead to a
reduction in the carbon footprint. Aksanli et al. [19] use
predication-based algorithms to maximize the usage of
renewable energy sources and in the meantime minimize
the number of canceled jobs.

One of the first works to reduce cost and brown energy
consumption by load distribution among several data center
sites, is that of Le et al. [20]. Their work is based on consider-
ing the electricity price and energy source (green or brown) to
calculate the number of requests each data center can host
within a specific time period and budget. However, they do
not differentiate among sites that have brown energy sources
with different carbon emission rates. Further, the incoming
workload is based on SaaS (Software as a Service) requests for
Internet services with short processing times, usually in milli-
seconds. Liu et al. [21] consider geographical load balancing
to minimize brown energy consumption as well. They use an
optimal mix of renewable energy (solar and wind) along with
energy storage in data centers to eliminate brown energy con-
sumption. Lin et al. [22] extended the previous work to find
the best estimate combination for solar and wind energy
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while having net-zero brown energy usage. The MinBrown
workload scheduling algorithm is proposed by Chen
et al. [23] to minimize brown energy consumption. This algo-
rithm forwards the incoming request to all data centers, then
based on the request deadline and brown energy consump-
tion schedules request for execution. Celesti et al. [24] pro-
posed a federated CLEVER-based cloud environment; which
is based on allocation of VM requests to the cloud data center
with the highest amount of solar energy and lowest cost. Le
et al. [25] proposed an optimization-based framework to
minimize brown energy consumption and leverage green
energy through distribution of the Internet services to the
data centers, considering different electricity prices,
data center location with different time zones, and access to
green energy sources.

Le et al. [26] apply dynamic load distribution policies
and cooling strategies to minimize the overall cloud
provider’s cost but places no cost on carbon emissions.
Their work is based on intelligent placement of VM requests
on data centers considering the geographical location, time
zone, energy price, peak power charges, and cooling system
energy consumption. Ren et al. [27] proposed a provably-
efficient on-line algorithm (GreFar) with the objective to
minimize energy cost. They use servers’ energy efficiency
information and locations with low electricity prices to
schedule batch jobs and, if necessary, suspend the job and
resume later. Work by Goiri et al. [28] aims to find the best
place for a data center, based on geographical location and
data center characteristics to minimize cost, energy con-
sumption, and carbon footprint. Garg et al. [29] proposed
an environment-conscious meta-scheduler to minimize car-
bon emission and maximize cloud provider’s profit. They
used near-optimal scheduling policies to send HPC (high
performance computing) applications to the data center
with the least carbon emission and maximum profit, consid-
ering applications deadline. They also address the issue of
energy consumption and carbon footprint by proposing a
novel green cloud architecture [30]. This architecture uses
two directories so the cloud providers can register their
offered services. A notable work by Buchbinder et al. [31]
has the same objective of reducing the energy cost of a cloud
provider with multiple data center sites. They perform on-
line migration of running batch jobs among data center
sites, taking advantage of dynamic energy pricing at differ-
ent locations, while considering the network bandwidth
costs among data centers and future changes in electricity
price. Similarly, Giacobbe et al. [32] perform VM migration
between cloud data centers participating in a federated
environment to push down energy costs. They take advan-
tage of dynamic electricity pricing to migrate the VMs to the
data center with lowest energy cost and enough resources.
Another work by Giacobbe et al. [33] uses the idea of
migrating VMs in a federated cloud environment to reduce
carbon footprint. They move the VMs from a high carbon
footprint source to a data center with access to solar energy,
using a two-step approach.

Our work is different from the discussed studies, since
our objective is to minimize the cost associated with both
energy consumption and carbon footprint. We consider car-
bon cost as a function of carbon intensity and carbon tax.
Moreover, regarding the energy cost, we consider overhead

energy of the data center along with the energy consumed
by the servers. For this purpose, we exploit a data center’s
PUE model as a dynamic function of IT load and outside
temperature. Finally, we present efficient and dynamic two-
level VM placement approaches. These approaches observe
the effect of different parameters on the total green and
brown energy consumption, carbon footprint, and their
associated cost for the cloud provider with distributed
data center sites. In addition to this, the discussed VM
placement approaches consider hourly changes in outside
temperature, solar energy, and variable energy pricing.

3 SysTEm MODEL

In this section, we first present the system architecture, its
components, and their role in a cloud computing environ-
ment. Then, we will present details on the parameters that
affect cloud provider’s decision in placing the VM request
considering energy consumption, carbon footprint, and
their associated cost. Finally, we will present the objective
function and relevant constraints of the model. The list of
all the symbols used in this paper are given in Table 1.

The targeted system in this study is an IaaS cloud pro-
vider offering VM resources to its clients similar to Elastic
Compute Cloud (EC2) service by Amazon Web Services [34].
As shown in Fig. 1, the cloud provider consists of several
geographically distributed data centers connected through
a carrier network. The main parties involved in a cloud
computing system are the cloud provider, cloud broker and
cloud users, whose roles are discussed in the following
section.

3.1 System Components
3.1.1  Cloud Provider

The cloud provider consists of n data center sites, shown as a
set D = {d;,dy, ...,d,}, distributed in different geographical
locations. Each data center site, d, is connected to a backbone
network to serve cloud users and uses one or more energy
sources to provide electricity for its servers, networking
equipment, power systems, and other devices. A data center
can just use the electricity from the off-site utility grid, O, or
have its own on-site or local green sources (renewable
energy), G, such as wind and solar. Moreover, data centers
have their local brown energy (e.g., a diesel generator), B, in
case of emergencies and outages when both grid and renew-
able energy are not available. Data center energy sources are
shown as the set £ = {G, B, O}. Moreover, each data center
has a set of m servers, S = {s1, $2, ..., S}, with different
physical configurations.

3.1.2 Cloud Broker

A cloud broker is the user-facing side of the cloud provider.
It receives users VM requests that need to be routed to a
data center site and then be placed on a server. The cloud
broker should route requests to data centers in such a way
that the energy consumption, carbon footprint, and their
total cost for running the incoming workload are mini-
mized. As stated in our previous work [35], the cloud broker
uses the information sent from the data center sites to the
Energy and Carbon-Efficient Cloud Information Service
(ECE-CIS) to perform the VM placement.
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TABLE 1
Description of Symbols
Symbol Description Symbol Description
D Set of data center sites S Set of servers in a data center
& Set of energy sources VM Set of VM requests
Ty Matrix X’s element to show VMsto  y?/y5 /49 Element v of row vector Y?/Y¢/Y©, that
data centers mapping shows VM v mapping to local brown/local
green/ off-site grid energy source
Zom Matrix Z’s element to show VM to vk VM v holding time
servers mapping
Cr Total cost of the energy and carbon  C/(v;;) Cost of running VM i at data center j
Ck Cost of the energy Crp Cost of the carbon footprint
Cs(v) Cost of the server energy to run the  C,(v) Cost of the overhead energy to run the
VM v VM v
Cp(v) Cost of the energy to runthe VM v Ep(v) Total energy to run the VM v
E,(v) Server energy to run the VM v E,(v) Overhead energy to run the VM v
EB(v)/E%(v)/ E9(v) Consumed local brown/ CcE/c8/C9 Price of the local brown/local green/
local green/ off-site grid energy to off-site grid energy
run the VM v on server s
P Peak Server power consumption at peak P, g, Server power consumption at idle state
state '
Ug Utilization of server s at time ¢ P;J st Server power at time ¢ and utilization Uy
Pf o) Server power consumption by P, Overhead power
running the new VM and the new
utilization
U, Data center utilization at time ¢ H,; Data center outside temperature at time ¢

EP(v)/E%(v)/ E9(v) Consumed overhead local brown/
local green/off-site grid energy to

run the VM v

CE(v)/CE(v)/ CH(v)

Cost of the consumed local brown /local
green/off-site grid energy to run VM v

RE/R%/R9 Carbon footprint rate of local TE/TG /TS Carbon tax of local brown/local green/ off-
brown/local green/off-site grid site grid energy source
energy source

o VM v required processing unit M VM v required memory

st Server s total processing unit sM Server s total memory

3.1.3 Cloud Users

Cloud users submit their VM requests to the cloud broker.
A submitted VM request from user i, at time ¢ can be shown
as the pair v; = (Type, HoldTime). VM type is inspired by
Amazon EC2 VM instance types [34] and VM hold time
depends on the application that will be run on that VM. In
practice, the arrival time, type and hold time of a VM is not
known by the cloud provider in advance. In our model, we
serve all the VMs based on their arrival time on a first-come
first-serve basis. Cloud users need to have a quality of expe-
rience (QoE) that must be satisfied by the cloud provider.
The QOoE for the users is defined in terms of acceptance of
the submitted VM requests, which means lower rejected
number of VMs higher QoE for the users.

3.2 System Parameters

Before discussing the system objective and constraints, we
first introduce all the system parameters that affect the
power consumption, carbon footprint, and their relevant
cost.

3.2.1 Data Center Power Efficiency

A data center’s power efficiency depends on its PUE, which
is a metric to quantify the overhead power, e.g., power sup-
plies, cooling, lightning, and UPS, in support of the incoming
IT load to the system. According to Rasmussen [36] and Goiri
etal. [28], the PUE is dependent on the data center utilization

(IT load) and outside temperature. Therefore, we model PUE
as PUE = f(ITLoad, OutsideTemperature).

According to Rasmuseen [36], the most important parame-
ter that affects PUE is the load of the data center and it has a
linear relation with outside temperature. They showed a
data center’s PUE in two graphs, first by changing the IT load
(at a constant temperature) and then by the change in the out-
side temperature (at a constant IT load). By using those two
graphs, we interpolate a hyperbola relation between PUE and
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Fig. 1. System model for geographically distributed green cloud comput-
ing environment.
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IT load! and a linear relation between PUE and outside tem-
perature. Based on the calculations in Appendix A, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TSUSC.2017.2709980,
we get

n 0.2 4 0.01U; + 0.01U H,

PUE(U;, Hy) ~ 1
(h t) Ut

1)

3.2.2 Server Power Model

Each server is capable of hosting a different number of virtual
machines depending on its configuration and VMs’ sizes.
Based on the scheduling policy, the incoming load to each
server differs over time and this incoming load determines
the power consumption of that server [37]. The relationship
between the server power consumption and CPU utilization
can be a constant, cubic, or even quadratic [38]. Attempts to
make servers energy-efficient aim to make them energy pro-
portional; which means that servers should only consume
power in the presence of load [17]. A contemporary server’s
idle power, P qe, is half of the peak power, P;peak. In this
work, we use SpecPower benchmark [39] measurements to
depict the relationship between server power consumption
and server utilization. According to this data, a server’s total
drawn power increases linearly with the increase in utiliza-
tion. This means that we let server’s utilization be a direct
mapping of CPU utilization, U. A server’s power consump-
tion as a function of CPU utilization is modeled as

—PSU'% - F’s‘ld]e + (—Ps,Peak - ]Ds,l(lle)Ust' (2)

3.2.3 Renewable Energy Sources

Large cloud providers use renewable energy to reduce their
dependency on the electricity delivered from the grid as it is
costly and less clean [40], [41]. The global amount of electric-
ity derived from renewable sources doubled between 2000
and 2012 [42] and amongst these renewable energy, wind
and solar photovoltaics (PV) are the fastest growing ones.
Many cloud providers try to partially get their power from
renewable energy and have their own on-site solar panels
and wind turbines (e.g., Facebook [43], Apple [44], and
Green House Data [45]).

Most sources of renewable energy are intermittent mean-
ing that their availability changes uncontrollably and unpre-
dictably over time. Cloud providers can benefit from the
difference of renewable energy sources at different
data center sites with different time zones at the time of VM
scheduling. Several studies consider how to schedule incom-
ing workload to manage the intermittent renewable energy.
Some works use the immediate available renewable energy
and cancel the running jobs when the amount of solar or wind
is too low or they are not available in the system [46]. Other
studies consider using prediction models for the availability
of this energy to assign the workload when this energy is
available and reduce the job cancellation [47]. Adding storage
to the data centers, where they can store the renewable energy
and use it constantly in the system, is another way to over-
come the unpredictability of wind and solar [48]. However,
this approach has many problems [49]. For example, 1)

1. In this paper, we use IT load and utilization interchangeably.

batteries incur energy losses due to internal resistance and
self-discharge, 2) battery-related costs can dominate the cost
of renewable power systems, and 3) batteries use chemicals
that are harmful to the environment. Given these problems,
the best way to take full advantage of the available green
energy is to match the energy demand to the energy supply
and maximize renewable energy utilization.

In this paper, we consider solar energy as the local
renewable energy for data center sites. We only take into
account day/night differences for this energy. Moreover,
we consider that renewable energy has the highest priority
amongst all other energy sources and data centers get their
power from these sources as long as they are available to
have the highest renewable energy utilization.

3.2.4 Energy Price

The major incremental electricity cost of a data center is deter-
mined by the amount of energy purchased from the off-site
utility grid providers. Since renewable energy has a fixed
installation cost and maintenance during time, the incremen-
tal cost for using them when they are available is negligible.
Moreover, the on-site brown energy (e.g., diesel generators) is
only used in the absence of other energy sources. Note that
we consider on-site brown energy as part of the model for the
sake of comprehensiveness. However, we do not explore its
effect in the evaluation part of this paper and leave it for the
interested readers to simply consider it as part of their evalua-
tion. For the electricity driven from the grid, we consider vari-
able energy pricing during times of the day, as having on-
peak and off-peak prices. By this approach, having geographi-
cally distributed data centers for a cloud provider and vari-
able energy pricing, gives the provider the opportunity to
route requests to the data center with lowest energy price. We
use C%, C%, and O for off-site utility grid, on-site green, and
on-site brown energy prices respectively, based on cents per
kilowatt-hour energy usage (cents/kWh).

3.2.5 Carbon Footprint Rate and Carbon Tax

Depending on the source of the power, carbon intensity could
vary significantly. We represent the carbon intensity of the
energy sources by R, RY, and RZ for off-site grid, local green,
and local brown, respectively based on tons per megawatt-
hour used electricity (Tons/MWh). The carbon intensity for
green energy (solar and wind) is zero but brown energy, from
polluting energy sources, could have different rates depend-
ing on the type of the fuel burnt to generate the electricity. As
green energy availability varies during the day, one
data center could get the off-site grid power from more than
one provider with different carbon intensities. Moreover, to
reduce the effect of the emitted CO; and the green house gases
(GHG) on the climate change [50], carbon taxes are levied. We
represent carbon tax as 7%, TE, and T¢ for off-site utility grid,
on-site brown, and on-site green energy, respectively, as dol-
lar per ton of the emitted carbon footprint (Dollar/Ton). We
should note that the carbon intensity and carbon tax for the
renewable energy are zero.

3.3 System Objective Function and Constraints
In this section, we study the objective function of the pro-
posed system model and its constraints.
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3.3.1  Objective Function and Cost Modeling

The objective function is to minimize the cost of running the

workload in the system, based on energy consumption and

carbon footprint for the cloud provider. Meanwhile, the

cloud provider should meet the cloud users” expected QoE.
The cost of running the workload is

Cr=Y % Cluoy)my, 3)

1€VM jeD

where z;; is an element of the two-dimensional matrix X
and shows VM assignment to the data center site. If the ele-
ment in this matrix is set to 1 means that v; is assigned to d;.
Note that the summation is over the VM set, VM =
{v1,v9,...,v;}, rather than over time, since in each time
epoch a data center can use more than one energy source.
This means that at a certain time epoch at the data center,
two running VMs could use two different energy sources.
The total cost of running VMs on the servers located in geo-
graphically distributed data centers in (3) is composed of
the cost of the energy used in the system plus the cost
related to the carbon footprint in the environment due to
the used electricity. We break this objective into an energy
cost Cp and a carbon footprint cost Cr, as

Cr=Cg+ Cp. 4)

The energy and carbon footprint costs calculation is
explained as follows.

Energy Cost. The energy cost, Cg, is the total amount of
money paid to the grid electricity providers, excluding any
carbon tax. In order to compute the total electricity draw in
the data center sites, we need to compute the total energy
used by the IT devices plus the overhead energy to run each
VM. The major component of the consumed energy by the
IT devices is the energy used by the servers. Therefore, we
use the servers energy consumption for each VM as the total
energy used by IT devices. Based on this, we can formulate
the cost for the energy consumption as

Cep=Y_ (Cu(v) + Co(v)). ()

veYM

Depending on the type of the energy used by the server in a
data center, the cost for the energy consumption by that
server is different. As mentioned earlier, a server could get
its energy from three different sources: local brown, local
green, and off-site brown. By having three different types of
energy sources, we can formulate the cost of server energy
consumption as

Cys(v) =
1€{B,G,0}

BT (v)C%,. )

The energy consumption for each VM, E?(v), based on the
energy source is
EJ(v) =y Es(v)
E{ (v) =y Es(v) (M)
E(v) =y By(v).

Here, elements y”, y, and y¢ belong to row vectors Y7, Y€,
and Y9, respectively. If the element y7 of row vector Y7 is

set to 1, means VM v is assigned to that energy source. In
order to compute the energy used by each server, we com-
pute the increase in the power consumption due to running
the new VM times its holding time. The increase in energy
by using server s’s AP is

E,(v) = AP" (®)
where the increase in power consumption,

U,

AP, = (P ") — pUst), ©)

is based on the increase of the server utilization in the next
time epoch (t+); that is after the VM has entered service.
Based on (9) and using the server power model (2), we have

APS = (P&,Peak - Psﬁldle)(Us(t,Jr) - U@t)~ (10)
The second parameter of the energy cost function in (5) is
the cost associated with the overhead energy consumed to
run the VMs, (11). Depending on the type of the energy
used (local brown, local green or off-site brown) the energy
price would be different.

C,(v) = E’(v)C},.
e{B,G,0}

1n

Similar to the energy cost by the servers, we calculate the
overhead energy. As stated in (12), we use the VM to energy
sources mapping matrices to specify the energy source used
for overhead to run the incoming VM.

E;(v) =y, Eo(v)

EUG('U) = nyo(v)
EJ(v) = 4 E,(v).

(12)

To compute the overhead energy usage by the VM (13), we
use the same approach used in (8) for calculation of the
increase in the power consumption.

E,(v) = AP". (13)

As noted earlier, we use PUE as a metric to compute the
overhead power consumption. PUE and overhead power
relation is

PTot,alipo‘i“Rf]gt

PUE(U;, H;) = plx = pl 1
P, = PVt (PUE(Uy, Hy) — 1).
By using (14), we can rewrite (13) as
E,(v) = (P — PU)(PUE(U,, Hy) — 1)0* a5

= APWM(PUE(U,, Hy) — 1).

Carbon Footprint Cost. The second term in the objective func-
tion, (4), is the cost of the carbon footprint contributed to the
environment due to the energy consumption. We can for-
mulate it as the product of the cost of the consumed energy,
the carbon intensity, and the carbon tax of the relevant
energy source. Thus, the carbon footprint cost is defined as
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Cr=Y_ C%(v)RLTE. (16)

veEVM 1e{B,G,0}

By using the row vectors of energy sources to VM requests
mapping, we have
CE(v) = 4, Ci(v)
CE(v) =y Cp(v)
C9(v) = y2Cp(v).

an)

As carbon intensity and carbon tax are zero for renew-
able energy sources and on-site brown is just used in the
absence of the other two energy sources, we can rewrite
(16) as

Cr= Y Cv)RYTY.
veEVM

(18)

3.3.2 Constraints

The objective function minimize Cr = C + C is subject to
the following constraints:

e The total allocated capacity to the VM requests run-
ning on a server should not exceed the server’s
capacity in terms of processing unit and memory
usage:

> Y vz <87

veVM meS

Z Z M M
v Z'UWL S S )

veEVM meS

(19)

where, 2, is an element of the two-dimensional
matrix Z thatis 1 if VM v is hosted on server m and 0
otherwise.

e Each running VM on a server should just use one
energy source at each time epoch:

Vo e UM, P + 45 +40 = 1. (20)

e Each element of the assigned energy sources to the
VMs matrices should be greater or equal to zero:

yP2 48 40 > 0. 1)

e The total amount of local green energy and local
brown energy consumed by VMs should not exceed
the total available green and brown energy at each
data center, respectively:

> (ES(v) + ES(v)) < Total Available G,
veEVM

Z (EB(v) + EB(v)) < Total Available B.
veEYM

(22)

e The total consumed off-site grid energy should not
go beyond what the cloud provider receives from
the electricity provider:

Z (E9(v) + E9(v)) < Total Assigned O.
veEVM

(23)

With the definitions in Section 3.3.1, the optimization
problem becomes

min Cr
Y (24)
st (19) — (23)

In addition to the hard constraints, we want to give local
green energy the highest priority. If there is not enough
green energy available, the cloud provider uses off-site grid
energy; otherwise it should use the local brown energy
stored in the data center sites. That is,

Priority E > Priority EC > Priority EP.

4 VM PLACEMENT APPROACHES

In this section, we propose a dynamic VM placement algo-
rithm to approximate (24) and six variations that neglect dif-
ferent components of the cost, to study the effect of different
parameters and combinations of them on the amount of
green and brown energy usage, carbon footprint, and total
energy and carbon cost of the cloud data centers.

4.1 Cost and Renewable-Aware with Dynamic PUE
(CRA-DP)

Upon the arrival of each VM request, the cloud broker has
several choices with multiple data center sites and several
servers within each data center, to perform VM placement.
We see VM placement as a bin-packing problem with differ-
ent bin sizes (e.g., physical servers) in terms of: energy price,
carbon intensity, carbon tax, outside temperature, available
green energy, and data center load. These differences can
affect the overall energy consumption, carbon footprint,
and their associated cost. Since the nature of a bin-packing
problem is NP-hard, the first algorithm we propose is a
derivative of the best-fit heuristic.

The CRA-DP algorithm, like that of [35], first selects the
data center and then selects the server within the
data center. It selects the data center with the minimum
added cost for the cloud provider (minimum AC7), consid-
ering available green energy and dynamic PUE. CRA-DP
sorts the data center sites in increasing order of the added
cost due to the energy consumption and carbon footprint to
run the VM for its lifetime. The server selection policy for
all the algorithms in this paper is based on the least increase
in the server power consumption, given by (9). The pseudo-
code of the algorithm is presented in Algorithm 1. Note that
we do not write the rest of the algorithms pseudocode, since
they all are derived from CRA-DP.

4.2 Cost-Aware with Dynamic PUE (CA-DP)

The CA-DP algorithm differs from CRA-DP in that CA-DP
does not consider the availability of renewable energy while
calculating the ACt to select the data center site. Note that
all the algorithms assume that if a data center site has
renewable energy available, all the servers and racks are
always powered by green energy, unless there is not
enough renewable energy in the system. In this case, they
will get their required power from off-site grid energy sour-
ces. The pseudocode of this algorithm is the same as the
CRA-DP, but it omits Lines 8-15 and at Line 16, the
usedGreen is set to 0.
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Algorithm 1. Cost and Renewable-Aware with Dynamic
PUE (CRA-DP) VM Placement Algorithm

Input: datacenerList, hostList

Output: destination
1: while vm Request do
2 Get data centers’ Information from ECE-CIS;
3 foreach data center in data centerList do
4: avgVmUtil « o* Javg s”;
5: AES(U) — ’UL % R:wngUﬁil;
6.
7
8

NE,(v) «— AEs(v) x PUE(Uyy, Hy);
AET(’U) — AES(U) + AEO(U);

availGreen «— Get Current availablegreenenergy;

9: if availGreen; > 0 then
10: if availGreen; <= AEr(v) then
11: usedGreen «— availGreen;
12: availGreen « 0;
13: else
14: usedGreen «— AEp(v);
15: availGreen «— availGreen — usedGreen;
16: usedO ffSiteEnergy «— A\ Er(v) — usedGreen;
17: ACg — usedOffsiteEnergy x C%;
18: ACF + usedO ffsiteEnergy x RS x TS;
19: ACr «— NACg + ACr;
20: Add dataCenter with ACr into aggregate DCList;

21: Sort aggregate DCList in an ascending order of ACT;
22: foreach dataCenter in aggregate DC'List do

23: foreach host in hostList do

24: PYst — Get current host DynamicPower;

25: P,fj ) Calculate host DynamicPower after
initiating the vm;

26: AP, — P — pUs;

27: Sort hostList in an ascending order of AP;

28: foreach host in hostList do

29: if host is suitable for vm then

30: destination «— (data center, host);

31: return destination;

32: destination «— null; / /rejection of request;

33: return destination;

4.3 Energy and Renewable-Aware with Dynamic
PUE (ERA-DP)

The ERA-DP algorithm makes decision based on the
increase in the total energy consumption (server energy +
overhead energy). It calculates the total energy added to
each data center to run the new VM (A Er(v) = AE(v)+
AE,(v)) with considering dynamic PUE and amount of the
available renewable energy. This algorithm omits Lines
17-19 of the Algorithm 1 and Lines 20 and 21 are based on
the usedO ffsite Energy instead of ACy. The rest of the algo-
rithm is the same as the CRA-DP algorithm.

4.4 Energy-Aware with Dynamic PUE (EA-DP)

The EA-DP algorithm is similar to ERA-DP, except after cal-
culating AEp(v) = AEs(v) + AE,(v) for each data center
site, it does not consider the availability of renewable
energy (usedGreen is set to 0).

4.5 Energy-Aware with Constant PUE (EA-CP)
This algorithm is a derivation of the EA-DP, except that PUE
value does not vary by the change in IT load and outside

temperature and it has a constant value. In order to obtain a
reasonable constant value for PUE, we calculate its average
while performing the CRA-DP algorithm from a low load
until data centers get fully utilized. Note that, as considering
static value for PUE just multiplies the servers energy con-
sumption by a constant value AEp(v) = AE(v)(1 + PUE),
the results are expected to be the same as when the VM place-
ment is without considering the overhead power and just
based on the servers power consumption.

4.6 Carbon Footprint-Aware with Dynamic PUE
(FA-DP)

This algorithm is a derivation of the ECE algorithm in our

previous work [35], which considers the effect of PUE and

carbon intensity while here PUE has a dynamic value. It

selects the data center with the minimum value of

RY% x PUE(U;+, H;) and T € {B, G, O}.

4.7 Energy Price-Aware (EPA)

The energy price-aware (EPA) VM placement algorithm,
upon the arrival of each VM request selects the data center
site. with the cheapest energy price (minimum Cj}, and
7€ {B,G,0}). Since green energy cost is zero, the
data center site with the available green energy has the
highest priority.

5 PERFORMANCE EVALUATION

We evaluate the performance of the proposed approaches to
investigate the effect of different parameters on the total
cost, brown and green energy consumption, and carbon
footprint. Note that all algorithms are evaluated based on
the total cost Cr described in Section 3.3.1, even though
some algorithms ignore some components of the cost.

5.1 Experiment Setup

In order to evaluate the proposed approaches, we target an
IaaS cloud computing environment. Since it is difficult to
perform large-scale and repeatable evaluation on real infra-
structures, we use simulation to conduct our experiments.
The CloudSim toolkit [51] is a simulation platform that
allows evaluation of virtualized cloud environments. As the
core framework of CloudSim does not support energy and
carbon-efficient simulation, we use the extended version
developed in our earlier work [35] that enables these fea-
tures. Apart from adding the energy and carbon-awareness
to the CloudSim core, we add other features such as costs of
the consumed energy and emitted carbon, access to renew-
able energy (solar energy in this paper), overhead power
consumption, and dynamic PUE.

5.1.1 Data Centers Configuration

We consider four data center sites located in four cities cho-
sen from different states in the United States at three differ-
ent time zones. These cities are chosen from the
Data centers Map website [52] and they are: Dallas in Texas,
Richmond in Virginia, San Jose in California, and Portland
in Oregon. Since they are connected to one network back-
bone, the number of hops a packet traverses from source to
destination is between 12 and 14 hops [53]. Therefore, differ-
ent network distances do not affect site selection. Each
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TABLE 2

Data Center Site Characteristics
Site Characteristics Dallas Richmond San Jose Portland
Server Power Model ng =120 + 154U
PUE Model PUE(U, Hy) =1+ 0.2+0.01b}]:r0.01U,H,,
Carbon Intensity (Tons/MWh) 0.730 0.69 0.35 0.147
Carbon Tax (Dollars/Ton) 24 22 11 48
Energy Price (cents/kWh) 6.1 6.54 10 5.77

data center has 130 heterogeneous physical servers with five
different configurations described by four parameters:
(Number of Cores, Core Speed (GHz), Memory (GB),
Storage (GB)). The five different server types are: Typel (2,
1.7, 16, 2000), Type2 (4, 1.7, 32, 6000), Type3 (8, 1.7, 32,
7000), Type4 (8, 2.4, 64, 7000), and Type5 (8, 2.4, 128, 9000).

5.1.2 Servers Power Consumption

As discussed in Section 3.2.2, we use the approximate linear
relation with the server utilization, as shown in the work by
Pellet et al. [38], for the server power model. The power
model, stated in Table 2, is the linear approximation against
SpecPower results for two Dell PowerEdge servers.

5.1.3 PUE Model

We use the PUE model described in Section 3.2.1 for all the
data centers. We assume that the efficiencies of all the
data center sites’” infrastructure is the same. The PUE model
is shown in Table 2.

5.1.4 Solar Energy

We use the data reported in the project undertaken by the
NREL [54] to get the solar energy availability in the four
aforementioned cities. We use the data of a primary station,
solar radiation for flat-plate collectors facing south at a fixed
tilt in (kWh/m?/day). We consider five days form May 26th,
2014 to May 30th, 2014 for the simulation time and set the
total area for the solar irradiation absorber flat-plates
2684m? from the configuration by Solarbayer [55]. With this
information, we can get the daily solar energy in terms of
kEWh/day. To get the hourly solar traces, we assume that the
solar energy for times before 6 a.m. and after 6 p.m. is 0.
Moreover, the distribution of the energy between 6 a.m. and
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Fig. 2. Solar energy for five days.

6 p.m. has a raised cosine distribution, with the peak at
12 noon. Knowing the total solar of one day and integrating
the raised cosine between 6 a.m. and 6 p.m., we calculate
hourly available solar energy in kWh for these four cities as
shown in Fig. 2.

5.1.5 Carbon Footprint Rate and Carbon Tax

The data centers’ carbon intensity (ZTons/MWHh) is obtained
from the US Department of Energy, Appendix F, available
in the online supplemental material, Electricity Emission
Factors [56]. We use the data reported by the Carbon Tax
Center [57] for the carbon tax, due to the contribution in
emitting carbon in the environment, in terms of dollars per
ton of CO, (Dollars/Ton). Values for carbon intensity and
carbon tax for the chosen data center sites are reported in
Table 2.

5.1.6 Energy Price

We consider on-peak and off-peak pricing model for the
electricity driven from off-site electricity providers. Energy
prices are taken from the US Energy Information Adminis-
tration [58]. Peak energy price for 4 sites are shown in
Table 2. Times of the day before 8 a.m. and after 10 p.m. are
off-peak times and the energy price will be half of the on-
peak times (8 a.m. to 10 p.m.). We assume the on-site solar
energy has zero incremental cost, since it has a one time cap-
ital cost and regular maintenance independent of use.

5.1.7 Outside Temperature

We derive the hourly temperature of the four data center
sites from May 26th, to May 30th 2014 from the Weather-
base portal [59]. Fig. 3 shows the hourly temperature for the
aforementioned sites.
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Fig. 3. Outside temperature for five days.
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TABLE 3
VM Types and Simulated User Requests (Bag-of-Task (BT) and Web-Request (WR))
VM Type Number  CoreSpeed  Memory  Storage  Probability and
of Cores (GHz) (MB) (GB) UserRequest
Standard Instances M1Small 1 1 1740 160 0.25-BT
M1Large 2 4 7680 850 0.12-WR 0.25-BT
M1iXLarge 4 8 15360 1690 0.08-WR
High Memory Instances M2XLarge 2 6.5 17510 420 0.12-WR
M22XLarge 4 13 35020 850 0.08-WR
High CPUlnstances ClMedium 2 5 1740 320 0.1-BT

5.1.8 Workload Data

The incoming workload to the system is the VM requests
from cloud users. Since we only deal with the placement of
the VM requests and allocation of their required resources,
we do not need to know the type of application running
within the instantiated VM. However, we assume that each
VM operates at its maximum utilization and uses all the
allocated resource. Each VM request has physical character-
istics, that are inspired by Amazon EC2 VM instance types.
Beside the physical requirements, each VM has a submis-
sion time from the user and holding time. For the system
workload, we use the same model and workload generator
we used before [35]. We generate two types of VMs known
as bag-of-tasks and web-requests with the same arrival rate
and different holding time pattern (longer holding time for
web-requests). The applied workload generator for this pur-
pose is the Lublin-Feitelson [60] workload model. To gener-
ate bag-of-tasks, we use the parameters from [60], except
that we change the first parameter of the Gamma distribu-
tion to 20.4 to get VMs with longer holding times, and we
change the holding-time distribution to Hyper Gamma,
with mean 73 and variance 165, to generate web-requests.
The VM types and the probability of each type submitted
from the users are stated in Table 3.

We ran the simulation for 5 days (120 hours) and in order
to have a steady environment, we omitted 5 percent of the
generated requests from the start and 5 percent from the
end as they are part of the warm-up and cool-down of the
system, respectively. (The latter is necessary as the Cloud-
Sim simulation finishes when the last VM completes.) Note
that we consider each request generated by Lublin as a VM
request. Finally, since Lublin takes a random number as
input, we repeated each experiment 30 times, and report the
mean of the results.

5.2 Experiment Results
In the experiments, we measure the total amounts of green
and brown energy consumption, carbon footprint, and their
associated cost. Moreover, we check the total cost of the
cloud computing system under different VM placement
policies. Finally, we measure the number of rejected VMs in
the system due to insufficient physical resources that leads
to the violation of users’” QoE in terms of SLA violation. The
load varied from 500 VMs, to show how the system behaves
when one data center has the physical capacity to host all
the requests, up to 1700 VMs, when the system performs at
its full utilization and rejects some of the incoming load.
Note that in the experiments, we checked that the results
are not skewed and based on this we report their general

behavior on the mean value. Moreover, we performed
2-sample t-test to check whether the differences in results
are significant or not.

5.2.1 Green Energy Consumption

In this experiment, we measure the amount of green energy
consumed by different VM placement policies to run the
incoming workload in the system. As Fig. 4 demonstrates,
three algorithms (ERA-DP, CRA-DP, EPA) that consider
availability of renewable energy in the placement, have the
most green energy consumption, with a slightly higher
usage for the ERA-DP algorithm. The EA-CP algorithm has
the smallest green energy consumption, as it is not
renewable-aware and uses a constant value for PUE. The
latter factor leads to not considering data centers’ load
change and their outside temperature; therefore it does not
lead to an efficient site selection and distribution of load
among data centers to get the most of available solar energy
at different times of the day. In order to study the effect of
considering dynamic PUE versus constant PUE and renew-
able energy, we run a 2-sample t-test on ERA-DP and EA-
CP. We get p = 0.04, therefore we conclude that considering
dynamic PUE and renewable energy have significant effect
on the total green energy consumption. The algorithms
(CA-DP, EA-DP, and FA-DP) that are not renewable-aware
consume less green energy as well. But the difference with
the group of renewable-aware algorithms is not significant
(p > 0.05), since, as noted earlier, green energy has the
highest priority if the data center has access to it.

5.2.2 Brown Energy Consumption

Fig. 5 shows the amount of brown energy consumption by
different VM placement policies. At lower loads, EA-CP
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Fig. 4. Green energy consumption.
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consumes significantly more brown energy than the other
algorithms, as it is based on a constant value for PUE and
distributes the load without considering current load of the
data center sites and the outside temperature. The rest of
the policies have close behavior. The reason is that they all
are based on dynamic PUE, the system load is low and the
renewable energy source has the highest priority. As
the system load increases, EA-CP continues consuming
more brown energy, just with a slight improvement; since
the constant PUE value, that is the average value of PUE
gets closer to the real dynamic value. From the results we
observe that CA-DP has a sudden increase in the brown
energy consumption. Because its placement is based on the
increase in the total cost in the system and parameters, such
as dynamic energy pricing, that affect the decision making
do not have any impact on reducing the total brown
consumption.

Overall, ERA-DP policy has the lowest brown energy
consumption. It consumes, on average, 8.9 percent less
brown energy in comparison to its competitor, CRA-DP
algorithm. These two algorithms along with EPA, that is
also based on considering renewable availability, have the
lowest brown energy consumption. Moreover, ERA-DP,
consumes 31.3 percent less brown energy on-average than
EA-CP and 36.4 percent less than CA-DP. Based on the
2-sample t-test on ERA-DP and EA-CP, there is significant
difference (p = 0.01) in the amount of consumed brown
energy. Moreover, t-test on ERA-DP and CA-DP shows the
significance (p < 0.05) of considering increase in the energy
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Fig. 7. Carbon footprint.

consumption rather than increase in the total cost while VM
placement is carried out.

5.2.3 Energy Cost

Energy cost is a function of the amount of brown energy
consumption, since the cost of renewable energy is consid-
ered zero in this paper. We observe the same behavior
among the algorithms in Fig. 6 as we witnessed in Fig. 5.
Algorithm ERA-DP reduces the energy cost by an average
of 10.03 percent compared to its competitor algorithm,
CRA-DP. Moreover, t-test results show that the energy cost
difference between ERA-DP and two other algorithm,
EA-CP and CA-DP, is significant with p =0.002 and
p = 0.042, respectively. This emphasizes the importance of
considering dynamic PUE, renewable energy, and increase
in energy consumption.

5.2.4 Carbon Footprint

Carbon footprint in the system, likewise energy cost, is a
result of the usage of the brown energy sources. Hence, we
should expect a similar pattern as Fig. 5. But we should not
expect the same gap from one policy to another, since differ-
ent energy sources have different carbon intensities. One
significant difference in Fig. 7 is that, at lower workload
(VM <800), FA-DP performs significantly better than
ERA-DP. The reason is that FA-DP considers sources carbon
intensity and dynamic PUE at the same time and at lower
loads it submits the requests to the data center with the min-
imum carbon footprint x PUE. Though by the increase in
the incoming load and the need to use more than one site,
this policy does not perform optimal and ERA-DP is the
algorithm that has a better performance. Overall, ERA-DP
comparing to its close competitor, FA-DP, reduces carbon
footprint 10.6 percent on average. In addition, it reduces car-
bon footprint on an average of 60 and 42 percent in compari-
son to EA-CP and CA-DP, respectively. T-test shows
p < 0.01 and p =0.044 for ERA-DP versus EA-CP and
CA-DP, respectively, which again assures the importance of
considering dynamic PUE, renewable energy, and changes
in energy consumption.

5.2.5 Carbon Cost

Fig. 8 shows the cost of the carbon footprint in dollars. Since
any increase in the value of a carbon tax is the result of
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carbon footprint growth, the behavior of different algorithms
and their gaps would be the same as the total carbon foot-
print in Fig. 7. Still ERA-DP on average has 7.4 percent less
carbon cost comparing to FA-DP. Moreover, it has on aver-
age 68 percent and 45.6 percent better performance compar-
ing to EA-CP (p < 0.01) and CA-DP (p = 0.33), respectively.

5.2.6 Total Cost

Fig. 9 demonstrates an overall view of the effect of different
VM placement policies on the total cost related to the energy
and carbon footprint. At lower system loads, carbon cost
(FA-DP) has a slight effect on the total cost of the system;
whilst with the increase in the load, ERA-DP improves the
total cost by an average of 19.3 and 10.5 percent comparing
to FA-DP and CRA-DP, respectively. Moreover, ERA-DP
significantly improves the total cost by an average of 57.3
and 43.8 percent in comparison to EA-CP (p = 0.001) and
CA-DP (p = 0.04), respectively.

5.2.7 SLA Violation

The last experiment measures SLA violation rate in order to
make sure users’ quality of experience is satisfied. SLA is
calculated as the number of rejected VMs due to insufficient
physical resources in the system. Table 4 shows SLA viola-
tion rate under increasing workload for different VM place-
ment policies. The table reports violations for loads from
1300, since below this load the violation rate for all the poli-
cies is zero and all the incoming load to the system are

TABLE 4
SLA Violation for VM Placement Policies

Algorithm SLA Violation Under Different VM Requests
1300 1400 1500 1600 1700
CRA-DP 0.08% 0.3% 0.9% 2.7% 4.9%
CA-DP 0.0% 0.3% 1.1% 2.9% 5.2%
ERA-DP 0.0% 0.2% 1.0% 2.6% 5.1%
EA-DP 0.06% 0.3% 1.1% 2.9% 5.2%
EA-CP 0.05% 0.3% 1.3% 3.1% 5.5%
FA-DP 0.05% 0.3% 1.3% 3.1% 5.5%
EPA 0.14% 0.8% 2.4% 4.5% 6.3%

served. From the table, we observe that all the placement
policies have close SLA violation. Moreover, ERA-DP at
two points has the minimum violation rate and in the rest it
only has 0.1-0.2 percent higher violation comparing the min-
imum reported ones. As a result, we can conclude that
ERA-DP performs better in terms of brown energy con-
sumption, carbon footprint, energy and carbon cost. More-
over, it has close, even at some points minimum, values for
SLA violation comparing to the competitive algorithms.

6 CONCLUSIONS AND FUTURE DIRECTIONS

This paper investigates different parameters that affect
energy and carbon cost for a cloud provider with geographi-
cally distributed data center sites. First, we consider carbon
cost as part of the total cost that enables the provider not
only decrease the total cost, but also reduce the CO, emis-
sion. Moreover, to decrease the energy cost, we consider
overhead energy consumption in support of IT devices in
the data center. We employ PUE as a metric that affects over-
head energy of a data center, which is responsible for almost
half of the energy consumption. We exploit a model for PUE
as a function of data center’s IT load and outside tempera-
ture. Further, we consider access to renewable energy sour-
ces, besides off-site grid (known as brown) sources.

We have presented and evaluated different energy and
carbon-aware dynamic VM placement approaches. In a nut-
shell, ERA-DP that considers dynamic PUE, availability of
renewables, and changes in energy consumption has the
highest effect in reducing the total cost of energy and carbon
and also reducing brown energy usage; whilst has the same
level of SLA compared to the other algorithms. Further-
more, amongst the renewable-aware algorithms (CRA-DP
and ERA-DP) and EPA, the later algorithm performs worse.
Because EPA prefers the sites with available renewable
energy, as it has the lowest price (zero), thus distributes the
load between data center sites to get the most of renewables.
This leads to use of computing resources of all the
data centers and having overhead power as a major killer
for the power consumption in all the sites. In the future, we
plan to consider the effect of adding prediction of availabil-
ity of renewable energy and changes in temperature on the
decision making in VM placement. Moreover, we plan to
provide competitive-ratio bound of the online algorithm
comparing the optimal off-line for the ERA-DP algorithm.
We will also consider having data center sites in different
countries and the effect of carrier network delay as part of
the total cost.
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