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Abstract—Grid technologies have progressed towards a service-oriented paradigm that enables a new way 

of service provisioning based on utility computing models, which are capable of supporting diverse 

computing services. It facilitates scientific applications to take advantage of computing resources 

distributed world wide to enhance the capability and performance. Many scientific applications in areas 

such as bioinformatics and astronomy require workflow processing in which tasks are executed based on 

their control or data dependencies. Scheduling such interdependent tasks on utility Grid environments need 

to consider users’ QoS requirements.  In this paper, we present a genetic algorithm approach to address 

scheduling optimization problems in workflow applications, based on two QoS constraints, deadline and 

budget.  

Keywords: Grid workflow, workflow scheduling, utility Grids, deadline constrained scheduling, budget 

constrained scheduling 

1. INTRODUCTION 

Utility computing [28] has emerged as a new service provisioning model [7] and is capable of supporting 

diverse computing services such as servers, storage, network and applications for e-Business and e-Science over a 

global network. For utility computing based services, users consume the services when they need to, and pay only 

for what they use. With economy incentive, utility computing encourages organizations to offer their specialized 

applications and other computing utilities as services so that other individuals/organizations can access these 

resources remotely. Therefore, it facilitates individuals/organizations to develop their own core activities without 

maintaining and developing fundamental infrastructure. In the recent past, providing utility computing services has 

been reinforced by service-oriented Grid computing [2][10], that creates an infrastructure for enabling users to 
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consume services transparently over a secure, shared, scalable, sustainable and standard world-wide network 

environment.   

Table 1 shows some differences between community Grids and utility Grids in terms of availability, Quality of 

Services (QoS) and pricing. In utility Grids, users can make a reservation with a service provider in advance to 

ensure the service availability, and users can also negotiate with service providers on service level agreements for 

required QoS. Compared with utility Grids, service availability and QoS in community Grids may not be 

guaranteed. However, community Grids provide free access, whereas users need to pay for service access in utility 

Grids. In general, the service pricing is based on the QoS level and current market supply and demand.  

 
Table 1. Community Grids vs. Utility Grids 

 

 

 

 

 

 

Many Grid applications in areas such as bioinformatics and astronomy require workflow processing in which 

tasks are executed based on their control or data dependencies. As a result, a number of Grid workflow 

management systems [6][8][14][16][19][21][26][30] with scheduling algorithms have been developed. They 

facilitate the execution of workflow applications and minimize their execution time on Grids. However, to impose 

a workflow paradigm on utility Grids, execution cost must also be considered when scheduling tasks on resources. 

The price of a utility service is mainly determined by its QoS level such as the processing speed of the service. 

Typically, service providers charge higher prices for higher QoS. Users may not always need to complete 

workflows earlier than they require. They sometimes may prefer to use cheaper services with a lower QoS that is 

sufficient to meet their requirements.  

Given this motivation, we focus on developing workflow scheduling based on user’s QoS constraints. Unlike 

the time optimization scheduling problem in which only execution time needs to be considered, constrained 

workflow execution optimization problems are required to consider many factors such as time, monetary cost, 

reliability and security. It may not be feasible to develop a simple heuristic to solve such complex problems. 

Therefore, we investigate metaheuristics capable of being applied to complex domains. In this paper, we propose a 

  Community Grids Utility Grids 

Availability Best effort Advanced reservation 

QoS Best effort Contract/SLA 

Pricing Not considered or free access Usage, QoS level, Market supply and demand 
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genetic algorithm based scheduling heuristic to solve performance optimization problems based on two typical 

QoS constraints, deadline and budget, for the workflow execution on “pay-per-use” services.  

The remainder of the paper is organized as follows. We introduce the problem overview in Section 2 including 

problem definition and performance estimation approaches. Our proposed genetic algorithm based workflow 

scheduling approach is presented in Section 3. Experimental details and simulation results are presented in Section 

4. We introduce related work in Section 5. Finally, we conclude the paper with directions for further work in 

Section 6. 

 

2. PROBLEM OVERVIEW 

2.1. Problem Description  

In our approach, we model a workflow application as a Directed Acyclic Graph (DAG). Let � be the finite set 

of tasks )ni( Ti ≤≤1 . Let �  be the set of directed arcs of the form ),( ji TT where iT is called a parent task of jT , 

and jT the child task of iT . We assume that a child task cannot be executed until all of its parent tasks have been 

completed.  

Let m be the total number of services available. There is a set of services )  ( mm,mjn, 1i1S ii
j

i ≤≤≤≤≤ , 

capable of executing the task iT , but each task can only be assigned for execution on one of these services. 

Services have varied processing capability delivered at different prices. We denote j
it as the sum of the processing 

time and data transmission time, and j
ic  as the sum of the service price and data transmission cost for processing 

iT  on service j
iS .  

Let B be the cost constraint (budget) and D be the time constraint (deadline) specified by the users for workflow 

execution. The budget constrained scheduling problem is to map every iT  onto a suitable j
iS to minimize the 

execution time of the workflow and complete it within B. The deadline constrained scheduling problem is to map 

every iT  onto a suitable j
iS to minimize the execution cost of the workflow and complete it within D.  
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2.2. Performance Estimation 

Performance estimation is crucial to generate an accurate schedule for advance reservations. Different 

performance estimation approaches can be applied to different types of utility service. We classify existing utility 

services as either resource services or application services. 

Resource services provide hardware resources such as computing processors, network resources, storage and 

memory, as a service for remote clients. To submit tasks to resource services, the scheduler needs to determine the 

number of resources and duration required to run tasks on the discovered services. The performance estimation for 

resource services can be achieved by using existing performance estimation techniques (e.g. analytical modeling 

[20], empirical and historical data [18][24]) to predict task execution time on every discovered resource service.  

Application services allow remote clients to use their specialized applications. Unlike resource services, an 

application service is capable of providing estimated service times based on the metadata of users’ service requests 

[1]. As a result, the task execution time can be obtained by the application providers. 

 

3. PROPOSED SCHEDULING APPROACHES 

Workflow scheduling focuses on mapping and managing the execution of inter-dependent tasks on diverse 

utility services. In general, the problem of mapping tasks on distributed services belongs to a class of problems 

known as “NP hard problem”. For such problems, no known algorithms are able to generate the optimal solution 

within polynomial time.  Although the workflow scheduling problem can be solved by using exhaustive search, 

the complexity of the methods for solving it is very large.  

Genetic algorithms (GAs) [12] provide robust search techniques that allow a high-quality solution to be derived 

from a large search space in polynomial time, by applying the principle of evolution. A genetic algorithm 

combines the exploitation of best solutions from past searches with the exploration of new regions of the solution 

space. Any solution in the search space of the problem is represented by an individual (chromosomes). A genetic 

algorithm maintains a population of individuals that evolves over generations. The quality of an individual in the 

population is determined by a fitness-function. The fitness value indicates how good the individual is compared to 

others in the population.  A typical genetic algorithm consists of the following steps: (1) create an initial 

population consisting of randomly generated solutions. (2) generate new offspring by applying genetic operators, 
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namely selection, crossover and mutation, one after the other. (3) evaluate the fitness value of each individual in 

the population. (4) repeat step 2 and 3 until the algorithm converges. 

 In order to using genetic algorithms concept to solve the workflow scheduling problem, we need to determine 

the representation of individual in the population, the fitness function and genetic operations. The details of our 

approach are presented in following subsections. 

3.1. Problem Representation 

For the workflow scheduling problem, a feasible solution is required to meet the following conditions: (1) A 

task can only be started after all its predecessors have completed. (2) Every task appears once and only once in the 

schedule. (3) Each task must be allocated to one available time slot of a service capable of executing the task. 

Each individual in the population represents a feasible solution to the problem, and consists of a vector of task 

assignments. Each task assignment includes four elements: taskID, serviceID, startTime, and endTime. taskID and 

serviceID identify to which service each task is assigned. startTime and endTime indicate the time frame allocated 

on the service for the task execution. However, involving time frames during the genetic operation may lead to a 

very complicated situation, because any change made to a task could require adjusting the values of startTime and 

endTime of its successive tasks. Therefore, we simplify the operation strings used for genetic manipulation by 

ignoring the time frames. The operation strings encode only the service allocation for each task and the order of 

tasks allocated on each service. After crossover and mutations, a time slot assignment method is applied to transfer 

an operation string to a feasible schedule.  

In a workflow, the execution order of interdependent tasks is controlled by their dependencies, meaning that a 

task is always executed after its immediate parent tasks. However, many independent tasks, for instance T3 and T4 

in the example workflow shown in Fig. 1 may compete for the same time slot on a service. Different execution 

priorities of such parallel tasks within the workflow may impact the performance of workflow execution 

significantly. For this reason, the solution representation strings are required to show the order of task assignments 

on each service in addition to service allocation of each task. We use a 2D string to represent a schedule as 

illustrated in Fig. 1.  One dimension represents the numbers of services while the other dimension shows the order 

of tasks on each service. Two-dimensional strings are then converted into a one-dimensional string for genetic 

manipulations. The number in brackets in the one-dimensional string represents the identity number of the service 

on which the task is allocated.  
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Fig. 1. Illustration of problem encoding. 

3.2. Fitness Function 

A fitness function is used to measure the quality of the individuals in the population according to the given 

optimization objective. As the goal of the scheduling is to minimize the performance based on two factors, time 

and monetary cost, the fitness function separates evaluation into two parts: cost-fitness and time-fitness. Both 

functions use two binary variables, α  and β . If users specify a budget constraint, then α =1 and β =0. If users 

specify a deadline, then α =0 and β =1.  

For the budget constrained scheduling, the cost-fitness component encourages the formation of the solutions 

that satisfy the budget constraint. For the deadline constrained scheduling, it encourages the genetic algorithm to 

choose individuals with less cost. The cost fitness function of an individual I is defined by: 

)1(cos
)(

)( αα −×
=

CostmaxB
Ic

IF t , 

where c(I) is the sum of the task execution cost and data transmission cost of I and c(I)= �
∈IT

k
i

i

c , imk ≤≤1 ,  

maxCost is the most expensive solution of the current population, and  B is the budget of the workflow .  

For the budget constrained scheduling, the time-fitness component is designed to encourage the genetic 

algorithm to choose individuals with earliest completion time from the current population. For the deadline 

constrained scheduling, it encourages the formation of individuals that satisfy the deadline constraint. The time 

fitness function of an individual I is defined by: 

)1(

)(
)( ββ −×

=
maxTimeD

It
IFtime , 

where t(I) is the completion time of I , maxTime is the largest completion time of the current population, and D is 

the deadline of the workflow.  

The final fitness function combines two parts and it is expressed as: 

T0 T1 T2

T3 T4

T5 T6

T7

T0 T1 T2

T3 T4

T5 T6

T7

Workflow

S1

S2

S3

S4

time

Schedule

T0 T2 T7

T1

T3 T5

T4 T6

T0(1)-T2(1)-T7(1)-T1(2)-T3(3)-T5(3)-T4(4)-T6(4)

S1:T0-T2-T7
S2:T1
S3:T3-T5
S4:T4-T6

Two-dimensional strings

One-dimensional string
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otherwise

IF or IF if
    

IFIF

IFIF
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timet
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)( cos

cos

cos >>

�
�
�

×
×+×

= αβ
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3.3. Genetic operators 

Genetic operations manipulate individuals in the current population and generate new individuals. We develop 

two genetic operators, crossover and mutation, for the scheduling problems.  

 
3.3.1. Crossover 

Crossovers are used to create new individuals on the current population by combining of rearranging parts of 

the existing individuals. The idea behind the crossover is that it may result in an even better individual by 

combining two fittest individuals [13]. As illustrated in Fig.2, the crossover operator is implemented as follows: (1) 

Two parents are chosen at random in the current population. (2) Two random points are selected from the schedule 

order of the first parent. (3) All tasks between these two points are chosen as successive crossover points. (4) The 

locations of all tasks of the crossover points between parent1 and parent2 are exchanged. (5) Two new offspring 

are generated by combining task assignments taken from two parents. In this example, offspring1 inherits task 

assignments of T0, T2, T4 and T6 from parent1, and the task assignments of the rest tasks are taken from parent2.   

 

 

 

 

 

 

 

Fig. 2.  Illustration of crossover operation. 

3.3.2. Mutation  

In genetic algorithms, mutations occasionally occur in order to allow a certain children to obtain features that 

are not possessed by either parent. It helps a genetic algorithm to explore a new and better genetic material than 

previously considered. We have developed two types of mutation, namely swapping mutation and replacing 

Before crossover

Crossover

After crossover

S1:T0-T2-T7
S2:T1
S3:T3-T5
S4:T4-T6

parent1

S1: T0-T1
S7: T2-T7
S8: T3
S9: T4-T6
S10:T5

parent2

T0(1)-T2(1)-T7(1)-T1(2)-T3(3)-T5(3)-T4(4)-T6(4)

T0(1)-T1(1)-T2(7)-T7(7)-T3(8)-T4(9)-T6(9)-T5(10)

Randomly select crossover window

S1: T0-T2-T1
S4: T4-T6
S7: T7
S8: T3
S10:T5

S1: T0-T7
S2: T1
S3: T3-T5
S7: T2
S9:T4-T6

offspring1 offspring2
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mutation, in order to promote further exploration of the search space.  The mutation operators are applied to the 

chosen individuals with a certain probability.   

Swapping mutation aims to change the execution order of tasks in an individual that compete for a same time 

slot. It is implemented as follows: (1) A service in the individual is randomly selected. (2) The positions of two 

randomly selected independent tasks on the service are swapped. An example of swapping mutation is shown in 

Fig. 3.  After the mutation, the time slot initially assigned to T0 is occupied by T1. 

 

 

 

Fig. 3.  Illustration of swapping mutation operation. 

Replacing mutation aims to re-allocate an alternative service to a task in an individual. It is implemented as 

follows: (1) A task is randomly selected in the individual. (2) An alternative service which is capable of executing 

the task is randomly selected to replace the current task allocation.  

An example of replacing mutation is shown in Fig. 4.  Given the heterogeneous nature of execution 

environments required by workflow tasks, we classify processing services into groups. Each service group 

provides a certain type of service that satisfies the execution condition of a task in the workflow. In the example, 

different tasks in the workflow require different types of services and all services are grouped together to support 

service type A, B, and C. For example, T0, T3 and T4 require services of type A, B and C respectively. In the 

example, task T2 is selected for mutation and T2 is supported by services of type A. The mutation process 

randomly selects S2 in the service group of type A and re-allocates it to T2.  

 

 

 

 

 

Fig. 4.  Illustration of replacing mutation operation. 

 

T0(1)-T2(1)-T1(1)-T4(4)-T6(4)-T7(7)-T3(6)-T5(10)

T0(1)-T1(1)-T2(2)-T4(4)-T6(4)-T7(7)-T3(6)-T5(10)

Before mutation

After mutation

S1 S5
S2 S6 S7

S3 S8
S10

S4 S9

Service  Type

Task

ACBCBAAA

T7T6T5T4T3T2T1T0

Service  Type

Task

ACBCBAAA

T7T6T5T4T3T2T1T0

A B C

 

T0(1)-T2(1)-T1(1)-T4(4)-T6(4)-T7(7)-T3(6)-T5(10)
swap

T1(1)-T2(1)-T0(1)-T4(4)-T6(4)-T7(7)-T3(6)-T5(10)

Before mutation

After mutation
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4. EXPERIMENTS 

4.1. Methodology 
  

In order to evaluate the proposed approach, we implemented the algorithm described in Section 3 and 

compared it with a set of non-GA heuristics for two different types of workflow applications on a simulated Grid 

testbed.  The details of the workflow applications, non-GA heuristics, simulation environment and experimental 

setting are presented in the following subsections.  

 
4.1.1. Workflow applications 
 

Given that different workflow applications may have different impact on the performance of the scheduling 

algorithms, we have developed a task graph generator which can automatically generate a workflow based on the 

specified workflow structures, the range of task workload and the I/O data.  Since the execution requirements for 

tasks in scientific workflows are heterogeneous, we use the service type attribute to represent different types of 

services. The range of service types in the workflow can be specified. The width and depth of the workflow can 

also be adjusted in order to generate different sizes of workflows.  

 

 

 

 

 

 

 

 

             a. Balanced-structure application             b. Unbalanced-structure application 

Fig. 5. Small portion of workflow applications. 

According to several Grid workflow projects [15][17][32], workflow application structures can be categorized 

as either balanced structure or unbalanced structure.  Examples of balanced structure are neuro-science 

workflows [34] and EMAN refinement workflows [15], while the examples of unbalanced structure are protein 

annotation workflows [4] and Montage workflows [17]. Fig. 5 shows two workflow structures, balanced-structure 

application and unbalanced-structure application, used in our experiments. As shown in Fig. 5a, the balanced-
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structure application consists of several parallel pipelines, which require the same types of services but process 

different data sets. As shown in Fig 5b, the structure of the unbalanced-structure application is more complex. 

Unlike the balanced-structure application, many parallel tasks in the unbalanced structure require different types of 

services, and their workload and I/O data varies significantly.  

 
4.1.2. Non-GA heuristics 
 

In order to evaluate the genetic algorithm (GA) we also implemented two other non-GA heuristics, namely 

Greedy Cost - Time Distribution (TD) and Greedy Time - Cost Distribution (CD). The CD approach is aimed at 

solving the budget constrained problem while the TD is designed to solve the deadline constrained problem. 

o Greedy Time-Cost Distribution (CD) 
 
The CD heuristic distributes portions of the overall budget to each task in the workflow based on its average 

estimated execution cost. During the workflow execution, CD attempts to allocate a fastest service to each task 

among the services, which are able to complete the task execution within its planned budget. The actual costs of 

allocated tasks and their planned costs are also computed successively at runtime. If the aggregated actual cost is 

less than the aggregated planned cost, the scheduler uses the unspent aggregated budget to schedule the current 

task.   

o Greedy Cost-Time Distribution (TD) 
 
The TD heuristic distributes the overall deadline over single workflow tasks. The deadline assignment is based 

on our previous work [31].  In order to produce an efficient schedule, TD partitions workflow tasks into branches 

and synchronization tasks as shown in Fig. 6.  A synchronization task is a task with more than one parent task or 

child task, while a branch is a set of interdependent simple tasks that are executed sequentially between two 

synchronization tasks. Firstly sub-deadlines are assigned to task partitions. The overall deadline is divided over 

task partitions in proportion to their approximate transmission time and processing time. The cumulative assigned 

sub-deadlines of any independent path between two synchronization tasks must be same. For example, the 

deadline assigned to },{ 98 TT  is the same as }{ 7T in Fig. 6. Similarly, sub-deadlines assigned to },,{ 432 TTT , },{ 65 TT , 

and },{ { 7T }},{ },{ 131210 TTT are same. The sub-deadline of each task partition is then divided into their tasks based 

on its approximate execution time and transition time. At the runtime, a task is scheduled on a service, which is 

able to complete it within its assigned sub-deadline at the lowest cost. 
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4.1.3. Simulation environment 
 

We use GridSim [25] to simulate a Grid environment for our experiments. Fig. 7 shows the simulation 

environment, in which simulated services are discovered by querying the GridSim Index Service (GIS). Every 

service is able to handle a free slot query, reservation request and commitment. 

 
 
 

In our experiments, we simulated 15 types of services with various price rates, each of which was supported by 

10 service providers with various processing capability. The topology of the system is such that all services are 

connected to one another, and the available network bandwidths between services are 100Mbps, 200Mbps, 

512Mbps and 1024Mbps. The processing cost and transmission cost are inversely proportional to the processing 

time and transmission time respectively. 

 
4.1.4. Experimental setting 
 

In order to evaluate algorithms on reasonable budget and deadline constraints we also implemented a time 

optimization algorithm, Heterogeneous-Earliest-Finish Time (HEFT) [27], and a cost optimization algorithm, 

Greedy Cost (GC). The HEFT algorithm is a list scheduling algorithm which attempts to schedule interdependent 

tasks at minimum execution time on a heterogeneous environment. The GC approach is to minimize workflow 

execution cost by assigning tasks to services of lowest cost. The deadline and budget we used for the experiments 

are based on the results of these two algorithms. Let CGC and CHEFT be the total monetary cost produced by GC and 

HEFT respectively, and TGC and THEFT be their corresponding total execution time. Deadline D is defined 

Workflow 
System 

GIS 

Grid 
Service 

1.register(service type) 

1. register 

4. AvailableSlotQuery(duration) 

 
Grid 

Service 

2. query(type A) 

3.service list 

  5. slots 

T9 T12 

Branch 

T1 T6 

T7 

T5 

T10 
T8 

T2 T3 

T4 

T11 

T13 

Simple task 
Synchronization  task 

Fig. 6.  Workflow task partitioning. 
 

Fig. 7. Simulation environnent. 
 

6. makeReservation(task ) 
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by )( GCHEFTGC CCkCD −×+=   and budget B is defined by )( HEFTGCHEFT TTkTB −×+= . The value of k  varies 

between 0, 0.5 and 1 to evaluate the algorithm performance at tight/low, medium and high constraints.  

The following parameter settings are the default configuration used for producing results of the genetic 

algorithm: population size of 10, swapping mutation and replacing mutation probability of 0.5, a generation limit 

of 100.   

 
4.2. Results 
 

We compare the genetic algorithms with the CD and TD heuristics on the two workflow applications, balanced 

and unbalanced. We run the genetic algorithm starting with an initial population consisting of randomly generated 

solutions. We also investigate the affect of running the genetic algorithm by starting with an initial population 

consisting of a solution produced by one of the simple heuristics together with other randomly generated solutions. 

The results generated by the CD and TD heuristics are denoted as CD and TD respectively, and the results 

generated by the GA with a completely random initial population is denoted by GA, while the results generated by 

GA which include an initial individual produced by the CD and TD heuristics are denoted as GA+CD and GA+TD 

respectively.   

In order to show the results more clearly, we normalize the execution time and cost. Let valueC  and valueT be the 

execution time and the monetary cost generated by the algorithms in the experiments respectively. For the case of 

budget constrained problems, we normalize the execution cost by using BCvalue / , and the execution time by 

using HEFTvalue TT / . After normalization, the values of the execution cost should be no greater than one, if the 

algorithms meet their budget constraints. Therefore, we can easily recognize whether the algorithms achieve the 

budget constraints. By using the normalized execution time value, we can also easily recognize whether the 

algorithms produce an optimal solution when the budget is high.  In the same way, we also normalized execution 

time and the execution cost for the deadline constraint case by using DTvalue /  and GCvalue CC /  respectively. 

 
4.2.1. Cost optimization within a set deadline 
 

A comparison of the execution time and cost results of the three scheduling methods for scheduling the 

unbalanced-structure application and balanced-structure application with low, medium and high budget constraints 

respectively is shown in Fig. 8 and Fig. 9. We can see that both GA and CD approaches cannot satisfy the low 

budget constraint, and GA produces the worst results. However, the results are improved if we combine GA and 
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CD together by putting the solution produced by CD into the initial population of the GA. At the medium budget 

constraint, the GA performs better than CD for the unbalanced structure application, whereas CD performs better 

for the balanced structure application. This is because the decision of the task assignment for CD is based only on 

its local budget constraint and does not consider task dependencies. Tasks in the unbalanced-structure application 

are highly heterogeneous, have different workload and I/O data, and many are required to be executed in parallel.  

These parallel tasks are also required to run on various services with various price rates. Many tasks could be 

completed at earliest time using more expensive services based on their local budget, but its child tasks cannot 

start execution until other parallel tasks have been completed. Therefore, the schedule generated by CD is not very 

efficient for a complex unbalanced-structure application. This also shows that it is important to consider other 

parallel task dependencies when assigning a local budget to a task.  For the balanced-structure application, parallel 

tasks are similar and hence obtain same local budgets which allow them to be completed at the same speed. 

Therefore, CD can perform better for the balanced-structure application than the unbalanced-structure application. 

However, its budget constraint distribution problem for the unbalanced-structure application can be released when 

the budget is very high. At the high budget value, CD performs better than the GA.  Moreover, by combining the 

two approaches, GA+CD can achieve the same time optimization result as produced by the HEFT algorithm, but it 

can produce a solution with a lower cost.  
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a. Execution cost of three budget constrained approaches. 
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b. Execution time of three budget constrained approaches. 

Fig. 8. Execution cost and time using three approaches for scheduling the unbalanced-structure 
application. 
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b. Execution time of three budget constrained approaches.  

Fig. 9. Execution cost and time using three approaches for scheduling the balanced-structure application. 
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4.2.2. Time optimization within a set budget 
 

Fig. 10 and Fig. 11 compare the execution time and cost of using three scheduling approaches for scheduling the 

unbalanced-structure application and balanced structure application with low, medium and high deadline 

constraints respectively. We can see that it is hard for both GA and TD to successfully meet the low deadline 

individually. As same as shown in the budget constraint case, GA+TD can improve the results. Unlike CD, TD 

performs better than GA for the unbalanced structure application as the deadline increases, since it distributes the 

overall deadline between tasks based on both task workload and parallel task dependencies.  For the balanced- 

structure application, the results produced by GA and TD with a medium deadline are similar.  At high deadline, 

TD performs slightly better than the GA, but the results are much improved for the unbalanced-structure 

application by using GA to continue search the better solution based on that of TD. With a high deadline, the 

execution costs of GA+TD are closed to the cheapest costs returned by the Greedy Cost approach, but it can 

produce faster solution for the unbalanced structure application.  
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a. Execution time of three deadline constrained approaches. 
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b. Execution cost of three deadline constrained approaches.  
 

Fig 10. Execution cost and time using three approaches for scheduling the unbalanced-structure 
application. 
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b. Execution cost of three deadline constrained approaches.  
 

Fig 11. Execution cost and time using three approaches for scheduling the unbalanced-structure 
application. 

 
 

4.2.3. Effect of the number of generations 
 

We also observe the performance of the GA when the number of generation cycles is altered. Fig. 12a shows 

that the execution cost is significantly reduced to the specified budget as the number of generations is increased 

from 1 to 5. Consequently, the execution time shown in Fig. 12b increases during these generation cycles; this is 

because individuals which process slower are selected in order to decrease the execution cost. However, once the 

GA has found the individuals which are able to complete the execution within the budget, it starts to improve the 

performance, and execution time is decreased for successive generations.  
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Fig. 12. Evolution of execution time and cost during 100 generations. 
 
 

5. RELATED WORK  

Many heuristics have been investigated by several projects for scheduling workflows on Grids. The heuristics 

can be classified as either task level or workflow level. Task level heuristics make scheduling decisions based only 

on the information about a task or a set of independent tasks, while workflow level heuristics take into account the 

information of the entire workflow. Min-Min, Max-Min and Sufferage are three major task level heuristics 

employed for scheduling workflows on Grids. They have been used by Mandal et al [15] to schedule EMAN bio-

imaging applications. Blythe et al [3] developed a workflow level scheduling algorithm based on Greedy 

Randomized Adaptive Search Procedure (GRASP) [9] and compared it with Min-Min in compute- and data-

intensive scenarios. Another two workflow level heuristics have been employed by the ASKALON project 

[22][32]. One is based on Genetic Algorithms and the other is a Heterogeneous-Earliest-Finish-Time (HEFT) 

algorithm [27]. Sakellariou and Zhao [23] developed a low-cost rescheduling policy. It intends to reduce the 
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overhead produced by rescheduling by conducting rescheduling only when the delay of a task execution impacts 

on the entire workflow execution. However, these works only attempt to minimize workflow execution time and 

do not consider users’ budget constraints.   

Several works have been proposed to address scheduling problems based on users’ budget constraints. Nimrod-

G [5] schedules independent tasks for parameter-sweep applications to meet users’ budget. A market-based 

workflow management system [11] locates an optimal bid based on the budget of the current task in the workflow. 

More recently, Tsiakkouri et al [29] developed scheduling approaches, LOSS and GAIN, to adjust a schedule 

which is generated by a time optimized heuristic and a cost optimized heuristic to meet users’ budget constraints 

respectively. In contrast, we focus on using genetic algorithms to solve the problems of scheduling inter-dependent 

tasks based on the budget and deadline of entire workflow.  

Using the genetic algorithm approach to schedule tasks in homogenous multiprocessor systems has been 

presented in many literature such as [13][33][35][36]. The proposed approach in this paper intends to introduce a 

new type of genetic algorithm for large heterogeneous environments for which the existing genetic operations 

algorithms cannot be directly applied.  

VI. CONCLUSION AND FUTURE WORK 

Utility Grids enable users to consume utility services transparently over a secure, shared, scalable and standard 

world-wide network environment. Users are required to pay for access to services based on their usage and the 

level of QoS required for this network environment to be commercially sustainable. Therefore, workflow 

execution cost must be considered during scheduling.  In this paper, we have proposed a genetic algorithm 

approach for scheduling workflow applications by either minimizing the monetary cost while meeting users’ 

budget constraint, or minimizing the execution time while meeting users’ deadline constraints. Compared with 

most existing genetic algorithms, the proposed approach targets heterogeneous and reservation based service-

oriented environments for solving budget and deadline constrained optimization problems.  

We evaluate our approach by comparing it with two other heuristics, on both balanced and unbalanced 

workflow structures. The results show that the genetic algorithm is better for handling a complex workflow 

structure. The genetic algorithm can also significantly improve the results returned by other heuristics by 

employing these heuristic results as individuals in its initial population. 
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We will be further enhancing our scheduling algorithm by supporting different service negotiation models and 

dynamic data-driven workflow models. We will also study how the genetic algorithm approach can be applied for 

scheduling workflows based on other QoS constraints such as reliability and security.   
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