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of experience (QoE). Numerous approaches have been discovered to estimate the future
workload and machine learning is being widely used to improve the forecast accuracy.
This paper presents a self directed workload forecasting method (SDWF) that captures
the forecasting error trend by computing the deviation in recent forecasts and applies it
to enhance the accuracy of further predictions. The model utilizes an improved heuristic
approach based on the blackhole phenomena for the training of neurons. The efficacy of

Keywords:
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Blackhole algorithm the proposed method is evaluated over six different real world data traces. The accuracy
Neural network of the model is compared with existing models that use different state-of-art approaches
Optimization including deep learning, differential evolution and back propagation. The maximum rela-
Statistical analysis tive reduction in mean squared forecast error is observed up to 99.99% compared with

existing methods. In addition, the statistical analysis is also carried out using Friedman
and Wilcoxon signed rank tests to validate the efficacy of the proposed forecasting model.
© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Cloud computing allows a service provider to share the resources and applications among users. The key characteristics of
a cloud system are elasticity, on-demand services, accessibility, and pay-as-you-use model. A pool of configurable computing
resources and high-level services are delivered to the users through virtualization in the form of virtual resources or virtual
machines over the Internet. In general, a cloud system is equipped with a set of high-end data centers to deliver on-demand
services. The high non-linearity in the workload affects the performance of a cloud system and leads towards various issues
such as low resource utilization, high power consumption, and inconsistent quality of services (QoS) [1]. For instance, a study
of IBM reported 17.76% and 77.93% average CPU and memory utilization respectively [2]. A similar survey of Google states
that the CPU and memory usage of a Google cluster could not exceed beyond 60% and 50% respectively [3]. The inefficient
functioning of a data center increases its operational cost and fiscal loss of service providers. Also, low resource usage results
in high operational costs due to excessive use of electricity. The increase in electricity consumption also impacts the carbon
footprints, and it must be minimized because an ideal active machine consumes over half of the peak power consumption
[4]. According to Environmental Impact Assessment (EIA), data centers used 35 TWh electricity in 2015 and is expected to
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increase up to 95 TWh by 2040 [5]. The electricity consumption in cloud infrastructure would place it sixth in a ranking of
power consumption per country.

An intelligent resource provisioning mechanism can effectively address the presence of high variability in the workloads.
A resource provisioning method allocates the resources to the applications according to their demands. It must avoid the
occurrence of over-provisioning or under-provisioning i.e. assigning more or fewer resources as per their needs. The resource
provisioning methods can be classified into two categories, namely reactive and proactive. The reactive methods allocate the
resources after arrival of demands, whereas the proactive methods allocate the resources in advance. The proactive
approaches provide the resources based on an estimation of workloads that can be predicted using historical information.
The anticipated information can be effectively used for intelligent dynamic resource scaling [6]. Several methods have been
proposed to estimate the future workload using different learning methods, including neural network, genetic algorithm,
and regression. However, the accurate forecasting is a complex task, especially in the presence of inconsistent and non-
linear workloads. It has been a challenge for any forecasting model to incorporate real time accurate forecasting that com-
plicates a prediction system. Since it has become mandatory for a cloud service provider to achieve better scalability,
response time, QoS, and other parameters to sustain in today’s competitive market [7]. Therefore, this paper presents a self
directed workload forecasting approach to improve the forecast quality that can help a cloud system in improving its service
quality.

1.1. Our contributions

This paper proposes a novel self-directed workload forecasting method to estimate the future workload on cloud servers.
The proposed framework is capable of learning from its past forecasts to improve future estimates. The primary contribu-
tions of the work are twofold. First, the forecast error feedback is introduced that enables the model to learn from its recent
forecasting pattern. The forecasting module receives the feedback to leverage it in the next forecast. The model captures the
error in recent | forecasts and computes the average deviation. Second, a population based metaheuristic optimization algo-
rithm, i.e., blackhole algorithm is improved for better learning of network weights to achieve more accurate forecasts. The
new learning algorithm organizes the population into multiple clusters or subpopulations. Also, the local and global best
information is incorporated in the process of generation of new solutions as opposed to its standard algorithm that considers
the global best information only to generate new solutions. The incorporation of the local best information has been found
useful in preserving the diversity of the population that prevents premature convergence.

The rest of the paper is organized as follows: Section 2 discusses the recent key contributions in the workload prediction
approaches in the machine learning domain. Section 3 describes the proposed model in depth followed by results and dis-
cussion in Section 4. Finally, the paper is wrapped up with conclusive remarks in Section 6.

2. Related work

The prediction has a wide range of applications such as web service recommendation, market and, wind power genera-
tion. It also finds the significant applicability in cloud resource management by estimating the expected workload on the
servers [8-10]. The workload prediction methods are broadly classified into table-driven, control theory, queuing theory
and machine learning methods [11]. Among the mentioned approaches, machine learning has been explored widely for
workload estimation and this paper also presents a machine learning based method. Therefore, the recent significant con-
tributions in workload prediction using machine learning only are discussed.

A virtual machine workload prediction was proposed in [12] which uses the estimated information to determine whether
an application is CPU intensive and/or memory intensive to configure the resources accordingly. An evolutionary neural net-
work was used for workload prediction [13]. The approach implements particle swarm optimization, differential evolution,
and covariance matrix adaptation evolutionary strategy learning algorithms and compares their performance. Kumar and
Singh also used a neural network based prediction approach to estimate the future load on servers [14]. The model was
trained using adaptive differential evolution to reduce the overhead of the parameter tuning in the evolutionary algorithms.
The concept of sliding window has been used with neural network and linear regression for estimating the future workloads
[15]. Similarly, various neural network based prediction approaches have been proposed to improve the forecast accuracy
including [16-18].

Valter et al. developed a forecasting model that incorporates multiple time series forecasting approaches [19]. In this
model, each time series forecasting method makes its predictions based on its extracted pattern and each method’s predic-
tion is weighted to compute the final forecast. The authors used genetic algorithm to generate an effective weighted model. A
predictive framework for resource provisioning to optimize the energy consumption was developed in [20] that predicts the
VMs along with their resource demands expected to arrive in the future. The method also provides the information about
required physical resources to fulfill the future demands with optimized use of energy. The predictive approach involves
the use of clustering and Wiener filter. Shen and Chen studied the different servers’ resource utilization and found that they
are misaligned with time [21]. They developed a set of algorithms to refine the utilization patterns to reduce the resource
over-provisioning. Genetic algorithm based workload predictive resource management was proposed in [22] which
improves the average utilization and energy consumption. The method is a combination of prediction and placement
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approaches. Liu et al. carried out a comparative analysis on extreme learning machines (ELMs), online sequential ELMs (OS-
ELM), support vector machines (SVM), and OS-SVM for the job failure prediction in the cloud system [23]. The work performs
three tests on offline, online, and parameter optimization. Zhang et al. proposed the intelligent workload factoring to achieve
proactive workload management [24]. It uses various components of applications to categorize the workloads into two dif-
ferent categories called base and flash crowd. It also detects the items to factor the incoming requests in the context of data
and volume. The linear regression based method has been used in optimizing resource scaling decisions [25]. The approach
keeps the resource scaling cost low and meets the service level agreements. Pulido et al. developed a hybrid forecasting
approach that uses an ensemble of neural networks trained using particle swarm optimization [26]. The method aggregated
the individual forecast responses using type-2 fuzzy logic integration to produce the final forecast value. The fuzzy integra-
tors in the neural network ensemble were optimized using genetic algorithm [27]. The approach optimized the fuzzy infer-
ence system’s membership function parameters in each integrator. A hybrid prediction scheme called ‘ClusFuDE’ was
developed for low dimensional numerical data trace forecasting that categorized data using an improved clustering method
and suboptimal solutions were optimized using differential evolution [28]. The authors used fuzzy logical relationships to
estimate the predicted values that were defuzzified to compute the real value of the forecast.

A resource allocation and power management framework is developed using deep learning in [29] which includes a fore-
caster to estimate workload for power manager. The long short term memory (LSTM) recurrent neural network has been
used as an underlying methodology to develop the forecaster module. The power manager initiates further actions based
on the estimations and the current state information. Qiu et al. also proposed a predictive method using deep learning archi-
tectures to estimate VM workloads [30]. The model used a set of restricted Boltzmann machines arranged in a layered
approach along with a regression layer. A workload prediction mechanism based on LSTM networks had also been explored
in [31] which used four LSTM units to improve the quality of forecasts. A deep reinforcement learning based resource man-
agement scheme was proposed in [32]. The resource manager was composed of monitor, allocator, and controller devices
which were responsible for resource utilization information gathering, mapping of applications to the resource pool, and
resource configuration negotiation respectively. Patel and Mishra also used deep learning to develop a prediction method
that uses the past workload information to compute the correlation among VMs and predicts the future workload informa-
tion accordingly [33]. An efficient workload prediction model based on deep learning was presented in [34]. The model con-
verted the weight vectors into canonical polyadic decomposition to compress the model attributes. In addition, the work also
proposed a learning methodology based on backpropagation for the training of the auto encoder’s parameters.

A resource management scheme utilizing forecasting and skewness was introduced in [35]. The approach minimizes the
skewness to combine the different categories of workloads which improves resource utilization. The run-length encoding
based prediction scheme for processor power management had been presented in [36]. The approach was energy efficient
and efficaciously addressed the repetitious behavior of workloads. A prediction method based on sequential pattern mining
was presented in [37]. The correlation between resource variables was considered in pattern extraction of applications’
behavior and these patterns were used for workload forecasting on the cloud server. Further, a prediction approach based
on episode mining with online learning capability was proposed in [38]. The learning method was inspired by the different
categories of human memory called long term and short term memory. The long term memory was responsible for storing
the episodes of application behavior a in long period while the short term memory stores the new behavior of applications
which correspond to the online learning.

Kaur et al. proposed an intelligent regression ensemble approach (REAP) to improve the forecast accuracy that combines
the resource usage prediction approaches with feature selection [39]. The prediction scheme that use stochastic configura-
tion networks in combination with Savitzky-Golay filter and wavelet decomposition is proposed in [40]. The approach
applies the SG filter to smooth data trace which is decomposed into various parts using wavelet decomposition. The decom-
posed parts of the data trace are used to extract the statistical features of trend and detailed trace components using an
established prediction scheme. A similar approach was proposed that uses noise filtering and data frequency representation
named SGW-SCN to estimate future workload information [9]. Lin et al. proposed an artificial neural network based forecast-
ing scheme to model the power consumption of a data center [41]. The power consumption and system performance char-
acteristics of different components including CPU, primary and secondary memory are analyzed. The authors proposed the
power consumption models based on back propagation, Elman and LSTM networks. A prediction scheme that first analyzes
the dependence in a large scale system and prepares two different time series models based on day and time is proposed in
[42]. An improved LSTM model is proposed to forecast the future workload using two dimensional time series information.

These methods use prediction mechanisms which are usually fit for a specific pattern of workloads and fails in handling
the real world traces where the pattern changes rapidly over time. In such cases, the resources remain over-provisioned or
under-provisioned. Therefore, a scheme that can adapt to sudden changes becomes more useful. In this context, an adaptive
learning based predictive framework is introduced in [43] that learns the operators as per workload characteristics. A work-
load prediction framework ‘CloudInsight’ was developed using a set of predictors [44]. It combines 8 different prediction
methods from machine learning, time series, and regression classes to improve the accuracy of forecasts. Zhong et al. pre-
dicted the workload sequences using weighted wavelet support vector machines [45]. The approach used wavelet transform
and support vector machines to improve the forecast accuracy. The model parameters were optimized using the particle
swarm optimization based approach. This paper contributes by developing a workload prediction approach that learns from
the forecasting errors in the past and tune itself accordingly. It also improves one of the metaheuristic optimization algo-
rithms which is inspired by the blackhole phenomena to achieve more accurate weights of the network.
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3. Workload modeling and estimation

A cloud data center is equipped with several physical machines or servers to offer on-demand services to the customers.
The applications are hosted in the form of virtual machines that are placed on one or more servers. The resource utilization
and the current state of the data center are monitored over time using a device called resource manager. The task of the
resource manager is to assign the resources to the applications in an efficient manner, and predictive models help in achiev-
ing the same by providing an estimation of future workload. The predictive resource assignment schemes improve the eco-
nomic growth of the service provider by maximizing the utilization and reducing electricity consumption.

The workload predictor anticipates the future trends of the number of requests, the demands or utilization pattern of
resources based on the previous information. The complete process flow of the proposed method is shown in Fig. 1. First,
the historical workload data traces are extracted and preprocessed using aggregation, differencing, and rescaling. Further,
a part of preprocessed data is used to learn the network weights, and the remaining data is used to evaluate the accuracy
of the trained prediction model. The forecast accuracy is measured using mean squared error i.e. squared difference between
actual and predicted workload. The forecast error computation is shown during model training and deployment in Fig. 1. The
actual workloads at different time instances (training and deployment) are represented with the dotted blue line and solid
black line respectively, that are used to compute the forecast accuracy. The individual components of the prediction model
are discussed in-depth in following sub sections.

The prediction model computes the future workload estimations using a multi-layer neural network of architecture with
n — p — q neurons, where n, p and q represent the number of input, hidden and output neurons correspondingly. The work-
load at previous n instances of time becomes the input of model to forecast the workload at next time instance e.g.
Y= {y1,¥,,...,Y:} is workload trace, {y,,¥; 1,...,Y: ,} becomes model input to forecast the estimated workload at time
instance t + 1 (J:.1). Further, the data is split into two different parts referred to as training and testing data, where training
data is used during the network weights learning process while the testing data is used to evaluate the accuracy of the fore-
casts. The accuracy of the method is evaluated using mean squared error (MSE) (see Eq. (10)), where y, and y, are the actual
and predicted workloads respectively at time instance t, while m is the total number of samples under consideration. The
operational summary of the prediction method is given in Algorithm 1.

3.1. Self directed learning

Let Y = {y;,¥,,...,¥:} is a set of given workloads, where y, is the load on the server at time t. The forecaster (f,,.q) anal-
yses previous n workloads and forecasts the next possible workload value, denoted as j,. . The error in forecast (e, ) is com-
puted as the difference between actual and predicted workload. Fig. 2 differentiates both simple and self directing
forecasting approaches. The simple forecasting method analyzes the previous t workload instances to anticipate the future
workload whereas the self directed forecaster includes the error feedback obtained from previous I forecasts. The presence of
forecast errors can be modeled by applying é operation that observes the arithmetic difference between actual and predicted
workload as shown in Eq. (1). The forecast error trend (4, ) is computed using ¥ operation that calculates the average of pre-
vious forecasts of error feedback window length as shown in Eq. (2). The self directed learning leverage this information (1)
to redirect the predictions towards actual workload values as given in Eq. (3).
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Fig. 1. Prediction model workflow.
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For workload instances Y={0.15, 0.97, 0.95, 0.48, 0.80, 0.14, 0.42, 0.91, 0.79, 0.95} an arbitrary forecaster predicts Y = {0.0,
1.17,1.17,0.83, 1.06, 0.59, 0.79, 1.14, 1.05, 1.17} and its corresponding self directed forecaster predicts Y2 = {0.0, 1.17, 1.17,

0.75, 0.83, 0.42,0.60,0.97, 0.87, 1.06} by incorporating the error in previous three forecasts. The mean squared error for both
directed and non-directed forecasts are 0.03 and 0.08 respectively.

3.2. SDWF method

The predictive model employs a population based multiple blackhole algorithm inspired by [46] that follows the black-
hole phenomena of nature. In standard blackhole (SB) optimization algorithm, the stars or candidate solutions move rapidly
towards the best solution that reduces the population diversity and exploration capacity of the stars that may lead the
approach towards finding the sub-optimal solution [47]. The SDWF avoids the premature convergence by organizing the
stars into ¢ clusters or sub populations and includes the local best solution in position update procedure. Consider,
S ={s1,52,...,5p} is a set of P random stars uniformly distributed in the search space and initialized using Eq. (4). Here,
Ibj = —1 and ub; = 1 define the lower and upper bounds of search space in j™ dimension and r € [0,1] is a random number.
The S is organized into k = {1,2,...,c} clusters each of size P/c and every individual (s¥) is evaluated over training data by
computing the mean squared error of forecasts. The best solution of each k™ cluster is considered as its local blackhole (/j’f)
and best among local blackholes is designated as global blackhole (f,). Next, the position of stars get updated to find the
optimal solution. Unlike SB the SDWF's position update procedure is directed by [;’f‘ and g, as shown in Eq. (5). Here, sk(t)

and s¥(t + 1) are the positions of i"" star of k™

sub population at time instance t and t + 1 respectively. r; and r, are random
numbers in (0,1) range while o and o, are the attraction forces applied on s¥(t) by /)’f‘ and f, respectively. The incorporation
of local best in position update operation keeps the stars diverse by slowing down the convergence speed and sustains their
exploratory behavior. As presented in Fig. 3, s¥(t) is the position of a star in two dimensional space, ff(t) and B,(t) are local

and global blackholes respectively at time t. The star’s updated position (sf(t + 1)) obtained from both SB and SDWF are
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shown through dotted (red) and dashed (blue) lines respectively where SDWF converges gradually and improves the
diversity.

Siij) = lbj +T X (lej — lbj) (4)

SE(E+ 1) = sK(0) + ory (B(0) = SHO) ) + 2T (By(0) = 5K (D) (5)

Further, the updated stars are evaluated and their MSE are computed. If k™ cluster finds a better solution, the respective BE
is replaced and g, is updated, if applicable. In nature, any thing that enters into a blackhole is collapsed even if it is light. The
blackhole optimization algorithm follows the same concept and does not allow any candidate solution to come back from an
event horizon area of blackhole solution defined by its radius. The radius (r,) of a blackhole solution is observed by comput-
ing the ratio between its fitness value and population fitness value that is the sum of all fitness values. The event horizon

radius of ¥ (r (ﬁf‘)) is computed using Eq. (6) where the fitness value of ¢ (f,g;c) is divided by the sum of fitness values

of cluster members. Similarly, the event horizon radius of global blackhole (r;(8,)) is computed using Eq. (7) where f/jg

(the fitness value of global blackhole) is divided by entire population fitness. In order to ensure whether a candidate solution
has reached into the event horizon of the blackhole solution, the distance between both solutions is measured by observing
the arithmetic difference of their fitness values. Since a solution is attracted towards two blackhole nodes i.e. local and glo-

bal, the distance from these two blackholes must be calculated. The distance (dy, (s¥)) of a star s¥ from its local blackhole ( [ff)
is computed using Eq. (8) whereas the distance (dy, (s¥)) from global blackhole is calculated using Eq. (9). If the distance
between candidate solution s¥ and local blackhole g denoted as dj, (s¥) is less or equal to the event horizon radius of ff,
the sk gets collapsed and a new random solution is generated to replace s to keep the number of solutions uniform through-
out the simulation. Similarly, the s¥ also gets collapsed and new random solution replaces s¥ if it enters into the event horizon
radius of the global blackhole r,(f5,). The operational summary of the process is mentioned in Algorithm 1.

P/c
Th (ﬂf) = f/xf/;f? (6)

c P/c

Tn(Be) =f1, /D D S (7)

k=1 i=1
dy, (sf) =fge = fs (8)
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Fig. 3. Position update in SDWF predictive model.
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Algorithm 1 Operational Summary of SDWF Method

1: randomly initialize S={sq,Ss3,...,Sp}
2: organize S into k={1,2,...,c} clusters and evaluate each s on training data
3:fork=1,2,...,cdo

4: ﬁf‘:Best(s’{,s’z‘,‘..,s’,i/c)
5: end for

6: g = Best (1. A7, )

7: while Termination criteria is not met do

8: update position of each s¥ using (5)

9: evaluate updated stars S(t + 1) on training data

10: fork=1,2,...,cdo

11: pre+1) = Best(ﬂ}‘(t),s’;(t +1),85(E+ 1),k (t+ 1))
12: end for

13: By(t+1) = Best(ﬁg(t),ﬁ}(t-i— 1), B2+ 1),..., p(t+ 1))
14: compute the radius and distances using (6)-(9)

15: fori=1,2,...,Pdo

16:  if (dp (s¥) < pf) v (d,;g (sK) < B,) then

17: collapse sk and regenerate using (4)
18: end if
19: end for

20: end while

3.3. Complexity analysis

This section, presents the time complexity of the proposed prediction approach. The first step (line 1) initializes the pop-
ulation of P networks each of length D and it requires ¢(P xD). By putting D=p(n+2), it becomes
O(P x p x (n+2)) = ¢(n x p x P). Since p < n, it can be represented as @(n? x P). Next, line 2 organizes the population into
c clusters and evaluate each solution. The evaluation of a solution includes the computing arithmetic mean of squared errors
of the forecast of m samples. The computation of one forecast point takes ~ ¢(n?) because of p < n and o < p. Since each
network evaluates m data points, the total amount of elapsed time in evaluating the solutions of one cluster would be
O(m x n? x P/c). Therefore the total time elapsed by line 2 would be ¢(m x n? x P). Next, lines 3-5 select the local blackhole
for each cluster. The selection of local blackhole for one cluster takes ¢(P/c). Therefore it takes ¢(P) to find out the local
blackholes for c clusters. Further, line 6 finds the global blackhole and takes ¢(c). Line 8 updates the position of each black-
hole and takes ¢(D). The next line evaluates the updated networks and takes ¢©(m x n? x P). Similar to lines 3-6, lines 10-13
also consume O(P) + 0O(c). Line 14 takes ¢(c) + 0(1) + ¢0(P) + 0(P) = O(P) and lines 15-19 elapse ¢(P x D). The lines 8-19
iterates g times, therefore the total time consumed can be computed by summing up all individual complexity and multi-
plying it with g. Thus, it becomes ¢ (g x m x n* x P). The total computing time complexity of the algorithm is remained
to be @(g x m x n? x P) after adding other individual complexities as well. We compared the complexity of the proposed
workload prediction approach with neural network based forecasting models trained by Blackhole Optimization Algorithm,
Differential Evolution (DE), Genetic Algorithm (GA) and Back Propagation. The complexity of the blackhole optimization
algorithm is similar to the improved blackhole algorithm. The complexity of both DE and GA was founded in a similar order
as 0(g x P) is the only additional time required in the proposed approach. We found that the time complexity of back prop-
agation neural network (BPNN) based workload prediction approach is lesser than the proposed approach by a factor of P.
The time complexity of BPNN based approach is ¢/(g x m x n?). But the proposed approach achieved an improved accuracy
over BPNN and other methods, as discussed in the following section.

3.4. An example

Let us consider a predictive model composed with 3-2-1 network structure i.e. 3 input, 2 hidden and 1 output neurons.
The length of a star or candidate solution is computed using (n+1) xp)+pxq=((3+1) x 2)+ 2 x 1 = 10. Considering

that the population has 9 candidate solutions organized into 3 clusters (s¥ represents i solution of cluster k).
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Initial population (S)

s 0.762 —0.469 -0.525 0.436 —0.130 —-0.793 0.247 0.235 0.551 —0.819
s 0.090 0.091 -0.212 0.935 0.749 —0.288 —0.555 0.941 0.231 —0.404
s 0.572 0.378 0.443 0.677 —0.741 0.133 0.229 0.551 0.760 —0.804
s —0.563 0.067 -0.739 0.260 0.991 0.929 0.043 -0.316 0.585 —0.621
s2 —0.088 0.139 —0.589 —0.703 —0.062 0.797 —0.860 -0.921 —0.290 0.763

s 0.763 0.622 0.325 —0.748 0.040 0.942 0.917 0.486 —0.457 —0.925
s3 —0.716 —0.515 —0.576 —0.103 —0.405 0.355 —0.680 —0.854 0.459 —0.293
s3 0.229 0.096 0.426 -0.144 —0.669 —0.825 —0.012 —0.889 0.751 0.444

s3 0.616 —0.472 0.631 0.878 0.478 —0.098 0.613 0.812 —0.468 —0.881

Each sk is evaluated on a randomly generated data and mean squared error is computed to measure the forecast accuracy.
Since the aim is to minimize the mean squared prediction error, the candidate solution producing the lowest forecast error is
considered to be the blackhole. Therefore s}, s%, ands3 are local blackholes for their respective clusters and s2 is global black-
hole as it is producing the best forecasts among all local blackholes. Then positions are updated of each individual and listed
as S(t + 1) that are again evaluated on the objective function. The fitness value of these individuals are listed as fslk(t +1).

Fitness of initial population (fy)

0.0951 0.1009 0.0907 0.1173 0.0884 0.1965 0.0979 0.0943 0.1848

After fitness evaluation, the blackholes are updated and new local blackholes are s},s3, and s3. It can be noticed that the
B} is updated and found better solution. However, B is not changed. Next, the radius of each blackhole solution is computed
and it was observed ry(f]) = 0.3230, 1, (f7) = 0.3227,14,(B}) = 0.3270, and r;,(B,) = 0.1066. Then each individual's distance
from local and global blackholes are measured. A solution except for blackholes that enter into the event horizon radius of its

local or global blackhole gets collapsed, and a random solution is generated. This process is repeated till the desired solution
is not achieved, or termination criteria is not met.

New population (S(t + 1))

sl¢¢+1)  0.079 0.171 -0367 -0373 -0.209 0.605 -0.593 -0571 -0.040 0379
si(t+1) 0.080 0.115 -0.252  0.601 0.513 -0.054 -0.574 0.556 0.157 -0.197
si(¢+1) 0.145 0.223 -0.225 -0.216 -0.302 0.563 -0476  —-0.401 0.081 0.210
s2(t+1) —0.290 0.108 -0.653 —-0.293 0.386 0.853 -0476 -0.664 0.082 0.174
s3(t+1) —0.088 0.139 -0589 -0.703 -0.062 0.797 -0.860 -0.921 -0.290 0.763
s2(t+1) 0.107 0.250 -0380 -0.713 -0.039 0.830 -0454 -0.599 -0328 0.377
si(t+1) —-0258 0062 -0520 0485 0205 0.559 -0.751 -0.899 0.004 0.423
s3(t+1) 0222 0.097 0.405 -0.156 -0.656 -0.791 -0.030 -0.890 0.729 0.451
s3(t+1) 0.005 0.113 -0318 -0.530 -0.191 0.391 -0.622 -0.868 —-0.049 0.645
Fitness values of S(t + 1) (fa (t + 1))

0.0914 0.0973 0.0921 0.0918 0.0884 0.0938 0.0910 0.0939 0.0898
Distances

dg, 0.0007 0.0066 0.0014 0.0033 0.0000 0.0054 0.0011 0.0040 0.0000
dg, 0.0030 0.0089 0.0037 0.0033 0.0000 0.0054 0.0026 0.0055 0.0014
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4. Simulation results

This section discusses the experimental findings in detail. First of all, it describes the datasets used in this study. Further,
the experimental setup is presented along with a list of key parameters and their values. Next, the forecast accuracy of the
proposed scheme is evaluated over six different data sets followed by a comparative analysis with state-of-art methods
including deep learning.

4.1. Dataset description

The data sets used in this study are HTTP web logs from three different World Wide Web servers (NASA’s Kennedy Space
Center (D, ); Department of Computer Science, University of Calgary (D,); University of Saskatchewan (D3)), Google cluster
traces (CPU (D4) and memory (Ds)) and PlanetLab CPU utilization trace (Dg).

NASA server traces are two HTTP request traces consisting of two months requests to the NASA Kennedy Space Center
WWW server in Florida. However, only one month data is considered due to limitation of computing resource availability.
Each record contains host, timestamp, request, HTTP reply code, and bytes. Here, host indicates the hostname or an [P address of
the requesting machine, timestamp denotes the time of the request in the format “DAY MON DD HH:MM:SS YYYY” with
timezone —0400, the request is mentioned in quotes, next field indicates the reply code, and the last field shows the bytes
sent in reply of the request. Similarly, Calgary and Saskatchewan traces contain HTTP requests worth of one year and seven
month’s HTTP requests to the University of Calgary’s department of computer science WWW server and University of Sas-
katchewan’s WWW server respectively. Both servers are respectively located at Calgary, Alberta, Canada and Saskatoon, Sas-
katchewan, Canada.

The Google cluster trace was released by Google in 2011 that incorporates the data of 29 days collected from the orga-
nization’s cluster cell. The data contains 10388 machines, over 0.67 million jobs, 20 million tasks. Here, a job may consist of
multiple tasks, and each task may further have multiple processes and arranged in a set of six different tables.

The PlanetLab data trace contains the mean CPU utilization of more than 1000 virtual machines sampled over 5 min inter-
val. The virtual machines are located at more than 500 places across the globe. The data was collected on 10 random days in
the months of March and April of the year 2011. The experiments are carried out over randomly selected 22 virtual machi-
nes’ data (see Table 1).

4.2. Experimental setup

The experiments are carried out on a machine equipped with Intel® Core™ 17-7700 processor with 3.60 GHz clock speed
and 16 GB of main memory. The implementation and simulations are performed using MATLAB R2017a. The statistical anal-
ysis is also conducted using SPSS software package to validate the improvements achieved in forecast accuracy. The forecast
accuracy of the proposed method is evaluated on the different Prediction Window Size (PWS) that is the time interval
between two consecutive forecasts. The experiments with different number of input neurons are conducted and it is
observed that network constructed with 10 input neurons produced better forecasts. The number of hidden neurons is
2/3 of input neurons as reported in [14]. The values of learning parameters are selected based on experimental analysis con-
ducted using different combinations of learning rates. We experimented with all combinations of 0.3 and 0.8 learning rates
and observed a better network performance with o = 0.3 and o = 0.8. Other parameters such as number of maximum iter-
ations (g = 250), population size (P = 100) and number of clusters (c = 4) are selected randomly. The values of key param-
eters are listed in Table 2.

4.3. Evaluation metrics

4.3.1. Mean squared error

It is one of the well-known metrics to measure the accuracy of prediction models, which puts a high penalty on large error
terms. The model is considered to be more accurate if its score is closer to 0. The mathematical representation of the metric is
mentioned in Eq. (10) where m is the number of data points in workload trace.

Table 1
List of data traces and corresponding acronyms.
Name/Type of Dataset Trace Acronym
Web Server Traces NASA Server D,
Calgary Server D,
Saskatchewan Server Ds
Google Cluster Traces CPU Requests Dy
Memory Requests Ds

PlanetLab CPU Utilization Dg
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Table 2
Values of key parameters.
Variable Value
Input Neurons (n) 10
Hidden Neurons (p) 7
Population Size (ps) 100
Maximum Iterations (g) 250
Clusters (c) 4
Learning Rate (off) 0.3
Learning Rate (o) 0.8
1K . 2
MSE = — - 10
= -y (10)

t=1

4.3.2. Mean absolute error

In mean squared error the square of higher error values will get more weight which may influence the accuracy of fore-
caster due to few large errors. While MAE gives equal weight to each error component and measures the accuracy of the
forecasting model by computing the mean of absolute differences between actual and predicted workloads as shown in
Eq. (11). It produces a non-negative number to evaluate the forecast accuracy and if it is close to 0, forecasts are very much
similar to actual values.

1& .
MAE = > Iy, ~ 3 (1)
t=1

4.3.3. Mean absolute percent error
Mean Absolute Percent Error (MAPE) computes the forecast error by dividing the absolute difference between actual and
predicted values by actual values.

100 &
MAPE = —=%

t=1

Ve —

Y

(12)

4.4. Forecast evaluation

A series of experiments are carried out with the different lengths of PWS to study the performance behavior of the pro-
posed model. The prediction window size defines the forecast time interval, e.g. if the length of the window is 10 min, the
model predicts the upcoming workload on the server after every 10 min. The experiments are performed with a prediction
window of 5, 10, 20, 30, 40, 50 and 60 min duration. The data trace is divided into two parts for training and testing respec-
tively. The training data amount the 60% of total data and remaining data is used as test data.

The forecast results on NASA trace for a prediction window size of 5 and 60 min are shown in Figs. 4a and b that depict the
actual and predicted workloads. The forecaster learns the trend in actual workloads and predicts a similar pattern and pro-
duces minimal residuals. The forecast errors on NASA trace for 5 and 60 min prediction intervals are depicted in Figs. 4c and
d respectively. The minimum mean squared error attained by the forecasting approach is 4.12E—03 for NASA trace as shown
in Table 3. The presence of autocorrelation in forecast residuals is also modeled to verify the accuracy of the model. Figs. 4e
and f depict the autocorrelation in corresponding forecasts. The residual autocorrelation determines the presence of autocor-
relation as of a white noise series. If it is the case, the forecasting model has successfully modeled the series and forecasts are
correct. On the other hand, it is assumed that model has skipped some details in modeling the series if the residual autocor-
relation is not similar to a white noise series autocorrelation. On close observation, it can be easily validated that the pres-
ence of autocorrelation is shallow in the generated residuals.

Similarly, for the Calgary data trace, the forecast results are shown in Figs. 5a and b for 5 and 60 min forecast intervals
respectively. The forecast results indicate that the estimates follow a similar trend as of actual workloads that can be verified
from forecast errors correspondingly depicted for 5 and 60 min interval in Figs. 5¢ and d. The autocorrelation is computed to
analyze the forecast errors and no high correlation is observed. However, the 60 min prediction interval forecast residuals
have higher autocorrelation than 5 min prediction interval forecast residuals as shown in Figs. 5e and f. The minimum fore-
cast error achieved by the forecasting module is 2.70E—03. In the case of the Saskatchewan trace, the forecast results are
rendered in Figs. 6a and b respectively for both prediction interval. The model produced the minimum mean squared error
for prediction window of 1 min as listed in Table 9. The forecast residuals and their corresponding autocorrelations are
shown in Figs. 6¢c-f and the presence of residual autocorrelation is observed in 60 min interval forecast which indicates that
the prediction model can be improved or training data should be increased.
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Fig. 4. Prediction results for NASA trace.

Similar to web servers’ HTTP request workloads, a set of experiments is also conducted for CPU and memory request
traces of Google cluster and CPU utilization of PlanetLab data trace. Fig. 7 shows the forecast results of CPU request trace
of Google cluster. The model captures the trend of workload on the servers. The forecast residuals and their autocorrelation
indicate the presence of autocorrelation. Similarly, memory request trace results are depicted in Fig. 8 and similar observa-
tions are found. It is noticed that the 5 min interval forecasts are having more high error terms than 60 min interval forecasts
for both data traces. The minimum mean squared error achieved by the model is 5.14E—04 and 2.19E—04 for CPU and mem-
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Table 3

Forecast accuracy of the proposed model measured using MSE.
PWS (min) Dy D, Ds Dy Ds Dg
1 1.09E-02 2.70E-03 9.04E-04 5.14E-04 2.19E-04 NA
5 4.12E-03 4.60E-03 1.42E-03 1.19E-03 2.40E-03 1.04E-02
10 4.24E-03 5.96E-03 2.41E-03 1.80E-03 3.41E-03 1.21E-02
20 4.71E-03 7.38E-03 2.46E-03 3.84E-03 6.91E-03 1.31E-02
30 5.06E—03 1.03E-02 2.47E-03 5.45E-03 7.08E-03 1.43E-02
40 6.37E-03 9.61E-03 2.75E-03 8.42E-03 8.76E-03 1.46E-02
50 9.03E-03 8.57E-03 3.79E-03 8.48E-03 1.17E-02 1.64E-02
60 8.57E-03 1.13E-02 4.55E-03 1.07E-02 1.08E-02 1.64E-02

ory data traces. Fig. 9 shows the forecast results on CPU utilization of the PlanetLab data trace. It can be seen that only 60 min
interval forecasts have significant residual autocorrelation. Similarly, the forecast results for Dg are depicted in Fig. 9 and it
can be easily determined that the forecaster learns the trend of actual mean CPU utilization over time. The forecasts are close
to the actual CPU utilization in most of the instances but residuals are correlated. However, the model produced forecasts
with significant residuals for 60 min interval. Moreover, the model is also evaluated on Mean Absolute Error (MAE) and Mean
Absolute Percentage Error (MAPE). The MAE ignores the direction of forecast error while measuring the average of errors.
Table 4 reports the average of absolute errors observed in test samples of the data and it can be seen that theroposed model
achieves low forecast errors. On the other hand, MAPE uses MAE and reports the forecast errors in percentage. Table 5 shows
the MAPE observed in the forecasts of the proposed approach. The results verify that the model forecasts the upcoming
workload with low forecast errors. Besides, the amount of time elapsed in training is also computed that is listed in Table 6.
The training time can be easily reduced by adopting the high computing infrastructure and parallel implementation of the
approach.

4.5. Comparative analysis

In order to evaluate the efficacy of the proposed method, its performance is compared with prediction methods based on
following state-of-art learning algorithms.

o Blackhole Algorithm [18]: The optimization approach is inspired by the blackhole phenomena in nature. The proposed
approach improves the standard version of the blackhole algorithm to learn the network weights more effectively. The
comparative analysis is carried out with the forecasting results obtained using the standard version of blackhole
algorithm.

Deep Learning [34,31]: A deep learning architecture is usually a special kind of neural network composed of multiple lay-
ers. The deep learning based forecasting approach is used to compare the forecast accuracy of the proposed method on
PlanetLab CPU utilization trace. In this study, the performance of the proposed approach is also compared on D;-Ds with
long short term memory recurrent neural network (LSTM-RNN) based forecasting method.

Differential Evolution [14]: It a population based algorithm developed by Storn and Price. In this method, the solutions are
encoded into vector form that explores the search space by combining the positions of different solutions from the pop-
ulation. The performance of the proposed approach is compared with self adaptive differential evolution (SaDE) based
forecasting method.

Back-Propagation Algorithm [17]: It computes the error gradient and feeds it back to adjust the network weights. It has
widely used in the training of neural networks and deep neural networks. The performance of the proposed approach is
also compared with backpropagation based predictive model.

E = Ee=Ew 100 (13)
E

The forecast accuracy of the proposed model with other state-of-art approaches compared and corresponding results are
shown in Tables 7-12 for each data trace respectively. The results indicate that the proposed model improves the forecast
accuracy in most of the experiments. The ratio of mean squared error reduction is computed using Eq. (13), where E,, and E;
denote the mean squared error obtained by the proposed model and a state-of-art model. The maximum relative reduction
attained by the proposed approach for NASA trace is 36.34%,64.67%, 83.04% and 98.64% over deep learning, Blackhole,
SaDE and BPNN approaches respectively. Similarly 21.05%,59.73%,9.45% and 99.09% for Calgary trace, 81.92%,72.11%,
94.35% and 99.58% for Saskatchewan trace over LSTM, Blackhole, SaDE and BPNN approaches respectively. For Google clus-
ter trace, the maximum reduction in mean squared error is noticed up to 51.77%,39.39% and 89.61% for CPU trace while
60.16%, 25.55% and 88.88% for Memory trace over Blackhole, SaDE and BPNN models. Also, a notable reduction in forecast
error is observed on comparing the performance of the proposed approach with deep learning based forecasting method on

mean CPU utilization of PlanetLab trace. The proposed approach reduced the forecast error by up to 99.99%.
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Fig. 5. Prediction results for Calgary trace.

5. Statistical analysis

The Friedman test [48] is used to study the statistical behavior of the predictive models that conducts a multiple com-
parison analysis to detect the presence of a significant difference in the performance of the multiple algorithms. The method
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Fig. 6. Prediction results for Saskatchewan trace.

assumes a null hypothesis (Hp) which states that the mean of all algorithms’ results are equal and an alternate hypothesis
(Hy) that negates the H,.

First, the Friedman mean rank of each algorithm is computed that is listed in Table 13. It can be seen from the table that
the proposed approach achieved better rank over LSTM, Blackhole, SaDE and BPNN based predictive models except for D,
where LSTM based model produced better forecasts than the proposed approach. Along with the ranks, the Friedman test
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Fig. 7. Prediction results for CPU request trace of Google cluster.

statistics (% and p-value) are mentioned in Table 14. The p-values indicated that the Hy is rejected with significance level
(oc = 0.05) and the ranks clearly indicate that the behavior of the proposed approach has significant difference.

As it has been already observed that the results of the proposed method are significantly different, the Wilcoxon signed
test [49] is conducted to ensure that the difference is positive. The null hypothesis (Hp) of the test is that the mean of the
results of the paired approaches are same. The test conducts the pairwise test and computes the positive (R*) and negative
(R™) mean rankings. These rankings are calculated using the difference in the results of the two algorithms. Let M, and M. are
two approaches (proposed and competitor), M, wins only if the difference between M, and M, is positive. The rankings
(Table 15) are computed based on these differences, where competitors are listed in the first column. The corresponding
R*,R™ and p-values are shown in Table 15. As the table states, the proposed approach produces significant differences over
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Fig. 8. Prediction results for Memory request trace of Google cluster.

Blackhole, BPNN and SaDE with the significance level (o) 0.05, 0.05 and 0.1 respectively and rejects the Ho. While the Hy is
accepted for LSTM. On comparing the performance of the proposed approach with deep learning based method on Dg, it is
observed that the Hy is rejected with o = 0.1. The proposed algorithm’s superiority can be validated based on the promising
results and their statistical analysis.
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Table 4
Forecast accuracy of the proposed model measured using MAE.
PWS (min) Dy D, D; Dy Ds Dg
1 7.40E-02 3.59E-02 2.12E-02 1.09E-02 7.43E-03 NA
4.56E-02 4.90E-02 2.72E-02 1.52E-02 2.73E-02 8.10E-02
10 4.85E-02 5.45E-02 3.60E-02 1.66E-02 3.04E-02 8.70E-02
20 4.68E-02 5.92E-02 3.48E-02 2.79E-02 4.58E-02 9.90E-02
30 5.52E-02 6.85E-02 3.46E-02 3.10E-02 4.18E-02 1.04E-01
40 5.85E-02 6.38E—-02 3.85E-02 4.54E—-02 5.47E-02 1.07E-01
50 6.69E—-02 6.02E-02 4.19E-02 3.95E-02 6.68E—02 1.14E-01
60 5.98E-02 6.91E-02 4.65E-02 4.78E-02 6.16E—-02 1.16E-01
Table 5
Forecast accuracy of the proposed model measured using MAPE.
PWS (min) Dy D, D5 Dy Ds Dg
1 1.00E-02 2.03E-04 4.40E-05 4.20E-05 9.70E-04 NA
5 1.83E-02 3.39E-03 3.63E-04 3.25E-03 1.30E-03 5.78E-02
10 2.28E-03 7.93E-03 3.04E-03 1.59E-02 6.80E—-03 1.19E-01
20 5.27E-03 3.28E-03 1.43E-03 7.45E-03 4.06E—-02 3.15E-01
30 2.09E-02 1.02E-02 9.86E—-04 2.30E-02 4.54E-01 5.10E-01
40 2.98E-02 4.30E-04 8.68E—-04 1.32E-01 8.36E-01 6.44E-01
50 4,00E-02 9.63E-03 4.12E-04 2.76E-01 2.27E-01 9.63E-01
60 5.85E-02 3.03E-02 6.79E-03 2.58E-01 2.07E-01 1.54E+00
Table 6
Time elapsed in training of the proposed model (min).
PWS (mll’l) D] Dz D3 D4 D5 DG
1 81.68 166.43 439.7 60.61 60.3 NA
5 16.21 333 91.4 11.86 121 411
10 8.1 16.45 45.88 6.03 5.87 21
20 4.08 8.45 222 2.99 2.96 1.05
30 2.87 5.51 14.92 1.99 1.97 0.68
40 2.08 4.11 11.26 1.48 1.49 0.52
50 1.63 33 8.99 1.19 1.19 0.41
60 135 2.74 7.35 0.98 1 0.33
Table 7
Accuracy comparison on NASA Trace predictions.
PWS Proposed LSTM Blackhole SaDE BPNN
(min)
1 1.09E-02 1.31E-02 2.14E-02 1.69E-04 2.43E-01
5 4.12E-03 4.79E-03 8.45E-03 1.00E-02 3.02E-01
10 4.24E-03 6.66E—03 1.20E-02 2.50E-02 2.82E-01
20 4.71E-03 7.01E-03 7.78E-03 2.50E-02 3.38E-01
30 5.06E—-03 6.43E-03 9.06E-03 2.02E-02 2.78E-01
60 8.57E-03 5.59E-03 2.31E-02 2.02E-02 3.34E-01
Table 8
Accuracy comparison on Calgary Trace predictions.
PWS Proposed LSTM Blackhole SaDE BPNN
(min)
1 2.70E-03 3.42E-03 6.03E-03 2.79E-03 2.97E-01
5 4.60E-03 4.10E-03 5.99E-03 5.08E-03 2.90E-01
10 5.96E-03 6.11E-03 1.48E-02 6.06E—-03 2.87E-01
20 7.38E-03 5.99E-03 1.25E-02 7.79E-03 2.78E-01
30 1.03E-02 7.12E-03 1.78E-02 1.02E-02 5.00E-01
60 1.13E-02 8.03E-03 1.97E-02 1.17E-02 2.97E-01
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Table 9
Accuracy comparison on Saskatchewan Trace predictions.
PWS Proposed LSTM Blackhole SaDE BPNN
(min)
1 9.04E-04 5.00E-03 1.61E-03 1.00E-06 4.02E-02
5 1.42E-03 3.17E-03 2.51E-03 4.00E—-06 3.37E-01
10 2.41E-03 5.26E-03 5.55E-03 2.50E-02 2.90E-01
20 2.46E-03 5.56E-03 8.82E-03 3.84E-02 3.18E-01
30 2.47E-03 4.79E-03 8.03E-03 4.37E-02 5.07E-01
60 4.55E-03 4.50E-03 9.30E-03 2.89E-02 2.86E-01
Table 10
Accuracy comparison on CPU Trace predictions.
PWS (min) Proposed Blackhole SaDE BPNN
1 5.14E-04 9.26E—-04 8.48E—-04 4.41E-03
5 1.19E-03 2.19E-03 1.68E—-03 8.75E-03
10 1.80E-03 3.59E-03 2.47E-03 1.42E-02
20 3.84E-03 6.28E-03 4.02E-03 2.60E-02
30 5.45E-03 1.13E-02 5.49E-03 4.37E-02
60 1.07E-02 1.43E-02 1.03E-02 1.03E-01
Table 11
Accuracy comparison on Memory Trace predictions.
PWS (min) Proposed Blackhole SaDE BPNN
1 2.19E-04 2.48E-04 2.35E-04 1.97E-03
5 2.40E-03 4.91E-03 2.23E-03 1.91E-02
10 3.41E-03 8.56E-03 4.08E-03 2.48E-02
20 6.91E-03 1.36E-02 5.54E-03 4.80E-02
30 7.08E-03 1.15E-02 9.51E-03 5.16E-02
60 1.08E-02 1.09E-02 1.18E-02 8.77E-02
Table 12
Accuracy comparison on Planetlab Trace
predictions.
PWS (min) Proposed Deep Learning
5 1.04E-02 8.41E+01
15 1.33E-02 9.29E+01
30 1.43E-02 1.06E+02
60 1.64E-02 9.94E+01
Table 13
Friedman mean ranks.
Prediction Model Dy D, D3 Dy Ds
Proposed 1.33 1.83 1.50 1.17 1.33
LSTM 2.00 1.67 2.50 - -
Blackhole 3.33 4.00 3.00 3.00 2.83
SaDE 3.33 2.50 3.00 1.83 1.83
BPNN 5.00 5.00 5.00 4.00 4.00
The bold values indicate the best ranks achieved among all predictive models over respective data traces.
Table 14
Friedman statistics.
D1 Dz D3 D4 D5
Ve 19.200 20.133 15.600 17.000 15.000
p 0.001 0.000 0.004 0.001 0.002
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Table 15
Wilcoxon signed ranks.
Proposed D, D, D5 Dy Ds Dg
LSTM R 6.00 17.00 1.00 - - -
R* 15.00 4.00 20.00 - - -
p-value 0.345 0.173 0.046 - - -
Blackhole R 0.00 0.00 0.00 0.00 0.00 -
R* 21.00 21.00 21.00 21.00 21.00 -
p-value 0.028 0.028 0.028 0.028 0.028 -
SaDE R 2.00 2.50 3.00 4.00 7.00 -
R* 19.00 18.50 18.00 17.00 14.00 -
p-value 0.075 0.093 0.116 0.173 0.463 -
BPNN R 0.00 0.00 0.00 0.00 0.00 -
R’ 21.00 21.00 21.00 21.00 21.00 -
p-value 0.028 0.028 0.028 0.028 0.028 -
Deep Learning R™ - - - - - 0.00
R' - - - - - 10.00
p-value - - - - - 0.068

6. Conclusions

The workload prediction has been an essential aid for efficient resource management. This paper presented a self directed
workload prediction model for the cloud data centers. The model used a nature inspired heuristic approach for the purpose
of training. It also proposed a solution to overcome the identified limitation of the learning algorithm. The method is adapt-
able that determines the error in its previous forecasts and modifies its future forecast accordingly. The forecast accuracy of
the proposed model is analyzed on different time interval forecasts over multiple real world data traces. It also presents a
statistical analysis to validate the performance of the proposed method. The experimental results show that the model is
capable of reducing the mean squared forecasting errors up to 99.99% over existing models that validates the superiority
of SDWF approach over popular state-of-art techniques. The approach may be extended further by proposing a solution
to optimize the forecast error feedback window, cluster size, and learning rate. Also, other learning schemes including quan-
tum inspired algorithms can be explored for better quality solutions.
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