
 1

Scheduling Scientific Workflow Applications with Deadline and Budget Constraints using
Genetic Algorithms

Jia Yu and Rajkumar Buyya

Grid Computing and Distributed Systems (GRIDS) Laboratory
Dept. of Computer Science and Software Engineering

The University of Melbourne, VIC 3010 Australia
{jiayu, raj}@csse.unimelb.edu.au

Abstract—Grid technologies have progressed towards a service-oriented paradigm that enables a new way

of service provisioning based on utility computing models, which are capable of supporting diverse

computing services. It facilitates scientific applications to take advantage of computing resources

distributed world wide to enhance the capability and performance. Many scientific applications in areas

such as bioinformatics and astronomy require workflow processing in which tasks are executed based on

their control or data dependencies. Scheduling such interdependent tasks on utility Grid environments need

to consider users’ QoS requirements. In this paper, we present a genetic algorithm approach to address

scheduling optimization problems in workflow applications, based on two QoS constraints, deadline and

budget.

Keywords: Grid workflow, workflow scheduling, utility Grids, deadline constrained scheduling, budget

constrained scheduling

1. INTRODUCTION

Utility computing [28] has emerged as a new service provisioning model [7] and is capable of supporting

diverse computing services such as servers, storage, network and applications for e-Business and e-Science over a

global network. For utility computing based services, users consume the services when they need to, and pay only

for what they use. With economy incentive, utility computing encourages organizations to offer their specialized

applications and other computing utilities as services so that other individuals/organizations can access these

resources remotely. Therefore, it facilitates individuals/organizations to develop their own core activities without

maintaining and developing fundamental infrastructure. In the recent past, providing utility computing services has

been reinforced by service-oriented Grid computing [2][10], that creates an infrastructure for enabling users to

 2

consume services transparently over a secure, shared, scalable, sustainable and standard world-wide network

environment.

Table 1 shows some differences between community Grids and utility Grids in terms of availability, Quality of

Services (QoS) and pricing. In utility Grids, users can make a reservation with a service provider in advance to

ensure the service availability, and users can also negotiate with service providers on service level agreements for

required QoS. Compared with utility Grids, service availability and QoS in community Grids may not be

guaranteed. However, community Grids provide free access, whereas users need to pay for service access in utility

Grids. In general, the service pricing is based on the QoS level and current market supply and demand.

Table 1. Community Grids vs. Utility Grids

Many Grid applications in areas such as bioinformatics and astronomy require workflow processing in which

tasks are executed based on their control or data dependencies. As a result, a number of Grid workflow

management systems [6][8][14][16][19][21][26][30] with scheduling algorithms have been developed. They

facilitate the execution of workflow applications and minimize their execution time on Grids. However, to impose

a workflow paradigm on utility Grids, execution cost must also be considered when scheduling tasks on resources.

The price of a utility service is mainly determined by its QoS level such as the processing speed of the service.

Typically, service providers charge higher prices for higher QoS. Users may not always need to complete

workflows earlier than they require. They sometimes may prefer to use cheaper services with a lower QoS that is

sufficient to meet their requirements.

Given this motivation, we focus on developing workflow scheduling based on user’s QoS constraints. Unlike

the time optimization scheduling problem in which only execution time needs to be considered, constrained

workflow execution optimization problems are required to consider many factors such as time, monetary cost,

reliability and security. It may not be feasible to develop a simple heuristic to solve such complex problems.

Therefore, we investigate metaheuristics capable of being applied to complex domains. In this paper, we propose a

 Community Grids Utility Grids

Availability Best effort Advanced reservation

QoS Best effort Contract/SLA

Pricing Not considered or free access Usage, QoS level, Market supply and demand

 3

genetic algorithm based scheduling heuristic to solve performance optimization problems based on two typical

QoS constraints, deadline and budget, for the workflow execution on “pay-per-use” services.

The remainder of the paper is organized as follows. We introduce the problem overview in Section 2 including

problem definition and performance estimation approaches. Our proposed genetic algorithm based workflow

scheduling approach is presented in Section 3. Experimental details and simulation results are presented in Section

4. We introduce related work in Section 5. Finally, we conclude the paper with directions for further work in

Section 6.

2. PROBLEM OVERVIEW

2.1. Problem Description

In our approach, we model a workflow application as a Directed Acyclic Graph (DAG). Let � be the finite set

of tasks)ni(Ti ≤≤1 . Let � be the set of directed arcs of the form),(ji TT where iT is called a parent task of jT ,

and jT the child task of iT . We assume that a child task cannot be executed until all of its parent tasks have been

completed.

Let m be the total number of services available. There is a set of services) (mm,mjn, 1i1S ii
j

i ≤≤≤≤≤ ,

capable of executing the task iT , but each task can only be assigned for execution on one of these services.

Services have varied processing capability delivered at different prices. We denote j
it as the sum of the processing

time and data transmission time, and j
ic as the sum of the service price and data transmission cost for processing

iT on service j
iS .

Let B be the cost constraint (budget) and D be the time constraint (deadline) specified by the users for workflow

execution. The budget constrained scheduling problem is to map every iT onto a suitable j
iS to minimize the

execution time of the workflow and complete it within B. The deadline constrained scheduling problem is to map

every iT onto a suitable j
iS to minimize the execution cost of the workflow and complete it within D.

 4

2.2. Performance Estimation

Performance estimation is crucial to generate an accurate schedule for advance reservations. Different

performance estimation approaches can be applied to different types of utility service. We classify existing utility

services as either resource services or application services.

Resource services provide hardware resources such as computing processors, network resources, storage and

memory, as a service for remote clients. To submit tasks to resource services, the scheduler needs to determine the

number of resources and duration required to run tasks on the discovered services. The performance estimation for

resource services can be achieved by using existing performance estimation techniques (e.g. analytical modeling

[20], empirical and historical data [18][24]) to predict task execution time on every discovered resource service.

Application services allow remote clients to use their specialized applications. Unlike resource services, an

application service is capable of providing estimated service times based on the metadata of users’ service requests

[1]. As a result, the task execution time can be obtained by the application providers.

3. PROPOSED SCHEDULING APPROACHES

Workflow scheduling focuses on mapping and managing the execution of inter-dependent tasks on diverse

utility services. In general, the problem of mapping tasks on distributed services belongs to a class of problems

known as “NP hard problem”. For such problems, no known algorithms are able to generate the optimal solution

within polynomial time. Although the workflow scheduling problem can be solved by using exhaustive search,

the complexity of the methods for solving it is very large.

Genetic algorithms (GAs) [12] provide robust search techniques that allow a high-quality solution to be derived

from a large search space in polynomial time, by applying the principle of evolution. A genetic algorithm

combines the exploitation of best solutions from past searches with the exploration of new regions of the solution

space. Any solution in the search space of the problem is represented by an individual (chromosomes). A genetic

algorithm maintains a population of individuals that evolves over generations. The quality of an individual in the

population is determined by a fitness-function. The fitness value indicates how good the individual is compared to

others in the population. A typical genetic algorithm consists of the following steps: (1) create an initial

population consisting of randomly generated solutions. (2) generate new offspring by applying genetic operators,

 5

namely selection, crossover and mutation, one after the other. (3) evaluate the fitness value of each individual in

the population. (4) repeat step 2 and 3 until the algorithm converges.

 In order to using genetic algorithms concept to solve the workflow scheduling problem, we need to determine

the representation of individual in the population, the fitness function and genetic operations. The details of our

approach are presented in following subsections.

3.1. Problem Representation

For the workflow scheduling problem, a feasible solution is required to meet the following conditions: (1) A

task can only be started after all its predecessors have completed. (2) Every task appears once and only once in the

schedule. (3) Each task must be allocated to one available time slot of a service capable of executing the task.

Each individual in the population represents a feasible solution to the problem, and consists of a vector of task

assignments. Each task assignment includes four elements: taskID, serviceID, startTime, and endTime. taskID and

serviceID identify to which service each task is assigned. startTime and endTime indicate the time frame allocated

on the service for the task execution. However, involving time frames during the genetic operation may lead to a

very complicated situation, because any change made to a task could require adjusting the values of startTime and

endTime of its successive tasks. Therefore, we simplify the operation strings used for genetic manipulation by

ignoring the time frames. The operation strings encode only the service allocation for each task and the order of

tasks allocated on each service. After crossover and mutations, a time slot assignment method is applied to transfer

an operation string to a feasible schedule.

In a workflow, the execution order of interdependent tasks is controlled by their dependencies, meaning that a

task is always executed after its immediate parent tasks. However, many independent tasks, for instance T3 and T4

in the example workflow shown in Fig. 1 may compete for the same time slot on a service. Different execution

priorities of such parallel tasks within the workflow may impact the performance of workflow execution

significantly. For this reason, the solution representation strings are required to show the order of task assignments

on each service in addition to service allocation of each task. We use a 2D string to represent a schedule as

illustrated in Fig. 1. One dimension represents the numbers of services while the other dimension shows the order

of tasks on each service. Two-dimensional strings are then converted into a one-dimensional string for genetic

manipulations. The number in brackets in the one-dimensional string represents the identity number of the service

on which the task is allocated.

 6

Fig. 1. Illustration of problem encoding.

3.2. Fitness Function

A fitness function is used to measure the quality of the individuals in the population according to the given

optimization objective. As the goal of the scheduling is to minimize the performance based on two factors, time

and monetary cost, the fitness function separates evaluation into two parts: cost-fitness and time-fitness. Both

functions use two binary variables, α and β . If users specify a budget constraint, then α =1 and β =0. If users

specify a deadline, then α =0 and β =1.

For the budget constrained scheduling, the cost-fitness component encourages the formation of the solutions

that satisfy the budget constraint. For the deadline constrained scheduling, it encourages the genetic algorithm to

choose individuals with less cost. The cost fitness function of an individual I is defined by:

)1(cos
)(

)(αα −×
=

CostmaxB
Ic

IF t ,

where c(I) is the sum of the task execution cost and data transmission cost of I and c(I)= �
∈IT

k
i

i

c , imk ≤≤1 ,

maxCost is the most expensive solution of the current population, and B is the budget of the workflow .

For the budget constrained scheduling, the time-fitness component is designed to encourage the genetic

algorithm to choose individuals with earliest completion time from the current population. For the deadline

constrained scheduling, it encourages the formation of individuals that satisfy the deadline constraint. The time

fitness function of an individual I is defined by:

)1(

)(
)(ββ −×

=
maxTimeD

It
IFtime ,

where t(I) is the completion time of I , maxTime is the largest completion time of the current population, and D is

the deadline of the workflow.

The final fitness function combines two parts and it is expressed as:

T0 T1 T2

T3 T4

T5 T6

T7

T0 T1 T2

T3 T4

T5 T6

T7

Workflow

S1

S2

S3

S4

time

Schedule

T0 T2 T7

T1

T3 T5

T4 T6

T0(1)-T2(1)-T7(1)-T1(2)-T3(3)-T5(3)-T4(4)-T6(4)

S1:T0-T2-T7
S2:T1
S3:T3-T5
S4:T4-T6

Two-dimensional strings

One-dimensional string

 7

otherwise

IF or IF if

IFIF

IFIF
IF timet

timet

timet 1)(1)(
,)()((
),()(

)(cos

cos

cos >>

�
�
�

×
×+×

= αβ

βα

3.3. Genetic operators

Genetic operations manipulate individuals in the current population and generate new individuals. We develop

two genetic operators, crossover and mutation, for the scheduling problems.

3.3.1. Crossover

Crossovers are used to create new individuals on the current population by combining of rearranging parts of

the existing individuals. The idea behind the crossover is that it may result in an even better individual by

combining two fittest individuals [13]. As illustrated in Fig.2, the crossover operator is implemented as follows: (1)

Two parents are chosen at random in the current population. (2) Two random points are selected from the schedule

order of the first parent. (3) All tasks between these two points are chosen as successive crossover points. (4) The

locations of all tasks of the crossover points between parent1 and parent2 are exchanged. (5) Two new offspring

are generated by combining task assignments taken from two parents. In this example, offspring1 inherits task

assignments of T0, T2, T4 and T6 from parent1, and the task assignments of the rest tasks are taken from parent2.

Fig. 2. Illustration of crossover operation.

3.3.2. Mutation

In genetic algorithms, mutations occasionally occur in order to allow a certain children to obtain features that

are not possessed by either parent. It helps a genetic algorithm to explore a new and better genetic material than

previously considered. We have developed two types of mutation, namely swapping mutation and replacing

Before crossover

Crossover

After crossover

S1:T0-T2-T7
S2:T1
S3:T3-T5
S4:T4-T6

parent1

S1: T0-T1
S7: T2-T7
S8: T3
S9: T4-T6
S10:T5

parent2

T0(1)-T2(1)-T7(1)-T1(2)-T3(3)-T5(3)-T4(4)-T6(4)

T0(1)-T1(1)-T2(7)-T7(7)-T3(8)-T4(9)-T6(9)-T5(10)

Randomly select crossover window

S1: T0-T2-T1
S4: T4-T6
S7: T7
S8: T3
S10:T5

S1: T0-T7
S2: T1
S3: T3-T5
S7: T2
S9:T4-T6

offspring1 offspring2

 8

mutation, in order to promote further exploration of the search space. The mutation operators are applied to the

chosen individuals with a certain probability.

Swapping mutation aims to change the execution order of tasks in an individual that compete for a same time

slot. It is implemented as follows: (1) A service in the individual is randomly selected. (2) The positions of two

randomly selected independent tasks on the service are swapped. An example of swapping mutation is shown in

Fig. 3. After the mutation, the time slot initially assigned to T0 is occupied by T1.

Fig. 3. Illustration of swapping mutation operation.

Replacing mutation aims to re-allocate an alternative service to a task in an individual. It is implemented as

follows: (1) A task is randomly selected in the individual. (2) An alternative service which is capable of executing

the task is randomly selected to replace the current task allocation.

An example of replacing mutation is shown in Fig. 4. Given the heterogeneous nature of execution

environments required by workflow tasks, we classify processing services into groups. Each service group

provides a certain type of service that satisfies the execution condition of a task in the workflow. In the example,

different tasks in the workflow require different types of services and all services are grouped together to support

service type A, B, and C. For example, T0, T3 and T4 require services of type A, B and C respectively. In the

example, task T2 is selected for mutation and T2 is supported by services of type A. The mutation process

randomly selects S2 in the service group of type A and re-allocates it to T2.

Fig. 4. Illustration of replacing mutation operation.

T0(1)-T2(1)-T1(1)-T4(4)-T6(4)-T7(7)-T3(6)-T5(10)

T0(1)-T1(1)-T2(2)-T4(4)-T6(4)-T7(7)-T3(6)-T5(10)

Before mutation

After mutation

S1 S5
S2 S6 S7

S3 S8
S10

S4 S9

Service Type

Task

ACBCBAAA

T7T6T5T4T3T2T1T0

Service Type

Task

ACBCBAAA

T7T6T5T4T3T2T1T0

A B C

T0(1)-T2(1)-T1(1)-T4(4)-T6(4)-T7(7)-T3(6)-T5(10)
swap

T1(1)-T2(1)-T0(1)-T4(4)-T6(4)-T7(7)-T3(6)-T5(10)

Before mutation

After mutation

 9

4. EXPERIMENTS

4.1. Methodology

In order to evaluate the proposed approach, we implemented the algorithm described in Section 3 and

compared it with a set of non-GA heuristics for two different types of workflow applications on a simulated Grid

testbed. The details of the workflow applications, non-GA heuristics, simulation environment and experimental

setting are presented in the following subsections.

4.1.1. Workflow applications

Given that different workflow applications may have different impact on the performance of the scheduling

algorithms, we have developed a task graph generator which can automatically generate a workflow based on the

specified workflow structures, the range of task workload and the I/O data. Since the execution requirements for

tasks in scientific workflows are heterogeneous, we use the service type attribute to represent different types of

services. The range of service types in the workflow can be specified. The width and depth of the workflow can

also be adjusted in order to generate different sizes of workflows.

 a. Balanced-structure application b. Unbalanced-structure application

Fig. 5. Small portion of workflow applications.

According to several Grid workflow projects [15][17][32], workflow application structures can be categorized

as either balanced structure or unbalanced structure. Examples of balanced structure are neuro-science

workflows [34] and EMAN refinement workflows [15], while the examples of unbalanced structure are protein

annotation workflows [4] and Montage workflows [17]. Fig. 5 shows two workflow structures, balanced-structure

application and unbalanced-structure application, used in our experiments. As shown in Fig. 5a, the balanced-

 10

structure application consists of several parallel pipelines, which require the same types of services but process

different data sets. As shown in Fig 5b, the structure of the unbalanced-structure application is more complex.

Unlike the balanced-structure application, many parallel tasks in the unbalanced structure require different types of

services, and their workload and I/O data varies significantly.

4.1.2. Non-GA heuristics

In order to evaluate the genetic algorithm (GA) we also implemented two other non-GA heuristics, namely

Greedy Cost - Time Distribution (TD) and Greedy Time - Cost Distribution (CD). The CD approach is aimed at

solving the budget constrained problem while the TD is designed to solve the deadline constrained problem.

o Greedy Time-Cost Distribution (CD)

The CD heuristic distributes portions of the overall budget to each task in the workflow based on its average

estimated execution cost. During the workflow execution, CD attempts to allocate a fastest service to each task

among the services, which are able to complete the task execution within its planned budget. The actual costs of

allocated tasks and their planned costs are also computed successively at runtime. If the aggregated actual cost is

less than the aggregated planned cost, the scheduler uses the unspent aggregated budget to schedule the current

task.

o Greedy Cost-Time Distribution (TD)

The TD heuristic distributes the overall deadline over single workflow tasks. The deadline assignment is based

on our previous work [31]. In order to produce an efficient schedule, TD partitions workflow tasks into branches

and synchronization tasks as shown in Fig. 6. A synchronization task is a task with more than one parent task or

child task, while a branch is a set of interdependent simple tasks that are executed sequentially between two

synchronization tasks. Firstly sub-deadlines are assigned to task partitions. The overall deadline is divided over

task partitions in proportion to their approximate transmission time and processing time. The cumulative assigned

sub-deadlines of any independent path between two synchronization tasks must be same. For example, the

deadline assigned to },{ 98 TT is the same as }{ 7T in Fig. 6. Similarly, sub-deadlines assigned to },,{ 432 TTT , },{ 65 TT ,

and },{ { 7T }},{ },{ 131210 TTT are same. The sub-deadline of each task partition is then divided into their tasks based

on its approximate execution time and transition time. At the runtime, a task is scheduled on a service, which is

able to complete it within its assigned sub-deadline at the lowest cost.

 11

4.1.3. Simulation environment

We use GridSim [25] to simulate a Grid environment for our experiments. Fig. 7 shows the simulation

environment, in which simulated services are discovered by querying the GridSim Index Service (GIS). Every

service is able to handle a free slot query, reservation request and commitment.

In our experiments, we simulated 15 types of services with various price rates, each of which was supported by

10 service providers with various processing capability. The topology of the system is such that all services are

connected to one another, and the available network bandwidths between services are 100Mbps, 200Mbps,

512Mbps and 1024Mbps. The processing cost and transmission cost are inversely proportional to the processing

time and transmission time respectively.

4.1.4. Experimental setting

In order to evaluate algorithms on reasonable budget and deadline constraints we also implemented a time

optimization algorithm, Heterogeneous-Earliest-Finish Time (HEFT) [27], and a cost optimization algorithm,

Greedy Cost (GC). The HEFT algorithm is a list scheduling algorithm which attempts to schedule interdependent

tasks at minimum execution time on a heterogeneous environment. The GC approach is to minimize workflow

execution cost by assigning tasks to services of lowest cost. The deadline and budget we used for the experiments

are based on the results of these two algorithms. Let CGC and CHEFT be the total monetary cost produced by GC and

HEFT respectively, and TGC and THEFT be their corresponding total execution time. Deadline D is defined

Workflow
System

GIS

Grid
Service

1.register(service type)

1. register

4. AvailableSlotQuery(duration)

Grid

Service

2. query(type A)

3.service list

 5. slots

T9 T12

Branch

T1 T6

T7

T5

T10
T8

T2 T3

T4

T11

T13

Simple task
Synchronization task

Fig. 6. Workflow task partitioning.

Fig. 7. Simulation environnent.

6. makeReservation(task)

 12

by)(GCHEFTGC CCkCD −×+= and budget B is defined by)(HEFTGCHEFT TTkTB −×+= . The value of k varies

between 0, 0.5 and 1 to evaluate the algorithm performance at tight/low, medium and high constraints.

The following parameter settings are the default configuration used for producing results of the genetic

algorithm: population size of 10, swapping mutation and replacing mutation probability of 0.5, a generation limit

of 100.

4.2. Results

We compare the genetic algorithms with the CD and TD heuristics on the two workflow applications, balanced

and unbalanced. We run the genetic algorithm starting with an initial population consisting of randomly generated

solutions. We also investigate the affect of running the genetic algorithm by starting with an initial population

consisting of a solution produced by one of the simple heuristics together with other randomly generated solutions.

The results generated by the CD and TD heuristics are denoted as CD and TD respectively, and the results

generated by the GA with a completely random initial population is denoted by GA, while the results generated by

GA which include an initial individual produced by the CD and TD heuristics are denoted as GA+CD and GA+TD

respectively.

In order to show the results more clearly, we normalize the execution time and cost. Let valueC and valueT be the

execution time and the monetary cost generated by the algorithms in the experiments respectively. For the case of

budget constrained problems, we normalize the execution cost by using BCvalue / , and the execution time by

using HEFTvalue TT / . After normalization, the values of the execution cost should be no greater than one, if the

algorithms meet their budget constraints. Therefore, we can easily recognize whether the algorithms achieve the

budget constraints. By using the normalized execution time value, we can also easily recognize whether the

algorithms produce an optimal solution when the budget is high. In the same way, we also normalized execution

time and the execution cost for the deadline constraint case by using DTvalue / and GCvalue CC / respectively.

4.2.1. Cost optimization within a set deadline

A comparison of the execution time and cost results of the three scheduling methods for scheduling the

unbalanced-structure application and balanced-structure application with low, medium and high budget constraints

respectively is shown in Fig. 8 and Fig. 9. We can see that both GA and CD approaches cannot satisfy the low

budget constraint, and GA produces the worst results. However, the results are improved if we combine GA and

 13

CD together by putting the solution produced by CD into the initial population of the GA. At the medium budget

constraint, the GA performs better than CD for the unbalanced structure application, whereas CD performs better

for the balanced structure application. This is because the decision of the task assignment for CD is based only on

its local budget constraint and does not consider task dependencies. Tasks in the unbalanced-structure application

are highly heterogeneous, have different workload and I/O data, and many are required to be executed in parallel.

These parallel tasks are also required to run on various services with various price rates. Many tasks could be

completed at earliest time using more expensive services based on their local budget, but its child tasks cannot

start execution until other parallel tasks have been completed. Therefore, the schedule generated by CD is not very

efficient for a complex unbalanced-structure application. This also shows that it is important to consider other

parallel task dependencies when assigning a local budget to a task. For the balanced-structure application, parallel

tasks are similar and hence obtain same local budgets which allow them to be completed at the same speed.

Therefore, CD can perform better for the balanced-structure application than the unbalanced-structure application.

However, its budget constraint distribution problem for the unbalanced-structure application can be released when

the budget is very high. At the high budget value, CD performs better than the GA. Moreover, by combining the

two approaches, GA+CD can achieve the same time optimization result as produced by the HEFT algorithm, but it

can produce a solution with a lower cost.

 0.6

 0.8

 1

 1.2

 1.4

HML

E
xe

cu
tio

n
C

os
t /

 B
ud

ge
t

User Budget

Unbalanced Structure (Execution Cost)

GA
CD

GA+CD

a. Execution cost of three budget constrained approaches.

 14

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

HML

E
xe

cu
tio

n
Ti

m
e

/ S
ho

rte
st

 T
im

e
User Budget

Unbalanced Structure (Execution Time)

GA
CD

GA+CD

b. Execution time of three budget constrained approaches.

Fig. 8. Execution cost and time using three approaches for scheduling the unbalanced-structure
application.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

HML

E
xe

cu
tio

n
C

os
t /

 B
ud

ge
t

User Budget

Balanced Structure (Execution Cost)

GA
CD

GA+CD

a. Execution cost of three budget constrained approaches.

 5

 10

 15

 20

HML

E
xe

cu
tio

n
Ti

m
e

/ S
ho

rte
st

 T
im

e

User Budget

Balanced Structure (Execution Time)

GA
CD

GA+CD

b. Execution time of three budget constrained approaches.

Fig. 9. Execution cost and time using three approaches for scheduling the balanced-structure application.

 15

4.2.2. Time optimization within a set budget

Fig. 10 and Fig. 11 compare the execution time and cost of using three scheduling approaches for scheduling the

unbalanced-structure application and balanced structure application with low, medium and high deadline

constraints respectively. We can see that it is hard for both GA and TD to successfully meet the low deadline

individually. As same as shown in the budget constraint case, GA+TD can improve the results. Unlike CD, TD

performs better than GA for the unbalanced structure application as the deadline increases, since it distributes the

overall deadline between tasks based on both task workload and parallel task dependencies. For the balanced-

structure application, the results produced by GA and TD with a medium deadline are similar. At high deadline,

TD performs slightly better than the GA, but the results are much improved for the unbalanced-structure

application by using GA to continue search the better solution based on that of TD. With a high deadline, the

execution costs of GA+TD are closed to the cheapest costs returned by the Greedy Cost approach, but it can

produce faster solution for the unbalanced structure application.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

HML

E
xe

cu
tio

n
Ti

m
e

/ D
ea

dl
in

e

User Deadline

Unbalanced Structure (Execution Time)

GA
TD

GA+TD

a. Execution time of three deadline constrained approaches.

 1

 2

 3

 4

 5

 6

HML

E
xe

cu
tio

n
C

os
t /

 C
he

ap
es

t C
os

t

User Deadline

Unbalanced Structure (Execution Cost)

GA
TD

GA+TD

b. Execution cost of three deadline constrained approaches.

Fig 10. Execution cost and time using three approaches for scheduling the unbalanced-structure
application.

 16

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

HML

E
xe

cu
tio

n
Ti

m
e

/ D
ea

dl
in

e
User Deadline

Balanced Structure (Execution Time)

GA
TD

GA+TD

a. Execution time of three deadline constrained approaches.

 1

 2

 3

 4

 5

 6

 7

 8

HML

E
xe

cu
tio

n
C

os
t /

 C
he

ap
es

t C
os

t

User Deadline

Balanced Structure (Execution Cost)

GA
TD

GA+TD

b. Execution cost of three deadline constrained approaches.

Fig 11. Execution cost and time using three approaches for scheduling the unbalanced-structure
application.

4.2.3. Effect of the number of generations

We also observe the performance of the GA when the number of generation cycles is altered. Fig. 12a shows

that the execution cost is significantly reduced to the specified budget as the number of generations is increased

from 1 to 5. Consequently, the execution time shown in Fig. 12b increases during these generation cycles; this is

because individuals which process slower are selected in order to decrease the execution cost. However, once the

GA has found the individuals which are able to complete the execution within the budget, it starts to improve the

performance, and execution time is decreased for successive generations.

 17

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 20 40 60 80 100
E

xe
cu

tio
n

C
os

t(G
$)

Number of Generations

Budget

a. Execution cost.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 20 40 60 80 100

E
xe

cu
tio

n
Ti

m
e(

H
ou

rs
)

Number of Generations

 b. Execution time.

Fig. 12. Evolution of execution time and cost during 100 generations.

5. RELATED WORK

Many heuristics have been investigated by several projects for scheduling workflows on Grids. The heuristics

can be classified as either task level or workflow level. Task level heuristics make scheduling decisions based only

on the information about a task or a set of independent tasks, while workflow level heuristics take into account the

information of the entire workflow. Min-Min, Max-Min and Sufferage are three major task level heuristics

employed for scheduling workflows on Grids. They have been used by Mandal et al [15] to schedule EMAN bio-

imaging applications. Blythe et al [3] developed a workflow level scheduling algorithm based on Greedy

Randomized Adaptive Search Procedure (GRASP) [9] and compared it with Min-Min in compute- and data-

intensive scenarios. Another two workflow level heuristics have been employed by the ASKALON project

[22][32]. One is based on Genetic Algorithms and the other is a Heterogeneous-Earliest-Finish-Time (HEFT)

algorithm [27]. Sakellariou and Zhao [23] developed a low-cost rescheduling policy. It intends to reduce the

 18

overhead produced by rescheduling by conducting rescheduling only when the delay of a task execution impacts

on the entire workflow execution. However, these works only attempt to minimize workflow execution time and

do not consider users’ budget constraints.

Several works have been proposed to address scheduling problems based on users’ budget constraints. Nimrod-

G [5] schedules independent tasks for parameter-sweep applications to meet users’ budget. A market-based

workflow management system [11] locates an optimal bid based on the budget of the current task in the workflow.

More recently, Tsiakkouri et al [29] developed scheduling approaches, LOSS and GAIN, to adjust a schedule

which is generated by a time optimized heuristic and a cost optimized heuristic to meet users’ budget constraints

respectively. In contrast, we focus on using genetic algorithms to solve the problems of scheduling inter-dependent

tasks based on the budget and deadline of entire workflow.

Using the genetic algorithm approach to schedule tasks in homogenous multiprocessor systems has been

presented in many literature such as [13][33][35][36]. The proposed approach in this paper intends to introduce a

new type of genetic algorithm for large heterogeneous environments for which the existing genetic operations

algorithms cannot be directly applied.

VI. CONCLUSION AND FUTURE WORK

Utility Grids enable users to consume utility services transparently over a secure, shared, scalable and standard

world-wide network environment. Users are required to pay for access to services based on their usage and the

level of QoS required for this network environment to be commercially sustainable. Therefore, workflow

execution cost must be considered during scheduling. In this paper, we have proposed a genetic algorithm

approach for scheduling workflow applications by either minimizing the monetary cost while meeting users’

budget constraint, or minimizing the execution time while meeting users’ deadline constraints. Compared with

most existing genetic algorithms, the proposed approach targets heterogeneous and reservation based service-

oriented environments for solving budget and deadline constrained optimization problems.

We evaluate our approach by comparing it with two other heuristics, on both balanced and unbalanced

workflow structures. The results show that the genetic algorithm is better for handling a complex workflow

structure. The genetic algorithm can also significantly improve the results returned by other heuristics by

employing these heuristic results as individuals in its initial population.

 19

We will be further enhancing our scheduling algorithm by supporting different service negotiation models and

dynamic data-driven workflow models. We will also study how the genetic algorithm approach can be applied for

scheduling workflows based on other QoS constraints such as reliability and security.

ACKNOWLEDGMENTS

We would like to thank Hussein Gibbins, Krishna Nadiminti and Chee Shin Yeo for their comments on this

paper. We thank Anthony Sulistio for his support with the use of GridSim. This work is partially supported

through an Australian Research Council (ARC) Discovery Project grant.

REFERENCES

[1] S. Benkner et al., “GEMSS: Grid-infrastructure for Medical Service Provision”, In HealthGrid 2004

Conference, 29th-30th Jan. 2004, Clermont-Ferrand, France.

[2] S. Benkner et al., “VGE - A Service-Oriented Grid Environment for On-Demand Supercomputing”, In the

Fifth IEEE/ACM International Workshop on Grid Computing (Grid 2004), Pittsburgh, PA, USA, November

2004.

[3] J. Blythe et al., “Task Scheduling Strategies for Workflow-based Applications in Grids”, In IEEE

International Symposium on Cluster Computing and Grid (CCGrid), 2005.

[4] A. O’Brien, S. Newhouse and J. Darlington, “Mapping of Scientific Workflow within the e-Protein project to

Distributed Resources”, In UK e-Science All Hands Meeting, Nottingham, UK, Sep. 2004.

[5] R. Buyya, J. Giddy, and D. Abramson,
�

An Evaluation of Economy-based Resource Trading and Scheduling

on Computational Power Grids for Parameter Sweep Applications”, In 2nd Workshop on Active Middleware

Services (AMS 2000), Kluwer Academic Press, August 1, 2000, Pittsburgh, USA.

[6] E. Deelman et al., “Mapping Abstract Complex Workflows onto Grid Environments”, Journal of Grid

Computing, 1:25-39, 2003.

[7] T. Eilam et al., “A utility computing framework to develop utility systems”, IBM System Journal, 43(1):97-

120, 2004.

[8] T. Fahringer et al, “ASKALON: a tool set for cluster and Grid computing”, Concurrency and Computation:

Practice and Experience, 17:143-169, Wiley InterScience, 2005.

 20

[9] T. A. Feo and M. G. C. Resende, “Greedy Randomized Adaptive Search Procedures”, Journal of Global

Optimization, 6:109-133, 1995.

[10] I. Foster et al., “The Physiology of the Grid”, Open Grid Service Infrastructure WG, Global Grid Forum, 2002.

[11] A. Geppert, M. Kradolfer, and D. Tombros. “Market-based Workflow Management”, International Journal of

Cooperative Information Systems, World Scientific Publishing Co., NJ, USA, 1998.

[12] D. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, 1989.

[13] E. S. H. Hou, N. Ansari, and H. Ren, “A Genetic Algorithm for Multiprocessor Scheduling”, IEEE

Transactions on Parallel and Distributed Systems, 5(2):113-120, February 1994.

[14] B. Ludäscher et al., “Scientific Workflow Management and the KEPLER System”, Concurrency and

Computation: Practice & Experience, Special Issue on Scientific Workflows, to appear, 2005

[15] A. Mandal et al., “Scheduling Strategies for Mapping Application Workflows onto the Grid”, IEEE

International Symposium on High Performance Distributed Computing (HPDC 2005), 2005.

[16] A. Mayer et al, “ICENI Dataflow and Workflow: Composition and Scheduling in Space and Time”, In UK e-

Science All Hands Meeting, Nottingham, UK, IOP Publishing Ltd, Bristol, UK, September 2003.

[17] A. Mandal et al., “Scheduling Strategies for Mapping Application Workflows onto the Grid”, IEEE

International Symposium on High Performance Distributed Computing (HPDC 2005), 2005.

[18] S. Jang et al., “Using Performance Prediction to Allocate Grid Resources”. Technical Report 2004-25,

GriPhyN Project, USA.

[19] F. Neubauer, A. Hoheisel and J. Geiler, “Workflow-based Grid Applications”, Future Generation Computer

Systems, 22:6-15, 2006.

[20] G. R. Nudd et al, “PACE- A Toolset for the performance Prediction of Parallel and Distributed Systems”,

International Journal of High Performance Computing Applications (JHPCA), Special Issues on Performance

Modelling- Part I, 14(3): 228-251, SAGE Publications Inc., London, UK, 2000.

[21] T. Oinn et al., “Taverna: a tool for the composition and enactment of bioinformatics workflows”,

Bioinformatics, 20(17):3045-3054, Oxford University Press, London, UK, 2004.

[22] R. Prodan and T. Fahringer, “Dynamic Scheduling of Scientific Workflow Applications on the Grid using a

Modular Optimisation Tool: A Case Study”, In 20th Symposium of Applied Computing (SAC 2005), Santa Fe,

New Mexico, USA, March 2005. ACM Press.

 21

[23] R. Sakellariou and H. Zhao. "A Low-Cost Rescheduling Policy for Efficient Mapping of Workflows on Grid

Systems''. Scientific Programming, 12(4), pages 253-262, December 2004.

[24] W. Smith, I. Foster, and V. Taylor, “Predicting Application Run Times Using Historical Information”, In

Workshop on Job Scheduling Strategies for Parallel Processing, 12th International Parallel Processing

Symposium & 9th Symposium on Parallel and Distributed Processing (IPPS/SPDP '98), IEEE Computer

Society Press, Los Alamitos, CA, USA, 1998.

[25] A. Sulistio and R. Buyya, “A Grid Simulation Infrastructure Supporting Advance Reservation”, In 16th

International Conference on Parallel and Distributed Computing and Systems (PDCS 2004), ACTA Press,

Anaheim, California, November 9-11, 2004, MIT Cambridge, Boston, USA.

[26] I. Taylor, M. Shields, and I. Wang, “Resource Management of Triana P2P Services, Grid Resources

Management, Kluwer, Netherlands, June 2003.

[27] H. Topcuoglu, S. Hariri, and M. Y. Wu. “Performance-Effective and Low-Complexity Task Scheduling for

Heterogeneous Computing”, IEEE Transactions on Parallel and Distributed Systems, 13(3): 260-274, March

2002.

[28] G. Thickins, “Utility Computing: The Next New IT Model”, Darwin Magazine, April 2003.

[29] E. Tsiakkouri et al., “Scheduling Workflows with Budget Constraints”, In the CoreGRID Workshop on

Integrated research in Grid Computing, S. Gorlatch and M. Danelutto (Eds.), Technical Report TR-05-22,

University of Pisa, Dipartimento Di Informatica, Pisa, Italy, Nov. 28-30, 2005, pages 347-357 .

[30] J. Yu and R. Buyya, “A Taxonomy of Workflow Management Systems for Grid Computing”, Journal of Grid

Computing, Springer, 3(3-4): 171-200, Spring Science+Business Media B.V., New York, USA, Sept. 2005.

[31] J. Yu, R. Buyya, and C.K. Tham, “A Cost-based Scheduling of Scientific Workflow Applications on Utility

Grids”, In 1st IEEE International Conference on e-Science and Grid Computing, Melbourne, Australia, Dec.

5-8, 2005.

[32] M. Wieczorek, R. Prodan and T. Fahringer, “Scheduling of Scientific Workflows in the ASKALON Grid

Environment”, Special Issues on scientific workflows, ACM SIDMOD Record, 34(3):56-62, ACM Press, 2005.

[33] A. S. Wu et al., “An Incremental Genetic Algorithm Approach to Multiprocessor Scheduling”, IEEE

Transactions on Parallel and Distributed Systems, 15(9):824-834, September 2004.

[34] Y. Zhao et al., “Grid Middleware Services for Virtual Data Discovery, Composition, and Integration”, In 2nd

Workshop on Middleware for Grid Computing, October 18, 2004, Toronto, Ontario, Canada.

 22

[35] A. Y. Zomaya, C. Ward, and B. Macey, “Genetic Scheduling for Parallel Processor Systems: Comparative

Studies and Performance Issues”, IEEE Transactions on Parallel and Distributed Systems, 10(8):795-812,

August 1999.

[36] A. Y. Zomaya and Y. H. Teh, The, “Observations on Using Genetic Algorithms for Dynamic Load-

Balancing”, IEEE Transactions on Parallel and Distributed Systems, 12(9):899-911, September 2001.

