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Abstract– Hadoop Distributed File System (HDFS) and 

MapReduce model have become de facto standard for large 

scale data organization and analysis. Existing model of data 

organization and processing in Hadoop using HDFS and 

MapReduce are ideally tailored for search and data parallel 

applications, for which there is no data dependency with 

neighboring/adjacent data. Many scientific applications such as 

image mining, data mining, knowledge data mining, satellite 

image processing etc., are dependent on adjacent data for 

processing and analysis.  In this paper, we discuss the 

requirements of the overlapped data organization and propose 

XHAMI as a two phase extensions to HDFS and MapReduce 

programming model to address such requirements. We present 

the APIs and discuss their implementation specific to Image 

Processing (IP) domain in detail, followed by sample case 

studies of image processing functions along with the results. 

XHAMI though has little overheads in data storage and 

input/output operations, but greatly improves the system 

performance and simplifies the application development 

process. The proposed system works without any changes for 

the existing MapReduce models with zero overheads, and can be 

used for many domain specific applications where there is a 

requirement of overlapped data. 

 

Keywords: Cloud Computing, Big Data, Hadoop, MapReduce, 

Extended MapReduce, XHAMI, Image Processing, Data 

intensive Scientific computing, Remote Sensing. 

 

1. Introduction 

The amount of textual and multimedia data has grown 

considerably in recent years due to the growth of social 

networking, healthcare applications, surveillance systems, 

earth observation sensors etc. This huge volume of data in 

the world has created a new field in data processing called 

as Big Data [1], which refers to an emerging data science 

paradigm of multi-dimensional information mining for 

scientific discovery and business analytics over large 

scale scalable infrastructure. Big Data handles massive 

amounts of data collected over time, which is an 

otherwise difficult task to analyze and handle using 

common database management tools [2]. Big Data can 

yield extremely useful information; however, demands 

new challenges both in data organization and processing 
the data effectively [3]. 

 

Hadoop [4] is an open source framework for storing, 

processing, and analysis of large amounts of distributed 

semi structured/unstructured data [5]. The origin of this 

framework comes from internet search companies like 

Yahoo and Google, who needed new processing tools and 

models for web page indexing and searching. This 

framework is designed for data parallel processing at 

Petabyte and Exabyte scales distributed on the commodity 

computing nodes. Hadoop cluster is a highly scalable 

architecture, that spawns both compute and data storage 

nodes horizontally for preserving and processing large 

scale data to achieve high reliability and high throughput. 

Therefore, Hadoop framework and its core sub 

components i.e. HDFS [6][7] and MapReduce [8][9][10] 

are gaining popularity in addressing several large scale 

applications of data intensive computing in several 

domain specific areas like social networking, business 

intelligence, and scientific analytics, etc. for analyzing 

large scale, rapidly growing, variety structures of data. 

 

The advantages of HDFS and MapReduce in Hadoop eco 

system are – horizontal scalability, low cost setup with 

commodity hardware, ability to process semi-structured/ 

unstructured data, and simplicity in programming. 

However, HDFS and MapReduce, though offer 

tremendous potential for gaining maximum performance, 

but due to its certain inherent limiting features, does not 

confine to be used for all areas. Below we describe one 

such domain specific applications in remote sensing 

image processing. 

 

 Remote sensing image applications 

Earth observation satellite sensors provide high-resolution 

satellite imagery having image scene sizes from several 

megabytes to gigabytes. High resolution satellite imagery 

for example Quick Bird, IKONOS, Worldview, IRS 

Cartosat etc. [11] are used in various applications of 

analysis and information extraction like oil/gas mining, 

engineering construction like 3D urban/terrain mapping, 

GIS developments, defense and security, environmental 

monitoring, media and entertainment, agricultural and 

natural resource exploration etc. Due to increase in the 

numbers of satellites and technology advancements in the 

remote sensing, both the data sizes and their volumes are 

increasing on a daily basis. Hence, organization and 
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analysis of such data for intrinsic information is a major 

challenge.  

 

Ma et al. [12] have discussed challenges and opportunities 

in Remote Sensing (RS) Big Data computing, focused on 

RS data intensive problems, analysis of RS Big Data, and 

several techniques for processing RS Big Data. Two 

dimensional structured representation of images, and 

majority of the functions in image processing being 

highly parallelizable, the HDFS way of organizing the 

data as blocks and usage of MapReduce functions for 

processing each block as independent map function, 

makes Hadoop a suitable platform for large scale high 

volume image processing applications.  

 

An image is a two-dimensional function f(x,y), where x 

and y are spatial (plane) coordinates, and the amplitude of 

f at any pair of coordinates (x,y) is called intensity or gray 

level of the image at that point [13]. Image data mining is 

a technology that aims in finding useful information and 

knowledge from large scale image data [14]. This 

involves use of several image processing techniques such 

as enhancement, classification, segmentation, object 

detection etc. which use many combinations of 

linear/morphological spatial filters [13]. 

 

 
Figure 1. Image representation with segmented blocks 

Many of the linear/morphological spatial filters demand 

use of adjacent pixels for processing the current pixel. For 

example, as shown in Figure 1, a smoothening operation 

performs weighted average of a 3X3 kernel window. The 

output of pixel X depends on the values of  X1,X2,X3,X4, 

X6,X7,X8, and X9. Therefore due to the dependency, 

these types of operations cannot be performed on the edge 

pixels. Hadoop and many of the implementations 

discussed in Section 2, split the data based on a fixed size, 

which results in partitioning of data as shown in Figure 1. 

Each of the blocks is written to different data nodes. 

Therefore the boundary pixels of entire line b1, b2, b3,.. 

in each block cannot be processed, as the adjacent pixels 

are not available at the respective data nodes. Similarly 

for the pixels marked as y1,y2,y3,y4,… also IP operations 

cannot be performed straight away. To process these 

boundary pixels i.e., the start line and end line in each 

block a customized map function to read additional pixels 

from a different data node is essential, otherwise the 

output would be incorrect. This additional read operations 

for each block increase the overhead significantly.  

 

Section 2 describes related work in image processing with 

HDFS and MapReduce over Hadoop framework. Section 

3 describes proposed two phase extended system XHAMI 

and usage of APIs. Section 4 describes experimental 

results, and Section 5 presents the conclusions and future 

work. 

 

2. Related Work 

Image processing and computer vision algorithms can be 

applied as multiple independent tasks on large scale data 

sets simultaneously in parallel on a distributed system to 

achieve higher throughputs. Hadoop [4]is an open source 

framework for addressing large scale data analytics using 

HDFS and MapReduce programming models. In addition 

to Hadoop, there are several other frameworks like 

Twister [15] for iterative computing of streaming text 

analytics, and Phoenix [16] used for map and reduce 

functions for distributed data intensive Message Passing 

Interface (MPI) kind of applications. 

 

Kennedy et al. [17] demonstrated the use of MapReduce 

for labeling 19.6 million images using nearest neighbor 

method. Shi et al. [18] presented use of MapReduce for 

Content Based Image Retrieval (CBIR), and discussed the 

results obtained by using around 400,000 images 

approximately. Yang et al. [19] presented a system 

MIFAS for fast and efficient access to medical images 

using Hadoop and Cloud computing. Kocalkulak et al. 

[20] proposed a Hadoop based system for pattern image 

processing of intercontinental missiles for finding the 

bullet patterns. Almeer et al. [21] designed and 

implemented a system for remote sensing image 

processing with the help of Hadoop and Cloud computing 

systems for small scale images. Demir [22] et al. 

discussed the usage of Hadoop for small size face 

detection images. All these systems describe the bulk 

processing of small size images in batch mode over 

HDFS, where each map function processes the complete 

image.  

 

White et al. [23] discussed the overheads that can be 

caused due to small size files, which are considerably 

smaller than the block size in HDFS. A similar approach 

is presented by Sweeney et al. [24] and presented Hadoop 

Image Processing Interface (HIPI) as an extension of 

MapReduce APIs for image processing applications. HIPI 

operates on the smaller image files, which are bundled 
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into a large block called Hadoop Image Bundle (HIB). In 

HIPI each image is applied to only one map function, 

which has limitation in dividing the data into smaller file 

sets. All these said methods discussed aggregation of 

smaller images and mapping each image within the 

bundle as a whole to one single map function.  

 

Srirama et al. [25] discussed the processing small/regular 

images of total 48675 by aggregating them into large data 

set, and processed them on Hadoop using MapReduce as 

sequential files, similar to the one addressed by HIPI. 

Also, presented feasibility study as a proof-of-concept test 

for a single large image as blocks and overlapping pixels 

for non-iterative algorithms image processing. However, 

no design, or solution, or methodology has been 

suggested to either to Hadoop or MapReduce for either 

Image Processing applications or for any other domain, so 

that the methodology works for existing as well as new 

models under consideration. 

 

This paper addresses the issues related to processing large 

remote sensing images which run into several Megabytes 

to Gigabytes, addressing several issues related to data 

organization over HDFS, and processing them by 

MapReduce using extended HDFS and MapReduce called 

as XHAMI library. The proposed extensions are applied 

for image processing applications, but the same can be 

extended to other domains also where such similar data 

dependency exists. 

 

3. XHAMI- Extended HDFS and 

MapReduce 
 

In this section we describe XHAMI - the extended 

software package of Hadoop for large scale image 

processing/mining applications. First we present XHAMI 

APIs for reading and writing (I/O), followed by 

MapReduce for distributed processing. We discuss two 

sample case studies i.e. histogram and image smoothening 

operations. Histogram computes the frequency of pixel 

intensity values in the image, and smoothening operation 

uses spatial filters like sobel, laplacian etc. [13].  

 

3.1 XHAMI – HDFS I/O extensions 

Figure 2 depicts the sequence of steps in reading/writing 

the images using XHAMI software library over Hadoop 

framework.  Initially, client uses XHAMI I/O functions 

(step 1) for reading or writing the data. The client request 

is translated into create () or open () by XHAMI, and sent 

to DistributedFileSystem (step 2). Distributed File System 

instance calls the namenode to determine the data block 

locations (step 3).  For each block, the namenode returns 

the addresses of the datanodes for writing or reading the 

data. DistributedFileSystem returns FSDataInput/Output 

Stream, which in turn will be used by XHAMI to 

read/write the data to/from the datanodes. XHAMI checks 

file format, if the format is in image type (step 4), then 

metadata information such as file name, total scans, total 

pixels, total numbers of bands in the image, and the 

number of bytes per pixel are stored in HBASE [27], this 

simplifies header information reading as and when 

required through HBASE queries, otherwise reading the 

header block by block is tedious and time consuming 

process. 

 

 
 

Figure 2. XHAMI for read/write operations 

Later on XHAMI calls FSDataInput/Output Stream either 

to read/write the data to/from the respective data nodes 

(step 5). Steps 6 and 7 are based on standard HDFS data 

reading/writing in the pipelining way. Each block is 

written with the header information corresponding to the 

blocks i.e. blockid, start scan, end scan, overlap scan lines 

in the block, scan length, and size of the block. Finally, 

after the read/write operation the request is made for 

closing the file (step 8), and the status (step 9) is 

forwarded to the namenode.  

 

The major XHAMI APIs for I/O related operations are 

described in Table 1.  XHAMI reads/writes the image 

blocks into the same format of that original file, using 

Geographical Data Abstraction Layer (GDAL) library 

[26] during I/O and MapReduce operations. 

 
Table 1. Description of functions in XHAMI I/O API 

Functions provided 

int xhmrWriteImage(String file, int overlap) 

Description: content of file to be written into HDFS with the 

specified numbers of overlap scan lines. This call is used for 

writing the files of type images. 

Return status: if success returns 1 else 0. 

int xhmrWriteFile(String file) 

Description: file contents (which are of not image types) are 

written into HDFS. 

Return status: if success returns 1 else 0. 

String[] xhmrReadFile(String file) 
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Output Stream

HDFS Client

2.create/
Open

3: Get block 
locations

9: complete

8: close

Name Node

Data Node Data Node Data NodePipe line
of data
nodes

6

7

6

7

6: Read/write 
packet

7: ack
packet

1: Read / Write

XHAMI

GDAL

HBASE 
STORE

5: Read/Write



4 

 

Description: used for writing file of type non image to HDFS. 

Return status : the contents of the file in string format 

byte[] xhmrReadImage(String file) 

Description: reading the contents of the file from HDFS. 

Return status : the contents of the file in binary format 

int xhmrReadGetTotalScans(String file) 

Description: returns total scan lines in the image with name file. 

Return status: the contents of the file in binary format. 

int xhmrReadGetTotalPixels(String file) 

Description: returns the total number of pixels of the image file. 

Return status: the contents of the file in binary format. 

byte[] xhmrReadGetRoi(String file, int startscan int start 

pixel,int blockwidth, int blockheight) 

Description: reads the region of interest of the image file 

starting at the startpixel, with a block of size blockwidth and 

blockheight, and returns the bytes that are read. 

Return status: the contents of the file in binary format. 

byte[] xhmrReadGetBlockData(String file, int blocknumber) 

Description: returns bytes at the blocknumbe of the file. 

Return status: the contents of the block data in binary format. 

String[] xhmrReadGetBlockHeader(String file, int 

blocknumber) 

Description: Returns the header in string format of the file, at 

the blocknumber. 

Return status: the contents of the header in the file at the 

corresponding block number. 

 

 

Figure 3. Block construction methods 

The image is organized as blocks in HDFS with overlap 

among the subsequent blocks. The blocks are constructed 

in two ways i.e.  (i) unidirectional: partitioning across 

the scan line direction as shown in Figure 3.a, and (ii) 

bidirectional:  partitioning both horizontal and vertical 

directions as shown in Figure 3.b. while construction, it is 

essential to ensure that, no split take place within the pixel 

byte boundaries. The methods are described below. 

 

i) Unidirectional split: blocks are constructed by 

segmenting the data in across scan line (horizontal) 

direction. Each block is written with the additional lines at 

the end of the block. 

 

ii) Bi-directional split: splitting the file into blocks in 

both horizontal and vertical directions. The split results in 

the blocks, for which, the first and last blocks have 

overlap with their adjacent two blocks, and all the 

remaining blocks have overlap with their adjacent four 

blocks. This type of segmentation results in large storage 

overhead which is approximately double the size of the 

unidirectional segment construction. This type of 

organization is preferred while images have larger scan 

line lengths. 

 

In the current version of XHAMI package data 

organization is addressed for unidirectional segmented 

blocks, however, it can be extended for bi-directional 

split. The segmentation procedure is described below. 

 

Scan lines for each block Sb computed as 

 

𝑆𝑏 =   𝐻  𝐿 ∗ 𝑃    

 

H = HDFS Default block length in Mbytes. 

L = length of scan line i.e. total pixels in the scanline. 

P = pixel length in bytes. 

S = total number of scan lines. 

 

Total number of blocks T, having overlap of α number of 

scan lines is  

 

  𝑇 =   𝑆 𝑆𝑏   

  If  T* α > Sb then T = T+1. 

 

The start and end scan lines 𝐵𝑖 ,𝑠 and 𝐵𝑖 ,𝑒 in each block is 

given below; N representing total scans in the image. 

 

𝐵𝑖 ,𝑠 =  

1,                                        𝑖 = 1
𝐵𝑖−1,𝑒−𝛼+1 ,                      1 < 𝑖 < 𝑇

𝐵𝑁−1,𝑒−𝛼+1                       𝑖 = 𝑇

  

 

𝐵𝑖 ,𝑒 =  
𝐵𝑖 ,𝑠 + 𝑆𝑏 − 1   1 ≤ 𝑖 < 𝑇

𝑆𝑏 𝑖 = 𝑇
  

 

Block length is computed as below. 

 

𝑅𝑖=(𝐵𝑖 ,𝑒 − 𝐵𝑖 ,𝑠 + 1 ) ∗ 𝐿 ∗ 𝑃 , 1 ≤ 𝑖 ≤ 𝑇 

 

The blocks are constructed with metadata information in 

the header, such as blockid, start scan, end scan, overlap 

scan lines in the block, scan length, block length. Though, 

metadata adds some additional storage overhead, but, 

simplifies the processing activity during Map phase, for 

obtaining the total number of pixels, number of bands, 
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bytes per pixel etc, and also helps to organize the blocks 

in the order during the combine/merge phase using 

blockid.  

 

3.2 XHAMI – MapReduce Extended Functions 

In this section we describe the extensions for Map and 

Reduce functions for image processing applications. 

Based on the image processing operation either map 

function alone, or both map and reduce functions are 

implemented. For example, edge detection operation does 

not require the reducer, as the resultant output of the map 

function is directly written to the disk. Each map function 

reads the block numbers and metadata of the 

corresponding blocks. The sample job configuration, and 

map function are shown Table 2, and Table 3. XHAMI 

offers three different APIs as illustrated in Table 4. 

Read operations can be implemented in two ways in 

HDFS, one way is to implement own split function, 

ensuring the split does not happen across the boundaries, 

and other one is to use FIXED LENGTH RECORD of 

FixedLengthInputFormat class. As, the block sizes are 

fixed, currently we have used the fixed length record 

format. The description of the APIs is given below. 

Table 2.Sample job configuration for MapReduce 

1. JobConfconf = new JobConf(ImageMapReduce.class); 

2. conf.setWorkingDirectory(new 

Path("hdfs://namenode/user/hduser")); 

3. conf.addResource(newPath("/home/hduser/hadoop-

2.7.0/etc/hadoop/core-site.xml")); 

4. conf.addResource(newPath("/home/hduser/hadoop-

2.7.0/etc/hadoop/hdfs-site.xml")); 

5. conf.setInt(FixedLengthInputFormat.FIXED_RECORD_LEN

GTH, blocklength); 

6. conf.setInputFormat(FixedLengthInputFormat.class); 

 

 

Table 3. Sample Map function 

public void map(LongWritable key, BytesWritable value, 

OutputCollector<IntWritable,IBytesWritable> output, 

Reporter reporter) throws IOException{ 

//code for reading the data 

byte [] b = value.getBytes(); //buffer for processing 

// remaining operations follows on byte b 

} 

 

Table 4.XHAMI processing APIs for Map/Reduce 

(1) void xhmrHistogram(String filename, String outputfile) 

Histogram operation computes frequency count of the 

pixel in the image. The histogram is computed as 

follows, first, the block and length of the block is read, 

and each blockis mapped to one map function. Sample 

code for histogram of map and reduce function is 

described in Table 5 and Table 6 respectively. 
 

Table 5.Histogram map function 

public void map(LongWritable key, BytesWritable value, 

OutputCollector<IntWritable, Text> output, 

Reporter reporter) throws IOException { 

byte[] data = value.getBytes(); 

byte pixelValue=0; //skip overlap scan lines 

for(inti=0;i<data.length-

(overLapScanLines*scanLineLength);i++){ 

pixelValue= data[i]; 

output.collect(new IntWritable(pixelValue), new 

Text(""+1)); 

} 

} 

 

Table 6.Histogram reduce function 

 

(2) void xhmrSobel(String filename, String outputfile)  

 

Edges characterize boundaries in images are areas with 

strong intensity contrasts- a jump in intensity from one 

pixel to the next. There are many ways to perform edge 

detection. However, the majority of different methods 

may be grouped into two categories, gradient, and 

Laplacian. The gradient method detects the edges by 

looking for the maximum and minimum in the first 

derivative of the image. The Laplacian method searches 

for zero crossings in the second derivative of the image to 

find the edges. An edge has the one-dimensional shape of 

a ramp and calculating the derivative of the image can 

highlight its location.  In the map function, for edge 

detection, the combiner and reduce functions are not 

performed, as there is no need of aggregation of the 

individual map functions. The description for the map 

function for sobel operator is given in Table 7. 

 
 

(1) void xhmrHistogram(String inputfilename, String 

outputfile) 

(2) void xhmrSobel(String filename, String outputfile) 

(3) void xhmrLaplacian(String filename,Stringoutputfile) 

 

public void reduce(IntWritable key, Iterator<IntWritable> 

values, OutputCollector<IntWritable, Text> output, 

Reporter reporter) throws IOException { 

int sum=0; 

while (values.hasNext()){  

 sum+=Integer.parseInt(""+values.next()); 

} 

byte b = (byte)key.get(); 

int v = (int)b; 

key  = new IntWritable(new Integer(v)); 

output.collect(key,new Text(""+sum)); 

} 
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Table 7. Sample map function of Sobel gradient operator 

public void map(LongWritable key, BytesWritable value, 

OutputCollector<IntWritable, BytesWritable> output, 

Reporter reporter) throws IOException { 

 //read the meta data of the block and skip the block 

byte [] data1 = value.getBytes(); 

//declare ouputdata buffer 

byte [] outputdata  = new byte[data.length]; 

InputStreamin= new 

ByteArrayInputStream(value.getBytes()); 

FileOutputStreamfos = new FileOutputStream(new 

File(fileName)); 

//apply the kernel on data buffer and write it to outputdata. 

//finally write the output data buffer to the HDFS file. 

} 

 

 

4. Performance Evaluation 

In this section we present the experiments conducted for 

large size images of remote sensing data having different 

dimensions (scans, pixels) and sizes varying 

approximately from 288 Megabytes to 9.1 Gigabytes. 

First we discuss the read and write performance, storage 

overheads of the conventional system, both with and 

without overlapping scan lines, followed by performance 

comparison of histogram and sobel edge detection filter 

operations. We conduct the experiments both on 

conventional APIs and XHAMI libraries, and discuss how 

XHAMI simplifies the programming complexity and also 

increases the performance when applied to a large scale 

image over Hadoop framework. 

 
Table 8.System configuration  

Type Processor 

type 

hostname RAM 

(GB) 

Disk 

(GB) 

Name node Intel Xeon 64 

bit , 4 vCpus, 

2.2 GHz 

namenode 4  100 

Job tracker -do- jobtracker 2 80 

Data node 1 -do- datanode1 2 140 

Data node 2 Intel Xeon 64 

bit , 4 vCpus, 

2.2 GHz 

datanode2 2 140 

Data node 3 Intel Xeon 64 

bit , 2 vCpus, 

2.2 GHz 

datanode3 2  140 

Data node 4 -do- datanode4 2  100 

 

For the experimental study, we have used virtualized 

environment running on Xen hypervisor with a pool of 

four servers of Intel Xeon 64 bit architecture, with 2TB 

internal storage. Hadoop version 2.7 is configured in the 

fully distributed mode, running on the server pool of four 

virtual machines with 64 bit ‘Cent OS’, the nodes 

configuration is shown in Table 8. 
 

4.1 Storage overheads  

Sample data sets for experiments are described in Table 9, 

the columns in the table, Image size represents the 

original image size in bytes in regular file system, and the 

resulted image size indicates the size in bytes in HDFS 

with overlapping of 5 scan lines. A sample image with 

overlap of 5 scan lines shown in red color is depicted in 

Figure 4. The results show a maximum of 0.25% increase 

in the image size, which is negligible. 

 

 

Figure 4.Image blocks with overlap 

Table 9. Sample data sets used and the resultant image size 

S.No Image size 

(in bytes) 

Scan 

line 

length 

Total 

Scan 

lines 

Resulted 

Image size 

( in bytes) 

1 288000000 12000 12000 288480000 

2 470400000 12000 19600 471240000 

3 839976000 12000 34999 841416000 

4 1324661556 17103 38726 1327911126 

5 3355344000 12000 139806 3361224000 

6 9194543112 6026 762906 9202738472 

 

Table 10. Read/write performance overheads 

S.No Image 

size 

(MB) 

Write ( Sec) Read (Sec) 

Default 

Hadoop 

XHAMI Default 

Hadoop 

XHAMI 

1 275 5.865 5.958 10.86 10.92 

2 449 14.301 14.365 19.32 19.45 

3 802 30.417 30.502 40.2 40.28 

4 1324 44.406 77.153 50.28 50.95 

5 3355 81.353 88.867 90.3 90.6 

6 6768 520.172 693.268 550.14 551.6 

 

4.2 Read / write overheads 

Performance of write and read function in default Hadoop 

and XHAMI with overlap of 5 scan lines is shown in 

Figure 5 and Figure 6 respectively. The results indicate 

that there is a negligible overhead for both the I/O 

operations, as the numbers of scan lines to be skipped are 

very little, and the position of those lines is known prior, 

hence there is no much performance overhead is 
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observed. The results indicate that, write function with 

overlap XHAMI has little performance overheads 

compared with default Hadoop as shown in  

Table 10. 

 

The write overheads for data sets in serial nos. 1 , 2, 3 and 

5 is less than 5% ,  and for other data sets it is 33%. Read 

performance for all the data sets is less than 0.2% which 

is very negligible. 

 

For data sets 4 and 6 the write overhead is significant, the 

reason for it is the dimensions of the image is such that , 

the number of scans is far less than the number of pixels, 

hence, partitioning of the blocks horizontally with 

overlapped scan lines is not a optimal while, portioning 

the blocks in vertical directions is preferred. Hence, we 

can conclude that the partitioning of the blocks may be 

chosen based on the dimensions of the image. 

 

 

Figure 5.  Image write performance 

 

Figure 6. Image read performance 

4.3 Performance Comparisons  of Map/Reduce 

We discuss the performance comparison of default 

Hadoop and XHAMI for histogram and sobel filter on the 

data sets mentioned in Table 9.  

(a) Histogram operation 

Histogram operation counts the frequency of the pixel 

intensity in the entire image, which is similar to counting 

the words in the file. However, due to XHAMI data 

organization the overlapped pixels need to be counted 

only once which may incur additional overheads.  

The performance results of histogram operation of default 

Hadoop and XHAMI system is shown in Figure 7. The 

results show that, there is no significant difference in the 

execution timings, which is less than 0.8%. 

 

Figure 7. Histogram performance 

(b) Fixed mask convolution operation 

Convolution methods are most common operation done in 

image processing. Sobel operator is one of the commonly 

used method for detecting edges in the image. It involves 

multiplication of 3X3 mask around each pixel. It is to be 

noted for the reasons mentioned in the section 1, default 

Hadoop implementation cannot produce required result, 

however, to overcome this limitation, it is necessary to 

introduce additional I/O operations from the adjacent 

blocks.  

The performance of the sobel edge detection shown in 

Figure 8, illustrates that execution time of XHAMI. It is 

to be noted that XHAMI implementation nearly takes the 

half of the time compared to default Hadoop. This is 

because due to the overlap pixels are organized within the 

blocks. Apart from this, the default Hadoop system 

requires more programming complexity like reading the 

image, writing it to the blocks, and reading the 

overlapping neighborhood pixels etc, these processes are 

offered as high level APIs by XHAMI system, which not 

only simplifies the programming complexity but   also 

allows the development of image processing applications 

rapidly on Hadoop framework. 
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Figure 8. Sobel filter performance 

5. Conclusions and Future Work 

Image processing applications deal with processing of 

pixels in parallel, for which Hadoop and MapReduce can 

be effectively used to obtain higher throughputs. However 

many of the algorithms in Image Processing and other 

scientific computing, require use of neighborhood data, 

for which the existing methods of data organization and 

processing are not suitable. We presented an extended 

HDFS and MapReduce interface, called XHAMI, for 

image processing applications. XHAMI offers extended 

library of HDFS and MapReduce to process the single 

large scale images with high level of abstraction over 

writing and reading the images. APIs are offered for all 

the basic forms Read/Write and Query of images. Several 

experiments are conducted on sample of six data sets with 

a single large size image varying from approximately 288 

MB to 9.1 GB.  

 

Several experiments are conducted for reading and 

writing the images with and without overlap using 

XHAMI. The experimental results are compared with the 

conventional Hadoop system, the experimental results 

show that, though the proposed methodology incurs 

marginal read and write overheads, due to overlapping of 

data, the performance has scaled linearly and also 

programming complexity is reduced significantly.  

 

Currently, the system is implemented with the fixed 

length record; in future it is proposed to use the 

customized split function for processing, which would 

allow spawning more map functions for processing. 

However, challenges involved in organizing the sequence 

of executed map functions for aggregations need to be 

addressed. We plan to implement the bi-directional split 

also in the proposed system, which would be the 

requirement for large scale canvas images. The proposed 

MapReduce APIs could be extended for many more 

Image processing and Computer vision modules. It is also 

proposed to extend the same to multiple image formats in 

the native format itself.  

 

Currently, image files are transferred one at a time from 

the local storage to Hadoop cluster. In future, Data aware 

scheduling discussed in our earlier work [28] will be 

integrated for the large scale data transfers from the 

replicated remote storage repositories and performing 

group scheduling on the Hadoop cluster. 
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