
Future Generation Computer Systems 135 (2022) 205–222

a

o
b

c

d

n
c
v
(
v
f
u

(
E
A

h
0
n

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Energy-SLA-aware genetic algorithm for edge–cloud integrated
computation offloading in vehicular networks
Huned Materwala a,b, Leila Ismail a,b,∗, Raed M. Shubair c, Rajkumar Buyya d

Intelligent Distributed Computing and Systems (INDUCE) Research Laboratory, Department of Computer Science and Software Engineering, College
f Information Technology, United Arab Emirates University, Al Ain, Abu Dhabi 15551, United Arab Emirates
National Water and Energy Center, United Arab Emirates University, Al Ain, Abu Dhabi 15551, United Arab Emirates
Department of Electrical and Computer Engineering, New York University (NYU), Abu Dhabi, United Arab Emirates
Cloud Computing and Distributed Systems (CLOUDS) Lab, School of Computing and Information Systems, The University of Melbourne, Australia

a r t i c l e i n f o

Article history:
Received 29 September 2021
Received in revised form 6 April 2022
Accepted 9 April 2022
Available online 21 April 2022

Keywords:
Computation offloading
Edge–cloud computing
Energy-efficiency
Evolutionary genetic optimization
algorithm
Quality of service (QoS)
Vehicular Ad Hoc Networks (VANET)

a b s t r a c t

Vehicular Ad Hoc Networks (VANET) is an emerging technology that enables a comfortable, safe,
and efficient travel experience by providing mechanisms to execute applications related to traf-
fic congestions, road accidents, autonomous driving, and entertainment. The mobile vehicles in
VANET are characterized by low computational and storage capabilities. In such scenarios, to meet
applications’ performance requirements, requests from vehicles are offloaded to edge and cloud
servers. The high energy consumption of these servers increases operating costs and threatens the
environment. Energy-aware offloading strategies have been introduced to tackle this problem. Existing
works on computation offloading focus on optimizing the energy consumption of either the IoT
devices/mobile/vehicles and/or the edge servers. This paper proposes a novel offloading algorithm
that optimizes the energy of edge–cloud integrated computing platforms based on Evolutionary
Genetic Algorithm (EGA) while maintaining applications’ Service Level Agreement (SLA). The proposed
algorithm employs an adaptive penalty function to incorporate the optimization constraints within
EGA. Comparative analysis and numerical experiments are carried out between the proposed algorithm,
random and genetic algorithm-based offloading, and no offloading baseline approaches. On average,
the results show that the proposed algorithm saves 2.97 times and 1.37 times more energy than the
random and no offloading algorithms respectively. Our algorithm has 0.3% of violations versus 52.8%
and 62.8% by the random and no offloading approaches respectively. While the energy-non-SLA-aware
genetic algorithm saves, on average, 1.22 times more energy than our approach, however, it violates
SLAs by 159 times more than our proposed approach.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Vehicular Ad Hoc Networks (VANET) [1] is an emerging tech-
ology where vehicles acting as network nodes are equipped with
omputational resources and connectivity such as vehicle-to-
ehicle (V2V), vehicle-to-infrastructure (V2I), vehicle-to-roadside
V2R), vehicle-to-sensors (V2S), vehicle-to-pedestrian (V2P), and
ehicle-to-everything (V2X) communications. It enables a com-
ortable, safer, convenient, and efficient travel experience for
sers by using applications such as sending alerts for congestions

∗ Corresponding author at: Intelligent Distributed Computing and Systems
INDUCE) Research Laboratory, Department of Computer Science and Software
ngineering, College of Information Technology, United Arab Emirates University,
l Ain, Abu Dhabi 15551, United Arab Emirates.

E-mail address: leila@uaeu.ac.ae (L. Ismail).
ttps://doi.org/10.1016/j.future.2022.04.009
167-739X/© 2022 The Authors. Published by Elsevier B.V. This is an open access a
c-nd/4.0/).
and accidents, autonomous driving, video-enabled real-time nav-
igation, interactive gaming, and entertainment [2–4]. These ap-
plications often require high computation and storage resources,
and low latency to process complex operations. However, mobile
vehicles have limited onboard computing and storage capabilities
to process resource-intensive applications while maintaining the
Quality of Services (QoS). To address this issue, a cloud-based
vehicular network has been introduced. Cloud computing [5,6]
provides on-demand computational and storage resources to
mobile vehicles over the Internet. The remote cloud servers
have high computation capabilities that would satisfy applica-
tions processing times. However, a high latency between the
vehicle and cloud resources hinders the deployment of time-
critical applications such as autonomous driving. In addition, a
delayed response for applications such as traffic congestion and
interactive gaming becomes less reliable. To overcome vehicles-
to-cloud latency issues, Vehicular Edge Computing (VEC) [7] has

been introduced.

rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://doi.org/10.1016/j.future.2022.04.009
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2022.04.009&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:leila@uaeu.ac.ae
https://doi.org/10.1016/j.future.2022.04.009
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

H. Materwala, L. Ismail, R.M. Shubair et al. Future Generation Computer Systems 135 (2022) 205–222

e
l
R
t
p
o
f
t
e
p
h
o
s
c
r
o
t
p
(
b
s
n

c
i
t
t
l
o
i
r
t
a
a
a
m
s
i
s
i
c
o
i
s
a
r
s
T
c
e
q
a

VEC provides the computing resources to the vehicles at the
dge of the radio access networks to support applications with
ow-latency requirements [8]. VEC servers deployed within the
oadside Units (RSU) improve applications’ QoS in terms of
hroughput and latency. However, edge servers have less com-
utational and storage resources compared to cloud resources,
ften making edge servers bottlenecks with increasing demands
rom vehicles. Consequently, it becomes crucial to take advan-
age of heterogeneous resource capabilities available at vehicles,
dge, and the cloud layers to meet the requirements of the ap-
lications. Therefore, computational offloading mechanisms can
elp to either execute applications at the vehicles/edge layers
r remote cloud resources [9]. However, offloading strategies
hould consider the high energy consumption issue of the edge–
loud integrated computing platform [10–12], and applications’
equirements [13–16]. It is estimated that data centers consisting
f thousands of computing servers will consume 4.5% of the
otal energy consumption globally by 2025 [17]. Moreover, it is
redicted that the Information and Communications Technology
ICT) industry will account for 14% of the global carbon emissions
y 2040 [18]. Consequently, it becomes crucial to address the is-
ue of high energy consumption of edge–cloud layers in vehicular
etworks while offloading.
Several works in the literature have proposed energy-aware

omputation offloading for an IoT-edge–cloud integrated comput-
ng system [19–30]. However, these works focus on optimizing
he energy consumption of either the IoT devices/vehicles and/or
he edge servers. To the best of our knowledge, no work in the
iterature has focused on optimizing the energy consumption
f the edge and cloud servers simultaneously while maintain-
ng applications’ Service Level Agreements (SLA). Our previous
esults on energy savings in edge and cloud systems using de-
erministic approaches are promising [10–12,31]. However, these
pproaches become computationally expensive while offloading
set of applications’ requests. This is because offloading a set of
pplications’ requests to edge and cloud servers is a Nondeter-
inistic Polynomial-time (NP) hard problem where the search
pace and time to optimal solution increase exponentially with
ncreasing requests and servers [20]. Empirical evaluations have
hown the effectiveness of the evolutionary algorithm in find-
ng a solution for the NP-hard scheduling problem in a cloud
omputing environment [32,33]. In this paper, a computation
ffloading algorithm using Evolutionary Genetic Algorithm (EGA)
s proposed that optimizes the energy consumption of edge–cloud
ervers, while maintaining applications SLAs in terms of latency
nd processing time. The proposed algorithm executes a vehicle’s
equest locally on the edge server to which the request has been
ubmitted or offloads the request to one of the cloud servers.
he offloading decision is made in a way that the total energy
onsumption of all the requests is minimized while maintaining
ach request’s SLA in terms of latency and processing time re-
uirements. The main contributions of this paper are summarized
s follows:

• A novel algorithm is proposed to solve the problem of of-
floading in vehicular networks that minimizes the total en-
ergy consumption of vehicles’ requests while adhering to
latency and processing time constraints.
• This optimization NP-hard problem is solved by applying

an adaptive penalty function to our evolutionary-based al-
gorithm, to obtain a near-optimal solution in polynomial
time.
• The performance of the proposed algorithm is evaluated

and compared with three algorithms in terms of total en-
ergy consumption and the percentage of SLA violations. The
algorithms are evaluated using different constraints require-
ments and vehicular network characteristics.
206
The rest of the paper is organized as follows. Section 2 presents
an overview of related work. Our edge–cloud integrated comput-
ing systemmodel for vehicular networks is described in Section 3.
The formulation of the offloading optimization problem is out-
lined in Section 4. Section 5 presents the proposed EGA-based
energy-SLA-aware offloading algorithm. Numerical experiments
and comparative performance results with baseline methods are
provided in Section 6. Finally, Section 7 concludes the paper with
future research directions.

2. Related work

Several works in the literature have proposed energy-aware
computation offloading for an IoT-edge–cloud integrated com-
puting system [19–30]. Table 1 presents a comparison between
these works and shows the system component(s) on which a
request from an IoT device/mobile/vehicle is processed, the con-
sidered component(s) for energy optimization, the constraints
on SLA requirements, and whether or not the time for the de-
livery of request’s response is included while computing the
request’s total execution time. As shown in the table, most of
the works focus on optimizing the energy consumption of the
IoT device/mobile/vehicle [19,20,24–30]. On the other hand, few
works [21,22] focus on optimizing the energy consumption of
the edge servers, while only one work [23] considers optimizing
the energy of both mobile devices and edge servers. No work
focuses on optimizing the energy consumption of the edge–cloud
integrated computing system. In this paper, an EGA-based algo-
rithm is proposed to offload the vehicles’ requests either to edge
or cloud servers in a way that the total energy consumption of
the requests is minimized while maintaining the requests’ SLA
requirements in terms of latency and processing time.

As shown in Table 1, Li et al. [19] proposed an iterative search-
based energy-aware offloading algorithm to execute requests on
either IoT devices or an edge server. The algorithm aims to
minimize the energy consumed by IoT devices while transmitting
the requests to the edge server with the SLA constraint on the
request’s total execution time, i.e., summation of the request’s
transmission and processing times. Similarly, Guo et al. [20] pro-
posed an iterative search-based offloading algorithm to execute
requests either locally on IoT mobile devices or offload them to an
edge server. This is to minimize the weighted sum of the request’s
total execution time (both computation and communication) and
mobile device’s energy consumption while maintaining the dead-
line constraint. A similar approach to minimize the request’s
execution time and the energy consumption of mobile devices,
with an SLA constraint on execution time, using an iterative
search method is proposed by Zhang et al. [24]. The algorithm en-
ables mobile devices to execute requests either locally or offload
them to an edge server. The execution time involves processing
and communication times. However, an iterative search-based
algorithm [19,20,24] generates identical offloading solutions in a
subset of solutions leading to premature convergence [34].

In [25], Li et al. proposed deep reinforcement learning (DRL)-
based offloading algorithm to execute requests either locally on
a mobile device or offload them to an edge server such that the
total energy consumption of the mobile device is the minimum.
The algorithm is constrained by the request’s total execution
time, i.e., processing and communication. With a similar objec-
tive, Huang et al. [26] proposed a DRL-based offloading algorithm
to execute a request either locally on a vehicle or an edge server
such that the vehicle’s energy consumption (processing and com-
munication) is the minimum while maintaining the request’s
deadline constraint. However, the computational complexity of
DRL [25,26] increases with increasing edge/cloud servers and
users’ requests [35].

H. Materwala, L. Ismail, R.M. Shubair et al. Future Generation Computer Systems 135 (2022) 205–222
Table 1
Related work on energy-aware computation offloading for IoT-edge–cloud integrated computing system.

Work Algorithm Considered component(s)
for request processing

Considered component(s)
for energy optimization

Considered SLA
requirements

Request–response delivery
time consideration

Io
T
de

vi
ce

/m
ob

ile
/v
eh

ic
le

Ed
ge

se
rv
er

Cl
ou

d
se
rv
er

Io
T
de

vi
ce

/m
ob

ile
/v
eh

ic
le

Ed
ge

se
rv
er

Cl
ou

d
se
rv
er

La
te
nc

y

Pr
oc

es
si
ng

tim
e

To
ta
l
ex

ec
ut
io
n

tim
e
(d
ea

dl
in
e)

[19] ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗

[20] ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗

[24]

Iterative
search-based

✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗

[25] ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗

[26]
Deep reinforcement
learning ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓

[27] ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗

[28]
Lyapunov
optimization ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓

[29] Memetic algorithm ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗

[30] Non-dominated sorting
genetic algorithm-II

✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗

[21] – ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗

[22] Non-dominated sorting
genetic algorithm-II

✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗

[23] Heuristic approach ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✗

This
paper

Evolutionary genetic
algorithm

✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✓
Another energy-aware offloading algorithm is proposed by
Huang et al. [27] using Lyapunov optimization that allows ve-
hicles to execute requests locally or to offload them to an edge
server such that the vehicles’ energy consumption and packet
drop rate are the minimum. Pu et al. [28] used Lyapunov
optimization-based algorithm to execute a request either locally
on a vehicle, by a group of communicating vehicles, or by an
edge server such that the vehicle’s energy consumption is the
minimum while maintaining an SLA constraint on the request’s
deadline. The vehicle’s energy consumption in [27,28] involves
request processing and transmission. However, the Lyapunov-
based approaches [27,28] are best suited for problems involving
optimization of long-term performance where each performance
metric in the objective function must be time-averaged, for in-
stance, minimizing average energy consumption. Consequently,
they are not suitable for optimization problems with deter-
ministic constraints such as latency and the processing time
requirement of each request [25]. Goudarzi et al. [29] proposed
memetic algorithm to partially/completely process applications’
requests on IoT devices or to offload them to edge or cloud servers
such that the weighted sum of the application’s execution time
and device’s energy consumption, while processing and commu-
nication, is the minimum. However, the memetic algorithm [29]
does not assure an optimal solution for problems that involve
multiple local minima for total energy consumption [36].

Peng et al. [30] proposed a non-dominated sorting genetic
algorithm (NSGA)-II that allows mobile devices to execute ap-
plications either locally or offload them to edge or cloud servers
such that the device’s energy consumption, the application’s total
execution time, and the cost for using edge/cloud resources are
the minimum, with an SLA constraint on execution time. The ex-
ecution time for local computing includes processing, edge com-
puting includes transmission, waiting, and processing, and cloud
computing includes transmission and processing. Xu et al. [22]
proposed an energy-aware NSGA-II algorithm that enables a mo-
bile user to offload a request to the nearest access point, i.e., a
207
source point. The request is then transmitted to an edge server-
enabled access point, i.e., a destination point, for processing. The
algorithm aims to find a path between source and destination
points such that the request’s offloading time, edge server’s en-
ergy consumption, and variance in the average edge servers’
utilization are the minimum. However, NSGA-II [22,30] suffers
from premature convergence similar to the iterative-based algo-
rithm. In addition, the algorithm’s convergence rate reduces with
increasing objective functions and constraints in the optimization
problem [34].

Another offloading algorithm is proposed by Ning et al. [21]
proposed a framework to offload vehicles’ requests to a group of
edge servers in a way that the edge server’s energy consumption
is the minimum while having an SLA constraint on the requests’
deadline. The energy consumption includes processing, transmis-
sion among edge servers, and transmission of response back to
the vehicle. The execution time involves transmission to an edge
server from the vehicle, transmission among edge servers, and
processing. Zhai et al. [23] proposed a heuristic-based offloading
algorithm to execute requests either locally on a mobile device
or offload them to nearby edge devices such that the weighted
sum of the request’s energy consumption while computing and
communication and total execution time is the minimum with an
SLA constraint on the total execution time. However, this method
is probabilistic and thus cannot assure an optimal solution [37].

3. System model

Fig. 1 shows our edge–cloud integrated computing system
model for vehicular networks with bi-directional traffic flow. Our
proposed model consists of m vehicles, n requests, o RSUs and
edge servers, and p heterogeneous cloud servers. RSUs are placed
along the road equidistant from each other. Each RSUj (1 ≤
j ≤ o) has a limited coverage range and is equipped with edge
servers through wired connections. A vehicle, v (1 ≤ h ≤ m)
h

H. Materwala, L. Ismail, R.M. Shubair et al. Future Generation Computer Systems 135 (2022) 205–222

c
i
c
t
t
b
v
c
c
i
a
c
C
a
t
t
b

s
k
i
q
t

y
b
t

s
t
a
c
w
i
o
f
p
i
o
c

Fig. 1. Edge–cloud integrated computing system model for vehicular networks.
s
c
d

4

p
r
c
c
r
c
q
o
s
c
m
t

o
l
t
r

L

f

an communicate to an edge server ej (1 ≤ j ≤ o) only if
t is under the range of RSUj. Edge servers ensure low latency
ompared to cloud servers, aiding in real-time processing for
ime-critical applications, such as traffic alerts, accident preven-
ion, and real-time navigation. This is because of the proximity
etween vehicles and edge servers compared to that between
ehicles and cloud servers. However, the processing and storage
apabilities of edge servers are lower compared to that of the
loud servers, making the edge servers bottleneck for compute-
ntensive applications, such as multimedia, augmented reality,
nd autonomous driving. Moreover, the edge and cloud servers
onsume high energy while processing the vehicle’s requests.
onsequently, it becomes crucial to carefully process requests
t edge or cloud server to minimize the energy consumption of
he integrated edge–cloud computing system while respecting
he requests’ SLA requirements. A heterogeneous communication
andwidth between each edge and cloud server is considered.
Each edge server, ej, in our proposed model consists of

cheduling and processing queues, and each cloud server, ck (1 ≤
≤ p), consists of a processing queue. The scheduling queue

s responsible for making the offloading decision for each re-
uest, while the processing queue is responsible for executing
he request. A vehicle, vh, submits a request, ri (1 ≤ i ≤
n), to the edge server of the RSU under whose communicat-
ing range the vehicle is. A request is represented as a tuple
ri = {Lenri , Sizeri , CPUri , L

max
ri , PTmax

ri , Speedvh,ri , (x
src
vh,ri , y

src
vh,ri), (x

des
vh,ri ,

des
vh,ri)}. Each request in our system model is atomic and cannot
e further divided. Consequently, each request can be offloaded
o at most one edge or cloud server for execution.

A set of requests, when submitted by vehicles, enters the
cheduling queue of an edge server. The scheduling queue makes
he offloading decision for each request, i.e., whether to execute
request locally on the edge itself or to offload it to one of the
loud servers for execution. The offloading decision is made in a
ay that the total energy consumption for executing all requests

s the minimum and each request’s SLA requirements, in terms
f latency and processing time, are maintained. If the decision
or a request is to execute locally, then the request enters the
rocessing queue of the edge server ej. If the decision for a request
s to be executed by a cloud server ck, then the scheduling queue
f ej sends the request along with the information of the allocated

loud server ck to the cloud manager. The cloud manager then

208
ubmits the request to the processing queue of the corresponding
loud server. The list of notations, used in this paper, and their
efinitions are listed in Table 2.

. Problem formulation

A set of n requests corresponding to different vehicular ap-
lications, such as autonomous driving, infotainment, augmented
eality, accident prevention, traffic alert, is generated by m vehi-
les. Each request ri by a vehicle vh is submitted to the communi-
ating edge server ej. Depending on the energy consumption and
esource utilization of the edge and cloud servers and requests’
haracteristics, i.e., compute-intensive or time-critical, each re-
uest should be scheduled for execution locally at the edge server
r offloaded to a cloud server. The scheduling queue of edge
erver ej makes an offloading decision such that the total energy
onsumption of the requests is the minimum and each request
aintains the SLA constraints in terms of latency and processing

ime.
The latency and processing time of ri when executed either

n ej or ck are presented in Eqs. (1) and (2) respectively. The
atency (Eq. (1)) depends on the following: (1) server on which
he request is executed, and (2) position of vh while receiving the
esponse, resi, of the request, as the vehicle might be moving.

ri =

⎧⎪⎨⎪⎩
T com
ri(vh,ej)

+ T com
resi(ej,vh)

, case (a)
T com
ri(vh,ej)

+ T com
resi(ej,ck)

+ T com
resi(ck,ej+y)

+ T com
resi(ej+y,vh)

, case (b)
T com
ri(vh,ej)

+ T com
ri(ej,ck)

+ T com
resi(ck,ej+y)

+ T com
resi(ej+y,vh)

, case (c)

(1)

PTri =

⎧⎨⎩
Lenri
Sej

, case (a) or case (b)

Lenri
Sck

, case (c)
(2)

where T com
ri(a,b)

represents the communication time required to
transmit request ri from a to b and T com

resi(a,b)
represents the commu-

nication time required to transmit response of request, i.e., resi,
rom a to b.

The different cases are as follows:

• Case (a): ri is executed locally on ej and vh is in the range of
RSU while receiving the response. Consequently, the latency
j

H. Materwala, L. Ismail, R.M. Shubair et al. Future Generation Computer Systems 135 (2022) 205–222
Table 2
List of notations and their definitions.
Notation Definition

h, m, vh Vehicle index, number of vehicles, hth vehicle
i, n, ri , resi Request index, number of requests, ith request, response of ri
j, o, RSUj , ej RSU and edge server index, number of RSUs and edge servers, jth RSU, jth edge server
k, p, ck Cloud server index, number of cloud servers, kth cloud server
z, sz Server (edge/cloud) index, zth server (where sz ∈ {ej, ck})
Lenri Length of request i in Million Instructions (MI)
Sizeri , Sizeresi Size of request i, size of response for request i in bits
CPUri CPU utilization of request i
Lmax
ri Maximum tolerable latency for request i

PTmax
ri Maximum tolerable processing time for request i

Speedvh,ri Speed of vehicle h when submitting request i

(xsrcvh,ri , y
src
vh,ri) Source of vehicle h, in terms of longitude (xsrcvh,ri) and latitude (ysrcvh,ri), while submitting request i

(xdesvh,ri , y
des
vh,ri) Destination of vehicle h, in terms of longitude (xdesvh,ri) and latitude (ydesvh,ri), who submitted request i

Lri Latency of request i when executed
T com
ri(a,b)

Communication time required to transfer request i from a to b (where a ∈ {vh, ej} and b ∈ {ej, ck})

T com
resi(a,b)

Communication time required to transfer the response of request i from a to b (where a ∈ {ej, ck, ej+y} and b ∈ {vh, ck, ej+y})
Ba,b Communication bandwidth between a to b (where a, b ∈ {vh, ej, ck, ej+y})
PTri Processing time of request i
Sej , Sck Processing speed of ej , processing speed of ck in terms of Million Instructions per Second (MIPS)
Eri(sz) Energy consumed by server sz while executing request i
Pri(sz) Power consumed by server sz while executing request i

P
′

CPUri (sz)
Power predicted using linear regression for executing request i on server sz

φCPUri (sz)
Error correction term for the Locally Corrected Linear Regression (LC-LR) model while executing request i on server sz

αsz , βsz Intercept, slope for linear regression model

CPU
′

sz , CPU
′

sz Lower, upper CPU utilization values of server sz such that CPU
′

sz ≤ CPUri ≤ CPU
′′

sz

eCPU ′sz
and eCPU ′′sz

Error between the actual and predicted (using linear regression) power consumption values for CPU utilization CPU
′

and CPU
′′

on server sz

popsize Size of the population, i.e., the subset of offloading solutions considered in each generation of genetic algorithm
l Offloading solution index

F
′

l , F̃
′

l , F
a
l , Fl Non-penalized, normalized non-penalized, adaptive, penalized fitness scores of offloading solution l

vl , ṽl Constraints violation, normalized constraints violation for offloading solution l
LVri (l) Latency violation of request i for offloading solution l
PTVri (l) Processing time violation of request i for offloading solution l
vlat
l Total latency violation of all requests for offloading solution l

v
proc
l Total processing time violation of all requests for offloading solution l

F
′

min , F
′

max Minimum, maximum non-penalized fitness scores among all offloading solutions in the current subset of solutions

vlat
max Maximum latency violation among all solutions in the current subset of solutions

v
proc
max Maximum processing time violation among all offloading solutions in the current subset of solutions

nf , rf Number, fraction of feasible offloading solutions in the current subset of solutions
fpl , cpl Fitness probability, cumulative fitness probability for offloading solution l
µc , µm Crossover rate, mutation rate
nmut Number of requests for which the server allocation should be changed in the current subset of solutions
lc Length of an offloading solution that is equal to the number of requests
involves the communication time to send ri from the vh
to ej, and the communication time to send resi from ej
to vh.
• Case (b): ri is executed locally on ej, but vh is not in the

range of RSUj while receiving the response. vh will be in
the range of RSUj+y which represents yth RSU after RSUj on
the path between the vh’s source and destination. The value
of y can be determined based on Speedvh,ri , (xsrcvh,ri , y

src
vh,ri)

and (xdesvh,ri , y
des
vh,ri) [31]. In this case, the latency involves the

communication time to send ri from vh to ej and the time to
send resi from ej to cloud server ck, from ck to ej+y, and from
ej+y to vh.
• Case (c): ri is offloaded to one of the cloud servers, ck for

execution. Consequently, the latency involves the time to
send ri from vh to ej and then from ej to ck, and the time
to send res from c to e and from e to v .
i k j+y j+y h

209
The communication times presented in Eq. (1) can be calcu-
lated by using Eqs. (3)–(8).

T com
ri(vh,ej) =

Sizeri
Bvh,ej

(3)

T com
resi(ej,vh) =

Sizeresi
Bej,vh

(4)

T com
resi(ej,ck) =

Sizeresi
Bej,ck

(5)

T com
resi(ck,ej+y) =

Sizeresi
Bck,ej+y

(6)

T com
resi(ej+y,vh) =

Sizeresi
Bej+y,vh

(7)

T com
ri(ej,ck) =

Sizeri (8)

Bej,ck

H. Materwala, L. Ismail, R.M. Shubair et al. Future Generation Computer Systems 135 (2022) 205–222

P

t
T
t
c
c
C
i

a

φ

a
f
c
e
s
r
c

P

M

S

L

P

F
o

s
t
f
(
T
a
i
v

o
i
p
s
s
p
r
s
i
o
i
s
f
o
o
a
l
i
f

E
s
e
e
T
c

The energy consumption of ri when processed on server sz
(where sz ∈ {ej, ck}) can be computed using Eq. (9).

Eri(sz) = Pri(sz) × PTri (9)

To estimate the power consumed by sz while processing ri,
the Locally Corrected Linear Regression (LC-LR) power model is
used as it outperformed other power models in our previous
work [38]. LC-LR is an extension of the classical linear regression
model (P ′CPUri(sz)

) by adding an error correction term as stated in
Eqs. (10) and (11). In this paper, a CPU-based linear regression
power model is used because CPU is considered to be the most
dominant power-consuming resource in a computing server [39].

Pri(sz) = P ′CPUri(sz)
+ φCPUri(sz)

(10)

′

CPUri(sz)
= αsz + [βsz × CPUri] (11)

The regression coefficients αsz and βsz are server-specific and
heir values should be obtained experimentally for each server.
his is using a training dataset consisting of server’s CPU utiliza-
ion values at different intervals and the corresponding power
onsumptions. The error correction term can be calculated by
onstructing a linear model between the CPU utilization values
PU ′sz and CPU ′′sz , such that CPU ′sz ≤ CPUri ≤ CPU ′′sz , as stated
n Eq. (12). The term eCPU ′sz represents the intercept of the model

nd
eCPU ′′sz

−eCPU ′sz
CPU ′′sz−CPU

′
sz

represents the slope.

CPUri(sz)
= eCPU ′sz +

(eCPU ′′sz − eCPU ′sz)(CPUri − CPU ′sz)

(CPU ′′sz − CPU ′sz)
(12)

There are multiple ways that each edge server can schedule
nd offload a set of received requests. This paper focuses on
inding the optimal solution for computation offloading in edge–
loud integrated vehicular networks which minimizes the total
nergy consumption of all the requests. The offloading decision
hould be made in a way that the latency and processing time
equirements of each request should not be violated. Hence, the
onsidered optimization problem is formulated as follows.

roblem:

inimize
n∑

i=1

Eri(sz), sz ∈ {ej, ck} (13)

ubject to:

ri ≤ Lmax
ri , ∀i ∈ {1, 2, . . . , n} (14)

Tri ≤ PTmax
ri , ∀i ∈ {1, 2, . . . , n} (15)

Here
∑n

i=1 Eri(sz) represents the total energy consumption of all
the requests in the system. The constraint in Eq. (14) ensures
that the latency of each request in the system is not more than
the tolerable latency. Constraint in Eq. (15) ensures that the
processing time requirement of each request is satisfied.

Computation offloading is an NP-hard problem where the
search space and time to optimal solution increase exponentially
with the number of requests required to be offloaded. Conse-
quently, in this paper, EGA is adopted to obtain a near-optimal
solution in a polynomial time.

5. Proposed algorithm

In this section, EGA [32] with adaptive fitness is proposed to
find a solution of the optimization problem (Eqs. (13)–(15)). EGA,
inspired by Charles Darwin’s theory of natural evolution, is an

iterative process that explores multiple nodes in the search space l

210
Fig. 2. Example of a chromosome that represents one of the possible offloading
solutions.

simultaneously. In the context of the considered optimization
problem, a node in the search space corresponds to an offloading
solution for a set of requests. The subset of offloading solutions in
each iteration is known as population, the number of offloading
solutions in the subset represents the population size, and the
population in each iteration is known as a generation. The pop-
ulation size remains constant throughout the generations. Each
offloading solution is represented by a sequence of request-server
allocation tuple, (ri, ej) or (ri, ck). Each tuple is known as a gene
and the sequence of genes is known as a chromosome. The length
of a chromosome, lc , is equal to the number of requests (n).
ig. 2 shows an example of a chromosome that represents an
ffloading solution for 5 requests, i.e., (lc = 5), where r1 and r4

are executed locally on e1, r2 is offloaded to c2 for execution, and
r3 and r5 are offloaded to c1. EGA resembles the process of natural
election where the fittest offloading solutions, i.e., the ones near
he optimal solution, are selected from the subset to produce of-
loading solutions for the next generation. The objective function
Eq. (13)) is used to determine the fitness of offloading solutions.
o incorporate the inequality constraints on latency (Eq. (14))
nd processing time (Eq. (15)), an adaptive fitness approach is
mplemented that penalizes the offloading solutions with SLA
iolations by reducing their fitness.
The proposed algorithm consists of 6 stages: (1) initialization

f a subset of offloading solutions, (2) evaluation of the solutions
n the subset, (3) selection of the fittest solutions, (4) crossover to
roduce offspring solutions, (5) mutation of server allocations for
ome requests, and (6) termination. In the first stage, an initial
ubset of offloading solutions is randomly generated (i.e., initial
opulation), where a solution consists of server allocations for the
equests. Each solution in the subset is evaluated in the second
tage to determine how close it is to the optimal solution. This
s using an adaptive fitness function based on the optimization
bjective and constraints stated in Eqs. (13)–(15). The fit solutions
n the subset, i.e., the ones close to the optimal solution, are then
elected using a probabilistic approach in the third stage. In the
ourth stage, the selected solutions are used to produce offspring
ffloading solutions leading to convergence. Server allocations
f some requests are randomly changed in the fifth stage to
void premature convergence. The algorithm terminates in the
ast stage based on the termination conditions. Steps 2–6 are
terated until termination. Each stage is explained in detail in the
ollowing subsections using a numerical example.

xample. A vehicular network consisting of 1 edge server, 2 cloud
ervers, and 5 vehicles. Each vehicle submits a request to the
dge server. For each request, the edge server should decide to
xecute it locally or to offload it to one of the cloud servers.
he offloading decision is made in a way that the total energy
onsumption of the requests is the minimum considering the
atency and processing time constraints for each request.

H. Materwala, L. Ismail, R.M. Shubair et al. Future Generation Computer Systems 135 (2022) 205–222

d
t

o

s
a
r
I
(
h
f
i
e
i
(
f
n

F

Fig. 3. A random subset of offloading solutions at the initialization stage for the
considered example.

5.1. Initialization: Subset of offloading solutions

In this stage, an initial subset of offloading solutions is ran-
omly generated, i.e., each request is randomly allocated either
o ej or ck for execution. The number of solutions in the sub-
set is determined by the parameter popsize. The value of popsize
should be carefully selected as a small value may result in faster
convergence but the solution might get trapped in local optima,
while a large value increases the search space with slower con-
vergence towards global optima. The pseudocode for initialization
of a subset of offloading solutions is presented in Algorithm 1.
Fig. 3 shows the randomly generated offloading solutions for the
considered example.

Algorithm 1 Initialization of a subset of offloading solutions
Input: popsize, requests ri (1 ≤ i ≤ n), edge servers ej (1 ≤ j ≤

), cloud servers ck (1 ≤ k ≤ p)
Output: Initial subset of offloading solutions

1: l← 1 ▷ initialize offloading solution index
2: while l ≤ popsize do ▷ for each solution in the population
3: for i = 1 to n do ▷ for each request in solution l
4: request← ri ▷ determine the request
5: server← selectRandom ∈ {ej, ck} ▷ randomly select

edge server ej or cloud server ck
6: end for
7: offloading_solution(l)← tuple(request,server) ▷ assign

server allocation to l
8: end while

5.2. Evaluation: Input offloading solutions

In this stage, each solution from the initial subset of offloading
olutions is evaluated in terms of fitness. Each solution has an
ssociated fitness score, calculated using a fitness function, that
epresents how near the solution is from the optimal solution.
n the proposed algorithm, the energy optimization objective
Eq. (13)) is used to define the fitness function. Moreover, to
andle the optimization constraints (Eqs. (14) and (15)), a penalty
unction is used that penalizes the infeasible offloading solutions,
.e., the ones for which the constraints are violated. The gen-
ral representation of a penalized fitness function is represented
n Eq. (16), where the penalty function is added (subtracted) to
from) the non-penalized fitness score. In this paper, the penalty
unction is added to the non-penalized fitness score, to avoid a
egative fitness score value.
a
= F ′ ± v , l = {1, 2, . . . , pop } (16)
l l l size

211
Different methods based on penalty functions have been pro-
posed in the literature: death, static, dynamic, annealing, co-
evolutionary, and adaptive [40]. In this paper, the adaptive
penalty method [41] is used due to the following advantages
of the adaptive method over other methods: (1) no parameter
tuning is required for the penalty function, (2) computationally
less expensive, (3) easy to implement, and (4) works well even
if the feasible search space is very small compared to the entire
search space.

In the proposed algorithm, an optimal solution represents
server allocation for requests in a way that the total energy con-
sumption of the requests is the minimum and no request violates
the SLA. This implies that the lower the energy consumption and
SLA violations for a solution, the closer the solution would be to
the optima and higher the fitness score. Consequently, to assign
the highest fitness score to the optimal solution, the reciprocal of
the sum of non-penalized fitness score (i.e., energy consumption)
and penalty factor (i.e., SLA violations) is calculated. The fit-
ness score for each offloading solution using an adaptive penalty
function can be computed as follows:

• Compute the non-penalized fitness score for each solution
in the current subset of solutions using Eq. (17).

F ′l =
n∑

i=1

Eri(sz) (17)

• Compute latency and processing time violations, for each
request in each solution, using Eqs. (18) and (19).

LVri (l) =
{
Lri (l)− Lmax

ri , Lmax
ri < Lri (l)

0, otherwise
(18)

PTVri (l) =
{
PTri (l)− PTmax

ri , PTmax
ri < PTri (l)

0, otherwise
(19)

• Compute total latency and processing time violations for all
requests in each solution using Eqs. (20) and (21).

vlat
l =

n∑
i=1

LVri (l) (20)

v
proc
l =

n∑
i=1

PTVri (l) (21)

• Normalize the non-penalized fitness score and the con-
straints violations, i.e., the penalty factor, for each offloading
solution using Eqs. (22) and (23).

F̃ ′l =
F ′l − F ′min

F ′max − F ′min
(22)

ṽl =
1
2

(
vlat
l

vlat
max
+

v
proc
l

v
proc
max

)
(23)

• Compute the adaptive fitness for the feasible and infeasible
offloading solutions using Eq. (24).

F a
l =

⎧⎪⎨⎪⎩
ṽl, nf = 0
F̃ ′l , ṽl = 0√
(F̃ ′l)2 + (ṽl)2 + [(1− rf)ṽl + (rf)F̃ ′l], otherwise

(24)

where rf is the fraction of feasible offloading solutions in the
subset of solutions as stated in Eq. (25).

rf =
nf (25)
popsize

H. Materwala, L. Ismail, R.M. Shubair et al. Future Generation Computer Systems 135 (2022) 205–222

r

1
1
1
1

b
l
(
t
R
l
t
l
c
i
a
p
a
T
s

c

Fig. 4. Evaluation of the offloading solutions for the considered example.

• Compute the penalized fitness score for each offloading
solution as the reciprocal of the adaptive fitness score us-
ing Eq. (26). To avoid division by zero, 1 is added to the
denominator.

Fl =
1

F a
l + 1

(26)

The pseudocode for evaluating the subset of offloading so-
lutions is presented in Algorithm 2. Fig. 4 shows the fitness
evaluation of the randomly generated offloading solutions (Fig. 3)
for the considered example.

Algorithm 2 Evaluation of the subset of offloading solutions
Input: Initial subset of random offloading solutions, requests

i (1 ≤ i ≤ n)
Output: Fitness score of each offloading solution from the

subset
1: for l = 1 to popsize do ▷ for each solution l
2: F

′

l ← Equation (17) ▷ compute non-penalized fitness
3: for i = 1 to n do ▷ for each ri in l
4: LVri (l)← Equation (18) ▷ compute latency violation
5: PTVri (l)← Equation (19) ▷ compute processing time

violation
6: end for
7: vlat

l ← Equation (20) ▷ compute total latency violation
8: v

proc
l ← Equation (21) ▷ compute total processing time

violation
9: F̃

′

l ← Equation (22) ▷ compute normalized non-penalized
fitness

0: ṽl ← Equation (23) ▷ compute normalized violations
1: F a

l ← Equation (24) ▷ compute adaptive fitness
2: Fl ← Equation (26) ▷ compute penalized fitness
3: end for

5.3. Selection: Fittest offloading solutions

In this stage, offloading solutions from the subset are selected
ased on their penalized fitness score to produce offspring so-
utions. The proposed algorithm uses Roulette Wheel Selection
RWS) method for selection as it is the most used method in
he context of requests’ scheduling in computing systems [42].
WS is a fitness proportionate selection method where the se-
ection probability for an offloading solution is proportional to
he solution’s fitness. In RWS, the fitness probability and cumu-
ative probability of each offloading solution in the subset are
alculated using Eqs. (27) and (28) respectively. A roulette wheel
s constructed using the computed probabilities such that the
rea occupied by each solution is proportionate to its fitness
robability. A random number for each solution is then generated
nd placed under the area on the roulette wheel where it belongs.
he solutions under whose area the random numbers belong are
elected as the new solutions. The pseudocode for selecting the
212
Fig. 5. Selection of the fittest offloading solutions using the Roulette Wheel
Selection method for the considered example.

fittest solutions is presented in Algorithm 3.

fpl =
Fl∑popsize

l=1 Fl
(27)

pl =
l∑

i=1

fpl (28)

Algorithm 3 Selection of the fittest solutions
Input: Initial subset of random offloading solutions, popsize
Output: Subset of solutions after selection

1: for l = 1 to popsize do ▷ for each solution l
2: fpl ← Equation (27) ▷ compute fitness probability for l
3: cpl ← Equation (28) ▷ compute cumulative probability

for l
4: rnd(l)← RandomNumber ∈ U[0, 1] ▷ generate a random

number for l
5: end for
6: for k = 1 to popsize do ▷ for each solution k
7: for l = 1 to popsize do ▷ for each solution l
8: if rnd(k) > cpl then ▷ determine the position of

random number for k on the roulette wheel
9: selected_solution(k)← solution(l-1) ▷ replace

solution k by l
10: end if
11: end for
12: end for

Fig. 5 depicts the selection of the fittest offloading solutions
using RWS for the considered example. It shows that the random
number generated for solution 1 lies under the area of solution
4 on the roulette wheel. Consequently, the selected solution 1 is
solution 4 from the initial subset of offloading solutions. Similarly,
the selected solutions 2, 3, 4, and 5 are the 5th, 2nd, 4th, and
4th solutions respectively, from the initial subset of solutions.
As solution 4 in the initial subset of solutions was the fittest,
i.e., having the least SLA violations (Fig. 4), it has been selected
the majority of the times by the RWS method.

H. Materwala, L. Ismail, R.M. Shubair et al. Future Generation Computer Systems 135 (2022) 205–222

t
p
s
f
s
l
a
c
µ

w
s
b
r
b
s
r
s
i
r
s
g
u
t
f
f

s

1

1
1
1

1

1
1
1

1

1
2

2

i
1
s
3
r
s
t
f
t
a
o
1
s
p
s
n
i

5

a
e
c
t
c
o

5.4. Crossover: Offspring offloading solutions reproduction

In this stage, a crossover operation is performed to converge
he algorithm towards the optimal offloading solution. It im-
roves the performance of the algorithm by exploiting the search
pace within the neighborhood of fit solutions that are selected
rom the previous stage. It increases the number of fit offloading
olutions in the subset of solutions by swapping the server al-
ocations between two selected offloading solutions, referred to
s parent solutions. The number of parent solutions selected for
rossover operation depends on the parameter µc . For instance,
c = 0.5 indicates that approximately 50% of the solutions
ill be selected at random for the crossover. In this paper, a
ingle-point crossover is used in which the server allocations
etween the parents are swapped for all the requests after a
andomly generated cutoff point. The crossover operation begins
y generating uniform random numbers between 0 and 1 for each
olution in the subset. The solutions, for which the value of the
andom number is less than the µc , are selected for crossover. The
elected solutions are randomly paired. For each pair of solutions,
.e., parent 1 and parent 2, a cutoff point value is generated
andomly to decide for which requests the allocations should be
wapped. A crossover operation between parent solutions will
enerate two offspring solutions. The parent solutions in the pop-
lation are then replaced with the top two fittest solutions among
he parents and the offspring. Consequently, a fitter subset of of-
loading solutions is used in the next generation. The pseudocode
or the crossover operation is presented in Algorithm 4.

Algorithm 4 Crossover operation to produce offspring offloading
olutions

Input: popsize, µc , lc
Output: Subset of offloading solutions after crossover

1: for l = 1 to popsize do ▷ for each solution l
2: rnd(l)← RandomNumber ∈ U[0, 1] ▷ generate a random

number for l
3: if rnd(l) < µc then
4: selected_solution_for_crossover← l ▷ select a

solution whose random number is less than crossover rate
5: end if
6: end for
7: pairs← GeneratePairs(selected_solution_for_crossover) ▷

generate pairs from selected solutions
8: for each pair ∈ pairs do
9: selectparent_solution1 and parent_solution2 from pair ▷

assign solutions in each pair as parents
0: cutoff← RandomNumber ∈ U[1, lc − 1] ▷ randomly

generate a cutoff point
1: k← 1
2: for 1 ≤ k ≤ cutoff do ▷ for all requests till the cutoff
3: offspring_solution1(k)← parent_solution1 ▷ assign

server allocation of parent 1 to offspring 1
4: offspring_solution2(k)← parent_solution2 ▷ assign

server allocation of parent 2 to offspring 2
5: end for
6: for cutoff < k ≤ l do ▷ for all requests after the cutoff
7: offspring_solution1(k)← parent_solution2 ▷ assign

server allocation of parent 2 to offspring 1
8: offspring_solution2(k)← parent_solution1 ▷ assign

server allocation of parent 1 to offspring 2
9: end for
0: solution(pair)← Best(parent_solution1,

↪→ parent_solution2, offspring_solution1,

↪→ offspring_solution2) ▷ two fit solutions
1: end for
 t

213
Fig. 6. Crossover operation on the offloading solutions to produce offspring
solutions for the considered example.

Fig. 7. Offloading solutions after crossover for the considered example.

Fig. 6 shows the crossover operation performed on the offload-
ng solutions (Fig. 5) for the considered example, where solutions
, 2, and 3 are selected for crossover. Based on the selected parent
olutions, two pairs are formed for crossover, i.e., solutions 1 –
and solutions 2 – 3. Cutoff values of 4 and 2 are generated

andomly for first and second pairs, respectively. Two offspring
olutions are generated for the first pair by swapping the alloca-
ions of the parent solutions after the cutoff (i.e., the allocation
or request 5). Similarly, for the second pair, the allocations for
he requests after the cutoff value of 2 (i.e., requests 3, 4, and 5)
re swapped. The top two offloading solutions from the first pair
f the parents and the generated offspring solutions are parent
and offspring 1. Solution 1 and solution 3 from the subset of

olutions are then replaced by these top solutions. Similarly, the
arent solutions for the second pair are replaced by the top two
olutions among the parents and their offspring solutions. The
ew subset of solutions after the crossover operation is shown
n Fig. 7.

.5. Mutation: Server allocations of some requests

In this stage, offloading solutions from the subset of solutions
re diversified by performing the mutation operation. Mutation
xplores the search space by randomly changing the server allo-
ations for some requests from the subset of solutions. This helps
he algorithm in escaping the local optima, i.e., avoids premature
onvergence, and increases the probability of finding the global
ptima. Consequently, in contrast to crossover, mutation leads
o solutions outside the neighborhood of offloading solutions.

H. Materwala, L. Ismail, R.M. Shubair et al. Future Generation Computer Systems 135 (2022) 205–222

c

1

1

1

a
r
m
a
s
F
s
f
i

5

c
r

A

6

e
d
i

o

The number of mutations, i.e., the number of requests for which
server allocations are changed, can be calculated using Eq. (29).
It is controlled by the parameter µm. The value of µm is kept
low, as a high value might prevent the solution to converge to
an optimum solution. Requests are selected randomly for reallo-
cation and the server allocations for these requests are changed
randomly to perform the mutation operation. The pseudocode for
the mutation operation is presented in Algorithm 5.

nmut = lc × popsize × µm (29)

Algorithm 5 Mutation operation for server allocations of requests
Input: popsize, µm, lc , edge servers ej (1 ≤ j ≤ o), cloud servers

k (1 ≤ k ≤ p)
Output: A mutated subset of offloading solutions

1: nallocations ← lc × popsize ▷ compute total number of requests
allocation in the population

2: nmut ← nallocations × µm ▷ compute number of requests for
which the allocations should be mutated

3: for z = 1 to nmut do
4: rnd(z)← RandomNumber ∈ U[1, nallocations] ▷ generate

random number to select a request for mutation
5: remz ← remainder after dividing rnd(z) by lc
6: if remz = 0 then ▷ check whether the random number is

at the end of solution
7: solutionz ←

rnd(z)−remz
lc

▷ determine the solution to
which the random number belongs

8: request_to_reallocatez ← lc ▷ determine the request in
the solution for mutation

9: else
0: solutionz ←

(
rnd(z)−remz

lc

)
+ 1

1: request_to_reallocatez ← remz
12: end if
13: request_to_reallocatez, solutionz ← RandomServer ∈

{ej, ck} ▷ change the allocation for the selected request
4: end for

Fig. 8 shows the subset of offloading solutions before and
fter the mutation operation for the considered example. Three
andom numbers, 2, 4, and 8 are generated as the number of
utations is 2.5 ≈ 3 (i.e., 5 × 5× 0.1). Consequently, the server
llocations for the 2nd request of solution 1, the 4th request of
olution 1, and the 3rd request of solution 2 are then changed.
ig. 9 shows the evaluation of the offloading solutions after the
election, crossover, and mutation operations. It shows that the
itness score of the subset is improved compared to that of the
nitial subset of solutions (Fig. 4).

.6. Termination

In this stage, the algorithm is terminated if one of the two
onditions is met: (1) the maximum number of generations is
eached, or (2) the threshold fitness score is reached.

The pseudocode of the proposed approach is presented in
lgorithm 6.

. Performance evaluation

In this section, the experimental environment and the set of
xperiments performed to evaluate the proposed algorithm are
escribed. In addition, the experimental results are analyzed, and

nsights and rationales on the obtained results are presented.

214
Fig. 8. Subset of offloading solutions before and after mutation operation for
the considered example.

Fig. 9. Evaluation of the subset of offloading solutions after mutation for the
considered example.

Algorithm 6 Energy-SLA-aware evolutionary genetic algorithm-
based computation offloading

Input: popsize, requests ri (1 ≤ i ≤ n), edge servers ej (1 ≤ j ≤
), cloud servers ck (1 ≤ k ≤ p), µc , µm, lc

Output: Scheduled requests after offloading
1: Initialize a subset of offloading solutions using Algorithm 1
▷ stage 1

2: repeat
3: Evaluate the solutions in the subset using Algorithm 2 ▷

stage 2
4: Select the fittest solutions using Algorithm 3 ▷ stage 3
5: Perform crossover operation on the selected solutions

↪→ to produce offspring solutions using
↪→ Algorithm 4 ▷ stage 4

6: Perform mutation operation for reallocating some
↪→ requests using Algorithm 5 ▷ stage 5

7: until the termination condition is satisfied ▷ stage 6

6.1. Experimental environment

A heterogeneous simulated edge–cloud integrated vehicular
network is created consisting of 2 edge servers and 4 cloud
servers. The specifications of the servers are presented in Ta-
ble 3. Servers 1 and 3 (one edge and one cloud server) are part
of our Intelligent Distributed Computing and Systems (INDUCE)
research laboratory at the College of Information Technology of
the United Arab Emirates University. The specifications of the
other servers, i.e., servers 2, 4, 5, and 6 are taken from the SPEC
Power benchmark suite [43]. The selection of the servers from
the SPEC Power benchmark is done in a way that they belong
to the same family of the servers present in the laboratory, but
with distinct architectures and resource capabilities. The network
is implemented using MATLAB.

To develop the LC-LR model for each server used in the ex-
periments (Table 3), a training dataset consisting of the CPU

H. Materwala, L. Ismail, R.M. Shubair et al. Future Generation Computer Systems 135 (2022) 205–222

t
T
e
o
i
F
e
t
a
n
r
5
e
o
p
d
t
c
t
b
s
g
f
t
b
(

6

i
t
a

a
e
C
e
s

Table 3
Specifications of the servers used in the experiments.
Location Server Specification

1 Intel Xeon, 2.80 GHz, 2-Core, 512 kB CacheEdge 2 Intel Xeon E5-2670, 2.60 GHz, 8-Core, 20 MB L3 Cache [44]

3 AMD Opteron 252, 2.59 GHz, 2-Core, 1 MB Cache
4 AMD Opteron 6276, 2.30 GHz, 16-Core [45]
5 Intel Xeon E5-2699 v3, 2.30 GHz, 18-Core, 45 MB L3 Cache [46]Cloud

6 AMD Opteron 6238 CPU, 2.60 GHz, 12-Core, 16 MB L3 Cache [47]
p
p
T
t
v

utilization values of a server at different intervals and the cor-
responding power consumption values is used. The datasets for
servers 1 and 3 are generated in the Laboratory and those for
servers 2, 4, 5, and 6 are obtained from the SPEC Power bench-
marking results. For the servers in the laboratory, CPU Load
Generator [48] is used to stress each server at different CPU
utilization values and measure the utilization and corresponding
power consumption values. To measure the servers’ power con-
sumption, a 4-channel digital oscilloscope, Tektronix – TBS2000
(100 MHz), with 1 GS/s of sampling [49] is used. Each server’s
power chord is connected to the oscilloscope using voltage and
current probes [39] to measure the server’s voltage and current
respectively. The voltage and current values from the oscilloscope
are extracted to a file using a LabVIEW program, and the power
consumption is then computed as the product of voltage and
current.

To get the positions of the vehicles in our simulated network,
he Vehicle–Crowd Interaction (VCI) – DUT dataset [50] is used.
he x_est and y_est columns of the dataset (representing the
stimated position of the vehicles) are used as the source location
f the vehicles in our experiments. Each vehicle in our exper-
ments generates a static request when the simulation begins.
or each request, the proposed algorithm decides on whether to
xecute it locally on the edge server to which it is submitted or
o offload it to a cloud server. The characteristics of the requests
re based on different vehicular applications namely face recog-
ition and object detection for autonomous driving, augmented
eality, VANET-based health monitoring, and infotainment [51–
3]. Table 4 shows the list of different parameters used in the
xperiments along with their values. The optimal values for the
ptimization parameters, i.e., crossover rate, mutation rate, and
opulation size, are obtained by evaluating the algorithm with
ifferent values of these parameters (Table 4). The value of the
ermination condition is selected in a way that the algorithm
onverges before termination. In addition, the algorithm involves
wo dependent parameters, i.e., length of chromosome and num-
er of mutation, and four random parameters for selection of
olutions using RWS, selection of parent solutions for crossover,
eneration of cutoff values for crossover, and selection of requests
or mutation. The value of chromosome length is the same as
he number of requests and the value of mutation is calculated
ased on chromosome length, population size, and mutation rate
Eq. (29)).

.2. Experiments

In this section, the experiments performed to obtain the train-
ng dataset for servers 1 and 3 for power model development and
o simulate the vehicular network for implementing our proposed
lgorithm are explained.
To get the training dataset consisting of CPU utilization values

nd corresponding power consumptions for servers 1 and 3,
ach server’s CPU is stressed, using a CPU load generator, with
PU utilization between 0% and 100% at an interval of 10%. For
ach utilization, the CPU is stressed for five minutes, and the
erver’s real-time CPU utilization and power consumption values
 f

215
Fig. 10. Probability distribution of the generated requests’ CPU utilization,
length, and size values.

are measured every second. The measured values are written
to a file. The values over five minutes are then averaged. The
experiment for each CPU load is repeated five times and all the
average values are averaged. Table 5 shows the CPU utilization
values and the corresponding power consumption for servers 1–
6. CPU utilization is the value returned by a server’s operating
system which indicates the percentage of total processing power
given to a process at a certain time.

To evaluate the performance of our proposed algorithm, a
heterogeneous edge–cloud integrated vehicular network is sim-
ulated with increasing vehicles. For the geographical location of
each server, the x and y coordinates are generated randomly
between the minimum and the maximum values of the vehicles’
source locations in a way that the edge servers are equidistant
from each other. For each request submitted to an edge server,
its CPU utilization, length, and size are generated randomly. The
dataset containing details of these values is provided in the sup-
plementary file and is available in a public Git repository for
reproducibility.1 Fig. 10 shows the probability distribution of the
generated utilization, length, and size values for the requests.

To obtain the optimal values of EGA parameters (µc, µm, and
opsize) for the proposed algorithm, µc is first varied with other
arameters (Table 4) being constant at their minimum values.
he parameter µm is then varied, with µc constant at its op-
imal value and other parameters constant at their minimum
alues. Lastly, popsize is varied keeping µc and µm constant at

their optimal values and remaining parameters at their minimum
values. After obtaining the optimal values for EGA parameters,
the proposed algorithm is evaluated with varying latency and
processing time requirements, edge–cloud bandwidth, and the
number of requests. While varying each parameter, the values
of the remaining three parameters are fixed to their minimum
values. The performance of our proposed algorithm is measured
in terms of total energy consumption for all the requests and the

1 https://github.com/Dr-Leila-Ismail/Energy-SLA-Aware-Genetic-Algorithm-
or-Edge-Cloud-Integrated-Computation-Offloading-in-Vehicular-Net.git.

https://github.com/Dr-Leila-Ismail/Energy-SLA-Aware-Genetic-Algorithm-for-Edge-Cloud-Integrated-Computation-Offloading-in-Vehicular-Net.git
https://github.com/Dr-Leila-Ismail/Energy-SLA-Aware-Genetic-Algorithm-for-Edge-Cloud-Integrated-Computation-Offloading-in-Vehicular-Net.git

H. Materwala, L. Ismail, R.M. Shubair et al. Future Generation Computer Systems 135 (2022) 205–222

b

v
b

6

m
p

Table 4
Experimental parameters.
Parameter Value(s)

Number of vehicles 20, 40, 60, 80, 100
Requests’ CPU utilization (%) U (10,90)
Requests’ length (MI) U (500,5000)
Request’s size (megabits) U (1,16)
Vehicle — RSU bandwidth (megabits/seconds) 500
RSU — cloud bandwidth (megabits/seconds) U (500,600), U (600,700), U (700,800), U (800,900), U (900,1000)
Requests’ latency requirement (milliseconds) 100, 200, 300, 400, 500
Requests’ processing time requirement (seconds) 1, 2, 3, 4, 5
Crossover rate 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95
Mutation rate 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10
Population size 2 × |M|, 4 × |M|, 6 × |M|, 8 × |M|, 10 × |M|
Termination condition 500 generations

U denotes Uniform distribution.
Table 5
CPU utilization and corresponding power consumption values for servers 1–6.
CPU utilization (%) Power consumption (W)

Server 1 Server 2 Server 3 Server 4 Server 5 Server 6

0 138.2685 54.1 204.2420 265 45 127
10 142.2829 78.4 204.9672 531 83.7 220
20 146.7379 88.5 205.9185 624 101 254
30 151.1492 99.5 206.6314 718 118 293
40 155.3824 115 207.5923 825 133 339
50 159.9734 126 208.5179 943 145 386
60 164.4558 143 209.1885 1060 162 428
70 169.1667 165 210.2377 1158 188 463
80 173.8268 196 211.1731 1239 218 497
90 178.4852 226 211.8091 1316 248 530
100 181.7913 243 214.9755 1387 276 559
T
g

percentage of requests violating the SLAs. The percentage of SLA
violations is calculated as the percentage of requests violating
latency or processing time constraints as stated in using Eq. (30).

%SLAVs =

⎛⎝ #
∀i∈M

(
[Lri ≤ Lmax

ri] ∨ [PTri ≤ PTmax
ri]

)
|M|

⎞⎠× 100% (30)

The proposed algorithm is compared with the following three
aseline approaches to demonstrate its performance:

• Energy-Non-SLA-Aware Offloading using Genetic Algorithm
(ENSA-GA): An offloading scheme using a genetic algo-
rithm whose objective is to minimize the total energy con-
sumption of all the requests without considering the SLA
constraints.
• Random Offloading (RO): An offloading scheme where each

request is randomly scheduled either at the edge server
or one of the cloud serves. This scheme does not con-
sider the servers’ energy consumption and the requests’ SLA
requirements.
• No Offloading (NO): Each request is executed at the edge

server to which it has been submitted. This scheme does not
consider the servers’ energy consumption and the requests’
SLA requirements.

The experiments are repeated for ENSA-GA, RO, and NO with
arying latency and processing time requirements, edge–cloud
andwidth, and the number of requests.

.3. Experimental results analysis

In this section, the analyzes of the results obtained for power
odel development, parameters tuning for EGA, and a com-
arison of the proposed algorithm with ENSA-GA and RO are
216
Fig. 11. Linear regression models for servers 1–6.

presented. Fig. 11 shows the CPU utilization values of our testbed
(servers 1–6) stressed with a load from 0% to 100%, and the
corresponding power consumptions. It also shows the developed
linear regression model for each server along with its regression
coefficients values. It is observed that the developed regression
models fit well the actual data points, showing a linear relation-
ship between the CPU utilization and the corresponding power
consumption values.

Fig. 12 shows the fitness score of the proposed genetic algo-
rithm with different values of µc . As shown in Fig. 12(a), the
fitness score for all the values of µc converges to 1. However,
the convergence took time for µc = 0.55 and µc = 0.7.
his is also shown in the distribution of the fitness score over
enerations in Fig. 12(b). As shown in Fig. 12(a), µc = 0.95 gives

the fastest convergence after the 76th generation. Figs. 13(a) and
13(b) shows the convergence of the total energy consumption
and the distribution of total energy consumption, respectively,
for different values of µc . As shown in Fig. 13, the total energy
consumption for µ = 0.95 converges quickly to the global
c

H. Materwala, L. Ismail, R.M. Shubair et al. Future Generation Computer Systems 135 (2022) 205–222

o
p

r
f

Fig. 12. Fitness score of requests’ offloading solutions using the proposed
algorithm versus crossover rate µc .

Fig. 13. Total energy consumption of requests’ offloading solutions using the
proposed algorithm versus crossover rate µc .

ptima. Consequently, the optimal value of µc for the considered
roblem in this paper is set as 0.95.
Fig. 14 shows the fitness score of the proposed genetic algo-

ithm with different values of µm. As shown in Fig. 14(a), the
itness score for µ = 0.06, 0.07, 0.08, 0.09, and 0.1 does not
m

217
Fig. 14. Fitness score of requests’ offloading solutions using the proposed
algorithm versus mutation rate µm .

converge to 1. Moreover, the score for µm = 0.04 and µm = 0.5
converges after 490th generation. This is also confirmed in the fit-
ness distribution plot (Fig. 14(b)). Comparing the convergence for
the remaining values of µm, the fastest convergence is obtained at
103rd generation for µm = 0.02. Figs. 15(a) and 15(b) shows the
convergence of the total energy consumption and the distribution
of total energy consumption, respectively, for different values of
µm. As shown in Fig. 15(a), the total energy consumption for
µm = 0.02 converges quickly to the global optima. This is also
confirmed by the distribution plot in Fig. 15(b). Consequently, the
optimal value of µm for the considered problem in this paper is
set as 0.02.

Fig. 16 shows the fitness score of the proposed genetic al-
gorithm with different values of popsize. As shown in Fig. 16(a),
the fitness score for all values of popsize converge to 1. This
is also confirmed in the fitness distribution plot (Fig. 16(b)).
However, comparing the convergence time, popsize = 8×|M| con-
verges has the fastest convergence at 31st generation, whereas
popsize = 2×|M| has the slowest convergence at 104th generation.
Figs. 17(a) and 17(b) shows the convergence of the total energy
consumption and the distribution of total energy consumption,
respectively, for different popsize. As shown in Fig. 17(a), the total
energy consumption for popsize = 8 × |M| converges quickly to
the global optima at 49th generation, whereas that for popsize =
2 × |M| has the slowest convergence at 176th generation. How-
ever, as the fitness and total energy consumption for all popsize
values converge before 200 generations, popsize = 2 × |M| is
considered in this paper. This is to increase the efficiency of the
genetic algorithm. The optimal values for (µc, µm, andpopsize) are
application dependent and should be determined for different
applications.

Figs. 18–21 show the total energy consumption and percent-
age of SLA violations for the proposed, ENSA-GA, RO, and NO
algorithms for different latency requirements, processing time
requirement, edge–cloud bandwidths, and requests. The value of
each parameter is varied while keeping others to their minimum

H. Materwala, L. Ismail, R.M. Shubair et al. Future Generation Computer Systems 135 (2022) 205–222

p

v
p

Fig. 15. Total Energy Consumption of requests’ offloading solutions using the
roposed algorithm versus mutation rate µm .

Fig. 16. Fitness score of requests’ offloading solutions using the proposed
algorithm versus population size popsize .

alues (Table 4). The µc , µm, and popsize parameters for the pro-
osed and ENSA-GA algorithms are set at 0.95, 0.02, and 2× |M|

respectively. As shown in Fig. 18(a), RO has the highest energy
consumption, while ENSA-GA has the least energy consumption
for all latency requirement values. This is because, RO does not
218
Fig. 17. Total energy consumption of requests’ offloading solutions using the
proposed algorithm versus population size popsize .

Fig. 18. Requests’ offloading using the proposed algorithm, ENSA-GA, RO, and
NO versus latency requirements.

consider the energy consumption while offloading the requests,
whereas the objective of ENSA-GA is to offload in a way that
the total energy consumption of the requests is the minimum.
The energy consumption of the proposed algorithm is higher
than that of ENSA-GA because our proposed algorithm aims to
minimize the total energy consumption considering the latency
and processing time constraints. Consequently, the proposed al-
gorithm will not consider an offloading scheme having the least
energy consumption if any of the constraints is violated for one or
more requests. Comparing the percentage of SLA violations for the
considered algorithms (Fig. 18(b)), NO, RO, and ENSA-GA violate
SLA constraints, whereas the proposed algorithm has no SLA
violations. The average percentage of violations, with increasing
latency requirements, is 65% for ENSA-GA, 66% for RO, and 80%
for NO.

Figs. 19(a) and 19(b) show the total energy consumption and
percentage of SLA violations respectively, for the proposed, ENSA-
GA, RO, and NO algorithms for different processing time re-
quirements. As shown in Fig. 19(a), RO has the highest energy
consumption. This is because RO does not consider the energy
consumption while offloading the requests. Comparing the total

H. Materwala, L. Ismail, R.M. Shubair et al. Future Generation Computer Systems 135 (2022) 205–222
Fig. 19. Requests’ offloading using the proposed algorithm, ENSA-GA, RO, and
NO versus processing time requirements.

Fig. 20. Requests’ offloading using the proposed algorithm, ENSA-GA, RO, and
NO versus edge–cloud bandwidths.

energy consumption of the proposed algorithm and ENSA-GA, the
proposed algorithm has more energy consumption for a process-
ing time requirement of 1 s. For the requirement greater than
1 s, the total energy consumptions of the proposed and ENSA-GA
algorithms are the same. This is because, for a processing require-
ment of 1 s, 12 requests have a processing time greater than 1 s if
processed on the servers where the total energy consumption is
the minimum. This is not considered by ENSA-GA. However, the
proposed algorithm considers this SLA violation and offloads the
requests in a way that their energy consumption is the minimum
with no SLA violation. Comparing the percentage of SLA violations
for the considered algorithms (Fig. 19(b)), RO and NO violate the
constraints for processing time requirements of 1, 2, and 3 s,
whereas ENSA-GA violates the constraints for a processing time
requirement of 1 s. The proposed algorithm has no SLA violations.
It is evident from the figure that the energy consumptions of the
proposed and ENSA-GA algorithms are the same when ENSA-GA
has no SLA violations. The average percentage of violations, with
different processing time requirements, is 12% for ENSA-GA, 16%
for RO, and 31% for NO.

Figs. 20(a) and 20(b) show the total energy consumption and
percentage of SLA violations respectively, for the proposed, ENSA-
GA, RO, and NO algorithms for different edge–cloud bandwidths.
As shown in Fig. 20(a), RO has the highest energy consump-
tion, whereas ENSA-GA has the least energy consumption. This
is because RO does not consider the energy consumption while
offloading the requests. Comparing the total energy consumption
of the proposed algorithm and ENSA-GA, the proposed algorithm
has more energy consumption. This is because our proposed al-
gorithm aims to minimize energy consumption while considering
SLA violations. Comparing the percentage of SLA violations for the
considered algorithms (Fig. 20(b)), NO, RO, and ENSA-GA violate
SLA constraints, whereas the proposed algorithm has no SLA
violations. The average percentage of violations, with different

bandwidths, is 60% for ENSA-GA, 69% for RO, and 80% for NO.

219
Fig. 21. Requests’ offloading using the proposed algorithm, ENSA-GA, RO, and
NO versus number of requests.

Figs. 21(a) and 21(b) show the total energy consumption and
percentage of SLA violations respectively, for the proposed, ENSA-
GA, RO, and NO algorithms for increasing requests. As shown
in Fig. 21(a), RO has the highest energy consumption, whereas
ENSA-GA has the least energy consumption. Comparing the total
energy consumption of the proposed algorithm and ENSA-GA, the
proposed algorithm has more energy consumption. The total en-
ergy consumption for all the algorithms increases with increasing
requests. Comparing the percentage of SLA violations for the con-
sidered algorithms (Fig. 21(b)), NO, RO, and ENSA-GA violate SLA
constraints. The number of requests violating SLA for ENSA-GA in-
creases with an increasing number of total requests. However, the
percentage of SLA violations decreases with increasing requests.
This is because the percentage is calculated based on the total
requests. The average percentage of violations, with increasing
requests, is 54.82% for ENSA-GA, 59.47% for RO, and 60.45% for
NO. The proposed algorithm has no SLA violations for 20, 40,
and 60 requests. However, it violates SLA for 1.25% of requests
when the total number of requests is 80, and 5% of requests when
total requests are 100. This is because the algorithm is not able
to converge to global optima within 500 generations for a high
number of requests. The average percentage of violations, with
increasing requests, for the proposed algorithm is 1.25%.

Table 6 summarizes and compares the total energy consump-
tion and percentage of SLA violations for the proposed, ENSA-GA,
RO, and NO algorithms.

7. Conclusions and future work

Computation offloading is important in edge–cloud integrated
vehicular networks to execute computationally intensive appli-
cations having strict SLA requirements. However, the energy
consumption of the edge–cloud integrated computing platform
should be considered energy-efficiency is crucial. In this paper,
an Energy-SLA-Aware evolutionary genetic algorithm is proposed
for edge–cloud computation offloading in a vehicular network
that executes a vehicle’s request either on the edge server to
which the request is submitted or offloads the request to one of
the cloud servers. The offloading decision is made in a way that
the total energy consumption of a set of requests is minimized
and the SLA requirements of each request are maintained in
terms of latency and processing time. The SLA constraints in
the proposed algorithm are handled using the adaptive penalty
function. This is the first work to propose an energy-SLA-aware
offloading in the vehicular network using EGA that optimizes
the energy consumption of the edge and cloud servers simul-
taneously, while adhering to the latency and processing time
constraints. Comparative analysis and numerical experiments
carried out revealed that the proposed algorithm outperforms
no offloading and random offloading approaches in terms of
energy consumption, and no offloading, random and energy-

non-SLA-aware genetic-based baseline approaches in terms of

H. Materwala, L. Ismail, R.M. Shubair et al. Future Generation Computer Systems 135 (2022) 205–222

i

&

D

c
t

A

C

A

o

R

Table 6
Average total energy consumption and percentage of SLA violations for the proposed, ENSA-GA, RO, and NO algorithms.
Variable Average total energy consumption (W-s) Average percentage of SLA violations

Proposed ENSA-GA RO NO Proposed ENSA-GA RO NO

Latency requirement 5135.264 4580.469 17358.68 7584.969 0% 65% 66% 80%
Processing time requirement 4688.509 4580.469 15526.07 7584.969 0% 12% 17% 31%
Edge–cloud bandwidth 5194.99 4580.469 17744.25 7584.969 0% 60% 69% 80%
Requests 15703.01 11523.76 40616.08 19386.44 1.25% 54.82% 59.47% 60.45%
percentage of SLA violations. For future research work, partial
offloading will be investigated where part of the request would
be executed locally on the vehicle, and the remaining part(s)
would be offloaded to edge and/or cloud servers while optimizing
energy in vehicle/edge/cloud and preserving SLAs. In addition,
different selection algorithms for the fittest offloading solutions
in EGA will be evaluated. Another future work is to consider the
security of the applications’ requests during offloading.

CRediT authorship contribution statement

Huned Materwala:Methodology, Investigation, Writing – orig-
nal draft. Leila Ismail: Conceptualization, Methodology, Investi-
gation, Writing – review & editing, Supervision, Project adminis-
tration, Funding acquisition. Raed M. Shubair: Writing – review

editing. Rajkumar Buyya: Writing – review & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

This research was funded by the National Water and Energy
enter of the United Arab Emirates University (Grant 31R215).

ppendix A. Supplementary data

Supplementary material related to this article can be found
nline at https://doi.org/10.1016/j.future.2022.04.009.

eferences

[1] S. Sharma, A. Kaul, VANETs cloud: Architecture, applications, challenges,
and issues, Arch. Comput. Methods Eng. 28 (2021) 2081–2102.

[2] A. Ullah, S. Yaqoob, M. Imran, H. Ning, Emergency message dissemination
schemes based on congestion avoidance in VANET and vehicular FoG
computing, IEEE Access 7 (2018) 1570–1585.

[3] M. Sookhak, F.R. Yu, Y. He, H. Talebian, N.S. Safa, N. Zhao, M.K. Khan, N.
Kumar, Fog vehicular computing: Augmentation of fog computing using
vehicular cloud computing, IEEE Veh. Technol. Mag. 12 (3) (2017) 55–64.

[4] K. Mershad, O. Cheikhrouhou, L. Ismail, Proof of accumulated trust: A new
consensus protocol for the security of the IoV, Veh. Commun. 32 (2021)
100392.

[5] P. Mell, T. Grance, et al., The NIST definition of cloud computing, 2011.
[6] L. Ismail, L. Zhang, Information Innovation Technology in Smart Cities,

Springer, 2018.
[7] S. Raza, S. Wang, M. Ahmed, M.R. Anwar, A survey on vehicular edge com-

puting: architecture, applications, technical issues, and future directions,
Wirel. Commun. Mob. Comput. 2019 (2019).

[8] W.Z. Khan, E. Ahmed, S. Hakak, I. Yaqoob, A. Ahmed, Edge computing: A
survey, Future Gener. Comput. Syst. 97 (2019) 219–235.

[9] L. Ismail, H. Materwala, IoT-edge-cloud computing framework for qos-
aware computation offloading in autonomous mobile agents: Modeling
and simulation, in: International Conference on Mobile, Secure, and
Programmable Networking, Springer, 2020, pp. 161–176.

[10] L. Ismail, H. Materwala, EATSVM: energy-aware task scheduling on cloud
virtual machines, Procedia Comput. Sci. 135 (2018) 248–258.
220
[11] L. Ismail, A.A. Fardoun, Energy-aware task scheduling (EATS) framework
for efficient energy in smart cities cloud computing infrastructures, Int. J.
Therm. Environ. Eng. 13 (1) (2016) 37–48.

[12] L. Ismail, H. Materwala, Machine learning-based energy-aware offloading in
edge-cloud vehicular networks, Procedia Comput. Sci. 191 (2021) 328–336.

[13] L. Ismail, B. Mills, A. Hennebelle, A formal model of dynamic resource al-
location in grid computing environment, in: 2008 Ninth ACIS International
Conference on Software Engineering, Artificial Intelligence, Networking,
and Parallel/Distributed Computing, IEEE, 2008, pp. 685–693.

[14] R. Mahmud, S.N. Srirama, K. Ramamohanarao, R. Buyya, Quality of
experience (QoE)-aware placement of applications in fog computing
environments, J. Parallel Distrib. Comput. 132 (2019) 190–203.

[15] L. Ismail, Dynamic resource allocation mechanisms for grid computing
environment, in: 2007 3rd International Conference on Testbeds and Re-
search Infrastructure for the Development of Networks and Communities,
IEEE, 2007, pp. 1–5.

[16] S. Yangui, A. Goscinski, K. Drira, Z. Tari, D. Benslimane, Future generation
of service-oriented computing systems, Future Gener. Comput. Syst. 118
(2021) 252–256, http://dx.doi.org/10.1016/j.future.2021.01.019, URL https:
//www.sciencedirect.com/science/article/pii/S0167739X21000297.

[17] Y. Liu, X. Wei, J. Xiao, Z. Liu, Y. Xu, Y. Tian, Energy consumption and
emission mitigation prediction based on data center traffic and PUE for
global data centers, Global Energy Interconnect. 3 (3) (2020) 272–282.

[18] L. Belkhir, A. Elmeligi, Assessing ICT global emissions footprint: Trends to
2040 & recommendations, J. Cleaner Prod. 177 (2018) 448–463.

[19] S. Li, Y. Tao, X. Qin, L. Liu, Z. Zhang, P. Zhang, Energy-aware mobile edge
computation offloading for IoT over heterogenous networks, IEEE Access
7 (2019) 13092–13105.

[20] H. Guo, J. Zhang, J. Liu, H. Zhang, Energy-aware computation offloading
and transmit power allocation in ultradense IoT networks, IEEE Internet
Things J. 6 (3) (2018) 4317–4329.

[21] Z. Ning, J. Huang, X. Wang, J.J. Rodrigues, L. Guo, Mobile edge computing-
enabled internet of vehicles: Toward energy-efficient scheduling, IEEE
Netw. 33 (5) (2019) 198–205.

[22] X. Xu, Y. Li, T. Huang, Y. Xue, K. Peng, L. Qi, W. Dou, An energy-aware
computation offloading method for smart edge computing in wireless
metropolitan area networks, J. Netw. Comput. Appl. 133 (2019) 75–85.

[23] Y. Zhai, W. Sun, J. Wu, L. Zhu, J. Shen, X. Du, M. Guizani, An energy aware
offloading scheme for interdependent applications in software-defined IoV
with fog computing architecture, IEEE Trans. Intell. Transp. Syst. 22 (6)
(2020) 3813–3823.

[24] J. Zhang, X. Hu, Z. Ning, E.C.-H. Ngai, L. Zhou, J. Wei, J. Cheng, B. Hu, Energy-
latency tradeoff for energy-aware offloading in mobile edge computing
networks, IEEE Internet Things J. 5 (4) (2017) 2633–2645.

[25] Z. Li, V. Chang, J. Ge, L. Pan, H. Hu, B. Huang, Energy-aware task offloading
with deadline constraint in mobile edge computing, EURASIP J. Wireless
Commun. Networking 2021 (1) (2021) 1–24.

[26] X. Huang, L. He, W. Zhang, Vehicle speed aware computing task offloading
and resource allocation based on multi-agent reinforcement learning in a
vehicular edge computing network, in: 2020 IEEE International Conference
on Edge Computing (EDGE), IEEE, 2020, pp. 1–8.

[27] X. Huang, K. Xu, C. Lai, Q. Chen, J. Zhang, Energy-efficient offload-
ing decision-making for mobile edge computing in vehicular networks,
EURASIP J. Wireless Commun. Networking 2020 (1) (2020) 1–16.

[28] L. Pu, X. Chen, G. Mao, Q. Xie, J. Xu, Chimera: An energy-efficient
and deadline-aware hybrid edge computing framework for vehicular
crowdsensing applications, IEEE Internet Things J. 6 (1) (2018) 84–99.

[29] M. Goudarzi, H. Wu, M. Palaniswami, R. Buyya, An application placement
technique for concurrent IoT applications in edge and fog computing
environments, IEEE Trans. Mob. Comput. 20 (4) (2020) 1298–1311.

[30] K. Peng, M. Zhu, Y. Zhang, L. Liu, J. Zhang, V.C. Leung, L. Zheng, An energy-
and cost-aware computation offloading method for workflow applications
in mobile edge computing, EURASIP J. Wireless Commun. Networking 2019
(1) (2019) 1–15.

[31] L. Ismail, H. Materwala, ESCOVE: Energy-SLA-aware edge–cloud com-
putation offloading in vehicular networks, Sensors 21 (15) (2021)
5233.

https://doi.org/10.1016/j.future.2022.04.009
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb1
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb1
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb1
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb2
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb2
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb2
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb2
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb2
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb3
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb3
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb3
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb3
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb3
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb4
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb4
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb4
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb4
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb4
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb5
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb6
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb6
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb6
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb7
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb7
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb7
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb7
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb7
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb8
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb8
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb8
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb9
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb9
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb9
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb9
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb9
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb9
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb9
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb10
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb10
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb10
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb11
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb11
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb11
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb11
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb11
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb12
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb12
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb12
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb13
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb13
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb13
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb13
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb13
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb13
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb13
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb14
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb14
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb14
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb14
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb14
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb15
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb15
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb15
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb15
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb15
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb15
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb15
http://dx.doi.org/10.1016/j.future.2021.01.019
https://www.sciencedirect.com/science/article/pii/S0167739X21000297
https://www.sciencedirect.com/science/article/pii/S0167739X21000297
https://www.sciencedirect.com/science/article/pii/S0167739X21000297
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb17
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb17
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb17
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb17
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb17
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb18
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb18
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb18
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb19
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb19
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb19
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb19
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb19
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb20
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb20
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb20
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb20
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb20
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb21
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb21
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb21
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb21
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb21
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb22
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb22
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb22
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb22
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb22
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb23
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb23
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb23
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb23
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb23
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb23
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb23
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb24
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb24
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb24
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb24
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb24
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb25
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb25
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb25
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb25
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb25
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb26
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb26
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb26
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb26
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb26
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb26
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb26
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb27
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb27
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb27
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb27
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb27
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb28
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb28
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb28
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb28
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb28
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb29
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb29
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb29
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb29
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb29
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb30
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb30
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb30
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb30
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb30
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb30
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb30
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb31
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb31
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb31
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb31
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb31

H. Materwala, L. Ismail, R.M. Shubair et al. Future Generation Computer Systems 135 (2022) 205–222
[32] H. Materwala, L. Ismail, Performance and energy-aware bi-objective tasks
scheduling for cloud data centers, Procedia Comput. Sci. 197 (2022)
238–246.

[33] R. Zhang, F. Tian, X. Ren, Y. Chen, K. Chao, R. Zhao, B. Dong, W. Wang,
Associate multi-task scheduling algorithm based on self-adaptive inertia
weight particle swarm optimization with disruption operator and chaos
operator in cloud environment, Serv. Orient. Comput. Appl. 12 (2) (2018)
87–94.

[34] X. Fang, W. Wang, L. He, Z. Huang, Y. Liu, L. Zhang, Research on improved
NSGA-II algorithm and its application in emergency management, Math.
Probl. Eng. 2018 (2018).

[35] H. Hao, C. Xu, L. Zhong, G.-M. Muntean, A multi-update deep reinforcement
learning algorithm for edge computing service offloading, in: Proceedings
of the 28th ACM International Conference on Multimedia, 2020, pp.
3256–3264.

[36] M. Wiering, Memory-based memetic algorithms, in: Benelearn’04: Pro-
ceedings of the Thirteenth Belgian-Dutch Conference on Machine Learning,
2004, pp. 191–198.

[37] D.K. Mishra, V. Shinde, 6 A review of global optimization problems using
meta-heuristic algorithm, in: A. Khamparia, A. Khanna, N.G. Nguyen, B.L.
Nguyen (Eds.), Nature-Inspired Optimization Algorithms: Recent Advances
in Natural Computing and Biomedical Applications, De Gruyter, 2021, pp.
87–106, http://dx.doi.org/10.1515/9783110676112-006.

[38] L. Ismail, E.H. Abed, Linear power modeling for cloud data centers:
taxonomy, locally corrected linear regression, simulation framework and
evaluation, IEEE Access 7 (2019) 175003–175019.

[39] L. Ismail, H. Materwala, Computing server power modeling in a data
center: Survey, taxonomy, and performance evaluation, ACM Comput. Surv.
53 (3) (2020) 1–34.

[40] M. Thakur, S.S. Meghwani, H. Jalota, A modified real coded genetic
algorithm for constrained optimization, Appl. Math. Comput. 235 (2014)
292–317.

[41] L. Liu, M. Zhang, R. Buyya, Q. Fan, Deadline-constrained coevolutionary
genetic algorithm for scientific workflow scheduling in cloud computing,
Concurr. Comput.: Pract. Exper. 29 (5) (2017) e3942.

[42] M. Akbari, H. Rashidi, S.H. Alizadeh, An enhanced genetic algorithm with
new operators for task scheduling in heterogeneous computing systems,
Eng. Appl. Artif. Intell. 61 (2017) 35–46.

[43] SPECpower, SPECpower benchmark, 2009, https://www.spec.org/power_
ssj2008/, (Accessed on 09/28/2021).

[44] SPECpower, Server 2: SPECpower_ssj2008, 2021, https://www.spec.org/
power_ssj2008/results/res2012q1/power_ssj2008-20120306-00434.html,
(Accessed on 09/28/2021).

[45] SPECpower, Server 4: SPECpower_ssj2008, 2021, https://www.spec.org/
power_ssj2008/results/res2012q1/power_ssj2008-20120306-00437.html,
(Accessed on 09/28/2021).

[46] SPECpower, Server 5: SPECpower_ssj2008, 2021, https://www.spec.org/
power_ssj2008/results/res2016q1/power_ssj2008-20151215-00708.html,
(Accessed on 09/28/2021).

[47] SPECpower, Server 6: SPECpower_ssj2008, 2021, https://www.spec.org/
power_ssj2008/results/res2012q1/power_ssj2008-20120213-00420.html,
(Accessed on 09/28/2021).

[48] G. Carlucci, CPULoadGenerator, 2017, https://github.com/GaetanoCarlucci/
CPULoadGenerator, (Accessed on 09/28/2021).

[49] Tektronix, TBS 2000 digital oscilloscope, 2021, https://www.tek.com/
oscilloscope/tbs2000-basic-oscilloscope, (Accessed on 09/28/2021).

[50] D. Yang, L. Li, K. Redmill, U. Özgüner, Top-view trajectories: A pedestrian
dataset of vehicle-crowd interaction from controlled experiments and
crowded campus, in: 2019 IEEE Intelligent Vehicles Symposium (IV), IEEE,
2019, pp. 899–904.

[51] N. Auluck, A. Azim, K. Fizza, Improving the schedulability of real-time tasks
using fog computing, IEEE Trans. Serv. Comput. (2019).

[52] A. Jaddoa, G. Sakellari, E. Panaousis, G. Loukas, P.G. Sarigiannidis, Dynamic
decision support for resource offloading in heterogeneous Internet of
Things environments, Simul. Model. Pract. Theory 101 (2020) 102019.

[53] J. Almutairi, M. Aldossary, A novel approach for IoT tasks offloading in
edge-cloud environments, J. Cloud Comput. 10 (1) (2021) 1–19.

Huned Materwala is currently working towards his
Ph.D. degree at the Intelligent Distributed Computing
and Systems (INDUCE) Research Laboratory at the Col-
lege of Information Technology of the United Arab
Emirates University (UAEU), United Arab Emirates. He
has been working as a Research Assistant at INDUCE
Lab and been awarded a Ph.D. scholarship from UAEU
to support his studies. His research interests include
Edge–Cloud Computing, Internet of Things (IoT), and
Distributed Systems.
221
Dr. Leila Ismail is the Founder and Director of the
Intelligent Clouds and Distributed Computing Sys-
tems (INDUCE) Research Laboratory at the College
of Information technology of the United Arab Emi-
rates University (UAEU), and an Associate Professor
at the Department of Computer Science and Software
Engineering. She has vast industrial and academic ex-
perience at Sun Microsystems Research & Development
Center in France, working the design and implemen-
tation of highly available distributed systems, and
participated in the deposit of a US patent. She served

in teaching at Grenoble I, France, and has been serving as an Adjunct Professor
at the Digital Ecosystems and Business Intelligence Institute Curtin University,
Australia. She has been very active in creating smart and efficient digital
ecosystems responding to nowadays emergency needs for better living in our
dynamic global habitat, introducing blockchain, Internet of Things (IoT), machine
learning, deep learning, and Artificial Intelligence approaches for different
applications domains, such as healthcare, energy, and smart transportation. She
has been very active in international research collaborations within, Australia,
and USA, and been invited as a keynote speaker in several conferences, including
Women in Data Science International Conference (WiDS 2021), organized by
Stanford University. She is the recipient of several awards and appreciation
certificates, including the IBM Shared University Research (SURA) and the IBM
Faculty Awards, very competitive worldwide, the UAE University Award for
high achievements publishing in top ranked journals. She won funding for
major projects as Principal Investigator, on grid and cloud computing, intelligent
systems and smart applications, and awards of top achievements. She served
as Associate Editor of the International Journal of Parallel, Emergent, and
Distributed Systems for several years. She has been participating in the success
of many IEEE and ACM international conferences in several roles, such as General
Chair, Organizing Committee Chair, and Technical Program Chair. She is the
author of many scientific publications in journals and conferences, and the Editor
of the Information Innovation Technology in Smart Cities book, published by
Springer Nature.

Dr. Raed M. Shubair (Senior Member, IEEE) received
the B.Sc. (with Distinction and First Class Hons.) de-
gree in electrical engineering from Kuwait University,
Kuwait, in June 1989, and the Ph.D. (with Distinction)
degree in electrical engineering from the University
of Waterloo, Canada, in February 1993, for which
he received the University of Waterloo Distinguished
Doctorate Dissertation Award. He is a Senior Advisor
in the Office of Undersecretary for Academic Affairs,
Ministry of Education, UAE. He is also a Full Professor
of Electrical Engineering and Chair of IEEE at New

York University (NYU) Abu Dhabi. His current and past academic and research
appointments also include Massachusetts Institute of Technology (MIT), Harvard
University, and University of Waterloo. He has been a Full Professor of Electrical
Engineering with Khalifa University (formerly, Etisalat University College), UAE,
which he joined in 1993 up to 2017, during which he received several times
the Excellence in Teaching Award and Distinguished Service Award. He has over
380 publications in the form of articles in peer-reviewed journals, papers in
referred conference proceedings, book chapters, and US patents. His publication
span several research areas, including 6G and terahertz communications, modern
antennas and applied electromagnetics, signal and array processing, machine
learning, IoT and sensor localization, medical sensing and nano-biomedicine. He
is recipient of several international awards, including the Distinguished Service
Award from ACES Society, USA and from MIT Electromagnetics Academy, USA.
He organized and chaired numerous technical special sessions and tutorials in
IEEE flagship conferences. He delivered more than 60 invited speaker seminars
and technical talks in world-class universities and flagship conferences. He
served as an invited speaker with the U.S. National Academies of Sciences,
Engineering, and Medicine Frontiers Symposium. He is a standing member of
the editorial boards of several international journals and serves regularly on the
steering, organizing, and technical committees of IEEE flagship conferences in
Antennas, Communications, and Signal Processing, including several editions of
IEEE AP-S/URSI, EuCAP, IEEE GloablSIP, IEEE WCNC, and IEEE ICASSP. He has
served as the TPC Chair of IEEE MMS2016 and TPC Chair of IEEE GlobalSIP
2018 Symposium on 5G Satellite Networks. He holds several leading roles in the
international professional engineering community. He holds several leading roles
in the international professional engineering community. He is a Board Member
of the European School of Antennas, Regional Director for the IEEE Signal
Processing Society in IEEE Region 8 Middle East and served as the founding chair
of the IEEE Antennas and Propagation Society Educational Initiatives Program.
He is a Fellow of MIT Electromagnetics Academy and a Founding Member of MIT
Scholars of the Emirates. He is Editor for the IEEE Journal of Electromagnetics, RF,
and Microwaves in Medicine and Biology, and Editor for the IEEE Open Journal
of Antennas and Propagation. He is a Founding Member of five IEEE society
chapters in UAE, which are IEEE Communication Society Chapter, IEEE Signal

http://refhub.elsevier.com/S0167-739X(22)00132-7/sb32
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb32
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb32
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb32
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb32
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb33
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb33
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb33
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb33
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb33
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb33
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb33
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb33
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb33
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb34
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb34
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb34
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb34
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb34
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb36
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb36
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb36
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb36
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb36
http://dx.doi.org/10.1515/9783110676112-006
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb38
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb38
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb38
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb38
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb38
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb39
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb39
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb39
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb39
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb39
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb40
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb40
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb40
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb40
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb40
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb41
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb41
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb41
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb41
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb41
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb42
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb42
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb42
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb42
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb42
https://www.spec.org/power_ssj2008/
https://www.spec.org/power_ssj2008/
https://www.spec.org/power_ssj2008/
https://www.spec.org/power_ssj2008/results/res2012q1/power_ssj2008-20120306-00434.html
https://www.spec.org/power_ssj2008/results/res2012q1/power_ssj2008-20120306-00434.html
https://www.spec.org/power_ssj2008/results/res2012q1/power_ssj2008-20120306-00434.html
https://www.spec.org/power_ssj2008/results/res2012q1/power_ssj2008-20120306-00437.html
https://www.spec.org/power_ssj2008/results/res2012q1/power_ssj2008-20120306-00437.html
https://www.spec.org/power_ssj2008/results/res2012q1/power_ssj2008-20120306-00437.html
https://www.spec.org/power_ssj2008/results/res2016q1/power_ssj2008-20151215-00708.html
https://www.spec.org/power_ssj2008/results/res2016q1/power_ssj2008-20151215-00708.html
https://www.spec.org/power_ssj2008/results/res2016q1/power_ssj2008-20151215-00708.html
https://www.spec.org/power_ssj2008/results/res2012q1/power_ssj2008-20120213-00420.html
https://www.spec.org/power_ssj2008/results/res2012q1/power_ssj2008-20120213-00420.html
https://www.spec.org/power_ssj2008/results/res2012q1/power_ssj2008-20120213-00420.html
https://github.com/GaetanoCarlucci/CPULoadGenerator
https://github.com/GaetanoCarlucci/CPULoadGenerator
https://github.com/GaetanoCarlucci/CPULoadGenerator
https://www.tek.com/oscilloscope/tbs2000-basic-oscilloscope
https://www.tek.com/oscilloscope/tbs2000-basic-oscilloscope
https://www.tek.com/oscilloscope/tbs2000-basic-oscilloscope
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb50
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb50
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb50
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb50
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb50
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb50
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb50
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb51
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb51
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb51
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb52
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb52
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb52
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb52
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb52
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb53
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb53
http://refhub.elsevier.com/S0167-739X(22)00132-7/sb53

H. Materwala, L. Ismail, R.M. Shubair et al. Future Generation Computer Systems 135 (2022) 205–222
Processing Society Chapter, IEEE Antennas and Propagation Society Chapter, IEEE
Microwave Theory and Techniques Society Chapter, and IEEE Engineering in
Medicine and Biology Society Chapter. He is the Founder and Chair of IEEE at
New York University Abu Dhabi. He is an officer for IEEE ComSoc emerging
technical initiative (ETI) on Machine Learning for Communications. He is the
founding director of IEEE UAE Distinguished Seminar Series Program for which
he was selected to receive, along with Mohamed AlHajri of MIT, the 2020 IEEE
UAE Award of the Year.

Dr. Rajkumar Buyya is a Redmond Barry Distinguished
Professor and Director of the Cloud Computing and
Distributed Systems (CLOUDS) Laboratory at the Uni-
versity of Melbourne, Australia. He is also serving as
the founding CEO of Manjrasoft, a spin-off company
of the University, commercializing its innovations in
Cloud Computing. He has authored over 850 publica-
tions and seven text books including "Mastering Cloud
Computing" published by McGraw Hill, China Machine
Press, and Morgan Kaufmann for Indian, Chinese and
international markets respectively. Dr. Buyya is one
222
of the highly cited authors in computer science and software engineering
worldwide (h-index=150, g-index=322, and 117,200+ citations). Dr. Buyya is
recognized as Web of Science ‘‘Highly Cited Researcher’’ for five consecutive
years since 2016, IEEE Fellow, Scopus Researcher of the Year 2017 with
Excellence in Innovative Research Award by Elsevier, and the ‘‘Best of the
World’’, in Computing Systems field, by The Australian 2019 Research Review.
Software technologies for Grid, Cloud, and Fog computing developed under
Dr. Buyya’s leadership have gained rapid acceptance and are in use at several
academic institutions and commercial enterprises in 50+ countries around the
world. Manjrasoft’s Aneka Cloud technology developed under his leadership has
received ‘‘Frost New Product Innovation Award’’. He served as founding Editor-
in-Chief of the IEEE Transactions on Cloud Computing. He is currently serving
as Editor-in-Chief of Software: Practice and Experience, a long standing journal
in the field established 50+ years ago.

	Energy-SLA-aware genetic algorithm for edge–cloud integrated computation offloading in vehicular networks
	Introduction
	Related work
	System model
	Problem formulation
	Proposed algorithm
	Initialization: Subset of offloading solutions
	Evaluation: Input offloading solutions
	Selection: Fittest offloading solutions
	Crossover: Offspring offloading solutions reproduction
	Mutation: Server allocations of some requests
	Termination

	Performance evaluation
	Experimental environment
	Experiments
	Experimental results analysis

	Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. Supplementary data
	References

