
1

XHAMI - Extended HDFS and MapReduce Interface for Image Processing Applications

Raghavendra Kune
1
, Pramod Kumar Konugurthi

1
, Arun Agarwal

2
,Raghavendra Rao Chillarige

2
, and Rajkumar

Buyya
3

{raghav.es, pramodkumar.konugurthi, aruncs.2011}@gmail.com,vijaya_crr@yahoo.co.in,rbuyya@unimelb.edu.au

1
Advanced Data Processing Research Institute, Department of Space, India

2
School of Computer and Information Sciences, University of Hyderabad,India

3
CLOUDS Lab, Department of Computing and Information Systems, University of Melbourne, Australia

Abstract– Hadoop Distributed File System (HDFS) and

MapReduce model have become de facto standard for large

scale data organization and analysis. Existing model of data

organization and processing in Hadoop using HDFS and

MapReduce are ideally tailored for search and data parallel

applications, for which there is no data dependency with

neighboring/adjacent data. Many scientific applications such as

image mining, data mining, knowledge data mining, satellite

image processing etc., are dependent on adjacent data for

processing and analysis. In this paper, we discuss the

requirements of the overlapped data organization and propose

XHAMI as a two phase extensions to HDFS and MapReduce

programming model to address such requirements. We present

the APIs and discuss their implementation specific to Image

Processing (IP) domain in detail, followed by sample case

studies of image processing functions along with the results.

XHAMI though has little overheads in data storage and

input/output operations, but greatly improves the system

performance and simplifies the application development

process. The proposed system works without any changes for

the existing MapReduce models with zero overheads, and can be

used for many domain specific applications where there is a

requirement of overlapped data.

Keywords: Cloud Computing, Big Data, Hadoop, MapReduce,

Extended MapReduce, XHAMI, Image Processing, Data

intensive Scientific computing, Remote Sensing.

1. Introduction

The amount of textual and multimedia data has grown

considerably in recent years due to the growth of social

networking, healthcare applications, surveillance systems,

earth observation sensors etc. This huge volume of data in

the world has created a new field in data processing called

as Big Data [1], which refers to an emerging data science

paradigm of multi-dimensional information mining for

scientific discovery and business analytics over large

scale scalable infrastructure. Big Data handles massive

amounts of data collected over time, which is an

otherwise difficult task to analyze and handle using

common database management tools [2]. Big Data can

yield extremely useful information; however, demands

new challenges both in data organization and processing
the data effectively [3].

Hadoop [4] is an open source framework for storing,

processing, and analysis of large amounts of distributed

semi structured/unstructured data [5]. The origin of this

framework comes from internet search companies like

Yahoo and Google, who needed new processing tools and

models for web page indexing and searching. This

framework is designed for data parallel processing at

Petabyte and Exabyte scales distributed on the commodity

computing nodes. Hadoop cluster is a highly scalable

architecture, that spawns both compute and data storage

nodes horizontally for preserving and processing large

scale data to achieve high reliability and high throughput.

Therefore, Hadoop framework and its core sub

components i.e. HDFS [6][7] and MapReduce [8][9][10]

are gaining popularity in addressing several large scale

applications of data intensive computing in several

domain specific areas like social networking, business

intelligence, and scientific analytics, etc. for analyzing

large scale, rapidly growing, variety structures of data.

The advantages of HDFS and MapReduce in Hadoop eco

system are – horizontal scalability, low cost setup with

commodity hardware, ability to process semi-structured/

unstructured data, and simplicity in programming.

However, HDFS and MapReduce, though offer

tremendous potential for gaining maximum performance,

but due to its certain inherent limiting features, does not

confine to be used for all areas. Below we describe one

such domain specific applications in remote sensing

image processing.

 Remote sensing image applications

Earth observation satellite sensors provide high-resolution

satellite imagery having image scene sizes from several

megabytes to gigabytes. High resolution satellite imagery

for example Quick Bird, IKONOS, Worldview, IRS

Cartosat etc. [11] are used in various applications of

analysis and information extraction like oil/gas mining,

engineering construction like 3D urban/terrain mapping,

GIS developments, defense and security, environmental

monitoring, media and entertainment, agricultural and

natural resource exploration etc. Due to increase in the

numbers of satellites and technology advancements in the

remote sensing, both the data sizes and their volumes are

increasing on a daily basis. Hence, organization and

2

analysis of such data for intrinsic information is a major

challenge.

Ma et al. [12] have discussed challenges and opportunities

in Remote Sensing (RS) Big Data computing, focused on

RS data intensive problems, analysis of RS Big Data, and

several techniques for processing RS Big Data. Two

dimensional structured representation of images, and

majority of the functions in image processing being

highly parallelizable, the HDFS way of organizing the

data as blocks and usage of MapReduce functions for

processing each block as independent map function,

makes Hadoop a suitable platform for large scale high

volume image processing applications.

An image is a two-dimensional function f(x,y), where x

and y are spatial (plane) coordinates, and the amplitude of

f at any pair of coordinates (x,y) is called intensity or gray

level of the image at that point [13]. Image data mining is

a technology that aims in finding useful information and

knowledge from large scale image data [14]. This

involves use of several image processing techniques such

as enhancement, classification, segmentation, object

detection etc. which use many combinations of

linear/morphological spatial filters [13].

Figure 1. Image representation with segmented blocks

Many of the linear/morphological spatial filters demand

use of adjacent pixels for processing the current pixel. For

example, as shown in Figure 1, a smoothening operation

performs weighted average of a 3X3 kernel window. The

output of pixel X depends on the values of X1,X2,X3,X4,

X6,X7,X8, and X9. Therefore due to the dependency,

these types of operations cannot be performed on the edge

pixels. Hadoop and many of the implementations

discussed in Section 2, split the data based on a fixed size,

which results in partitioning of data as shown in Figure 1.

Each of the blocks is written to different data nodes.

Therefore the boundary pixels of entire line b1, b2, b3,..

in each block cannot be processed, as the adjacent pixels

are not available at the respective data nodes. Similarly

for the pixels marked as y1,y2,y3,y4,… also IP operations

cannot be performed straight away. To process these

boundary pixels i.e., the start line and end line in each

block a customized map function to read additional pixels

from a different data node is essential, otherwise the

output would be incorrect. This additional read operations

for each block increase the overhead significantly.

Section 2 describes related work in image processing with

HDFS and MapReduce over Hadoop framework. Section

3 describes proposed two phase extended system XHAMI

and usage of APIs. Section 4 describes experimental

results, and Section 5 presents the conclusions and future

work.

2. Related Work

Image processing and computer vision algorithms can be

applied as multiple independent tasks on large scale data

sets simultaneously in parallel on a distributed system to

achieve higher throughputs. Hadoop [4]is an open source

framework for addressing large scale data analytics using

HDFS and MapReduce programming models. In addition

to Hadoop, there are several other frameworks like

Twister [15] for iterative computing of streaming text

analytics, and Phoenix [16] used for map and reduce

functions for distributed data intensive Message Passing

Interface (MPI) kind of applications.

Kennedy et al. [17] demonstrated the use of MapReduce

for labeling 19.6 million images using nearest neighbor

method. Shi et al. [18] presented use of MapReduce for

Content Based Image Retrieval (CBIR), and discussed the

results obtained by using around 400,000 images

approximately. Yang et al. [19] presented a system

MIFAS for fast and efficient access to medical images

using Hadoop and Cloud computing. Kocalkulak et al.

[20] proposed a Hadoop based system for pattern image

processing of intercontinental missiles for finding the

bullet patterns. Almeer et al. [21] designed and

implemented a system for remote sensing image

processing with the help of Hadoop and Cloud computing

systems for small scale images. Demir [22] et al.

discussed the usage of Hadoop for small size face

detection images. All these systems describe the bulk

processing of small size images in batch mode over

HDFS, where each map function processes the complete

image.

White et al. [23] discussed the overheads that can be

caused due to small size files, which are considerably

smaller than the block size in HDFS. A similar approach

is presented by Sweeney et al. [24] and presented Hadoop

Image Processing Interface (HIPI) as an extension of

MapReduce APIs for image processing applications. HIPI

operates on the smaller image files, which are bundled

X1 X2 X3

X4 X X6

X7 X8 X9

.

.

.

.

b1 b2 b3 b4 …. …… ………………

Y1 Y2 Y3 Y4 ……..............................
………………………………….

.……………………………………………………………………..
……………….……………………………………………………..

Block 1

Block 2

Block N

…
…
…
.

3

into a large block called Hadoop Image Bundle (HIB). In

HIPI each image is applied to only one map function,

which has limitation in dividing the data into smaller file

sets. All these said methods discussed aggregation of

smaller images and mapping each image within the

bundle as a whole to one single map function.

Srirama et al. [25] discussed the processing small/regular

images of total 48675 by aggregating them into large data

set, and processed them on Hadoop using MapReduce as

sequential files, similar to the one addressed by HIPI.

Also, presented feasibility study as a proof-of-concept test

for a single large image as blocks and overlapping pixels

for non-iterative algorithms image processing. However,

no design, or solution, or methodology has been

suggested to either to Hadoop or MapReduce for either

Image Processing applications or for any other domain, so

that the methodology works for existing as well as new

models under consideration.

This paper addresses the issues related to processing large

remote sensing images which run into several Megabytes

to Gigabytes, addressing several issues related to data

organization over HDFS, and processing them by

MapReduce using extended HDFS and MapReduce called

as XHAMI library. The proposed extensions are applied

for image processing applications, but the same can be

extended to other domains also where such similar data

dependency exists.

3. XHAMI- Extended HDFS and

MapReduce

In this section we describe XHAMI - the extended

software package of Hadoop for large scale image

processing/mining applications. First we present XHAMI

APIs for reading and writing (I/O), followed by

MapReduce for distributed processing. We discuss two

sample case studies i.e. histogram and image smoothening

operations. Histogram computes the frequency of pixel

intensity values in the image, and smoothening operation

uses spatial filters like sobel, laplacian etc. [13].

3.1 XHAMI – HDFS I/O extensions

Figure 2 depicts the sequence of steps in reading/writing

the images using XHAMI software library over Hadoop

framework. Initially, client uses XHAMI I/O functions

(step 1) for reading or writing the data. The client request

is translated into create () or open () by XHAMI, and sent

to DistributedFileSystem (step 2). Distributed File System

instance calls the namenode to determine the data block

locations (step 3). For each block, the namenode returns

the addresses of the datanodes for writing or reading the

data. DistributedFileSystem returns FSDataInput/Output

Stream, which in turn will be used by XHAMI to

read/write the data to/from the datanodes. XHAMI checks

file format, if the format is in image type (step 4), then

metadata information such as file name, total scans, total

pixels, total numbers of bands in the image, and the

number of bytes per pixel are stored in HBASE [27], this

simplifies header information reading as and when

required through HBASE queries, otherwise reading the

header block by block is tedious and time consuming

process.

Figure 2. XHAMI for read/write operations

Later on XHAMI calls FSDataInput/Output Stream either

to read/write the data to/from the respective data nodes

(step 5). Steps 6 and 7 are based on standard HDFS data

reading/writing in the pipelining way. Each block is

written with the header information corresponding to the

blocks i.e. blockid, start scan, end scan, overlap scan lines

in the block, scan length, and size of the block. Finally,

after the read/write operation the request is made for

closing the file (step 8), and the status (step 9) is

forwarded to the namenode.

The major XHAMI APIs for I/O related operations are

described in Table 1. XHAMI reads/writes the image

blocks into the same format of that original file, using

Geographical Data Abstraction Layer (GDAL) library

[26] during I/O and MapReduce operations.

Table 1. Description of functions in XHAMI I/O API

Functions provided

int xhmrWriteImage(String file, int overlap)

Description: content of file to be written into HDFS with the

specified numbers of overlap scan lines. This call is used for

writing the files of type images.

Return status: if success returns 1 else 0.

int xhmrWriteFile(String file)

Description: file contents (which are of not image types) are

written into HDFS.

Return status: if success returns 1 else 0.

String[] xhmrReadFile(String file)

Distributed
File System

FS Data Input/
Output Stream

HDFS Client

2.create/
Open

3: Get block
locations

9: complete

8: close

Name Node

Data Node Data Node Data NodePipe line
of data
nodes

6

7

6

7

6: Read/write
packet

7: ack
packet

1: Read / Write

XHAMI

GDAL

HBASE
STORE

5: Read/Write

4

Description: used for writing file of type non image to HDFS.

Return status : the contents of the file in string format

byte[] xhmrReadImage(String file)

Description: reading the contents of the file from HDFS.

Return status : the contents of the file in binary format

int xhmrReadGetTotalScans(String file)

Description: returns total scan lines in the image with name file.

Return status: the contents of the file in binary format.

int xhmrReadGetTotalPixels(String file)

Description: returns the total number of pixels of the image file.

Return status: the contents of the file in binary format.

byte[] xhmrReadGetRoi(String file, int startscan int start

pixel,int blockwidth, int blockheight)

Description: reads the region of interest of the image file

starting at the startpixel, with a block of size blockwidth and

blockheight, and returns the bytes that are read.

Return status: the contents of the file in binary format.

byte[] xhmrReadGetBlockData(String file, int blocknumber)

Description: returns bytes at the blocknumbe of the file.

Return status: the contents of the block data in binary format.

String[] xhmrReadGetBlockHeader(String file, int

blocknumber)

Description: Returns the header in string format of the file, at

the blocknumber.

Return status: the contents of the header in the file at the

corresponding block number.

Figure 3. Block construction methods

The image is organized as blocks in HDFS with overlap

among the subsequent blocks. The blocks are constructed

in two ways i.e. (i) unidirectional: partitioning across

the scan line direction as shown in Figure 3.a, and (ii)

bidirectional: partitioning both horizontal and vertical

directions as shown in Figure 3.b. while construction, it is

essential to ensure that, no split take place within the pixel

byte boundaries. The methods are described below.

i) Unidirectional split: blocks are constructed by

segmenting the data in across scan line (horizontal)

direction. Each block is written with the additional lines at

the end of the block.

ii) Bi-directional split: splitting the file into blocks in

both horizontal and vertical directions. The split results in

the blocks, for which, the first and last blocks have

overlap with their adjacent two blocks, and all the

remaining blocks have overlap with their adjacent four

blocks. This type of segmentation results in large storage

overhead which is approximately double the size of the

unidirectional segment construction. This type of

organization is preferred while images have larger scan

line lengths.

In the current version of XHAMI package data

organization is addressed for unidirectional segmented

blocks, however, it can be extended for bi-directional

split. The segmentation procedure is described below.

Scan lines for each block Sb computed as

𝑆𝑏 = 𝐻 𝐿 ∗ 𝑃

H = HDFS Default block length in Mbytes.

L = length of scan line i.e. total pixels in the scanline.

P = pixel length in bytes.

S = total number of scan lines.

Total number of blocks T, having overlap of α number of

scan lines is

 𝑇 = 𝑆 𝑆𝑏

 If T* α > Sb then T = T+1.

The start and end scan lines 𝐵𝑖 ,𝑠 and 𝐵𝑖 ,𝑒 in each block is

given below; N representing total scans in the image.

𝐵𝑖 ,𝑠 =

1, 𝑖 = 1
𝐵𝑖−1,𝑒−𝛼+1 , 1 < 𝑖 < 𝑇

𝐵𝑁−1,𝑒−𝛼+1 𝑖 = 𝑇

𝐵𝑖 ,𝑒 =
𝐵𝑖 ,𝑠 + 𝑆𝑏 − 1 1 ≤ 𝑖 < 𝑇

𝑆𝑏 𝑖 = 𝑇

Block length is computed as below.

𝑅𝑖=(𝐵𝑖 ,𝑒 − 𝐵𝑖 ,𝑠 + 1) ∗ 𝐿 ∗ 𝑃 , 1 ≤ 𝑖 ≤ 𝑇

The blocks are constructed with metadata information in

the header, such as blockid, start scan, end scan, overlap

scan lines in the block, scan length, block length. Though,

metadata adds some additional storage overhead, but,

simplifies the processing activity during Map phase, for

obtaining the total number of pixels, number of bands,

Scan Line (L)

T
o

ta
l S

ca
n

 L
in

e
s

(S
)

Block 1

Block 2

Block K-1

Block N

Over Lap (O)

Over Lap (O)

Over Lap (O)

Over Lap (O)

Block 1 Block 2

Block N
Scan Lines

To
ta

l S
ca

n
 L

in
es

(a) Unidirectional split (b)Bidirectional split

5

bytes per pixel etc, and also helps to organize the blocks

in the order during the combine/merge phase using

blockid.

3.2 XHAMI – MapReduce Extended Functions

In this section we describe the extensions for Map and

Reduce functions for image processing applications.

Based on the image processing operation either map

function alone, or both map and reduce functions are

implemented. For example, edge detection operation does

not require the reducer, as the resultant output of the map

function is directly written to the disk. Each map function

reads the block numbers and metadata of the

corresponding blocks. The sample job configuration, and

map function are shown Table 2, and Table 3. XHAMI

offers three different APIs as illustrated in Table 4.

Read operations can be implemented in two ways in

HDFS, one way is to implement own split function,

ensuring the split does not happen across the boundaries,

and other one is to use FIXED LENGTH RECORD of

FixedLengthInputFormat class. As, the block sizes are

fixed, currently we have used the fixed length record

format. The description of the APIs is given below.

Table 2.Sample job configuration for MapReduce

1. JobConfconf = new JobConf(ImageMapReduce.class);

2. conf.setWorkingDirectory(new

Path("hdfs://namenode/user/hduser"));

3. conf.addResource(newPath("/home/hduser/hadoop-

2.7.0/etc/hadoop/core-site.xml"));

4. conf.addResource(newPath("/home/hduser/hadoop-

2.7.0/etc/hadoop/hdfs-site.xml"));

5. conf.setInt(FixedLengthInputFormat.FIXED_RECORD_LEN

GTH, blocklength);

6. conf.setInputFormat(FixedLengthInputFormat.class);

Table 3. Sample Map function

public void map(LongWritable key, BytesWritable value,

OutputCollector<IntWritable,IBytesWritable> output,

Reporter reporter) throws IOException{

//code for reading the data

byte [] b = value.getBytes(); //buffer for processing

// remaining operations follows on byte b

}

Table 4.XHAMI processing APIs for Map/Reduce

(1) void xhmrHistogram(String filename, String outputfile)

Histogram operation computes frequency count of the

pixel in the image. The histogram is computed as

follows, first, the block and length of the block is read,

and each blockis mapped to one map function. Sample

code for histogram of map and reduce function is

described in Table 5 and Table 6 respectively.

Table 5.Histogram map function

public void map(LongWritable key, BytesWritable value,

OutputCollector<IntWritable, Text> output,

Reporter reporter) throws IOException {

byte[] data = value.getBytes();

byte pixelValue=0; //skip overlap scan lines

for(inti=0;i<data.length-

(overLapScanLines*scanLineLength);i++){

pixelValue= data[i];

output.collect(new IntWritable(pixelValue), new

Text(""+1));

}

}

Table 6.Histogram reduce function

(2) void xhmrSobel(String filename, String outputfile)

Edges characterize boundaries in images are areas with

strong intensity contrasts- a jump in intensity from one

pixel to the next. There are many ways to perform edge

detection. However, the majority of different methods

may be grouped into two categories, gradient, and

Laplacian. The gradient method detects the edges by

looking for the maximum and minimum in the first

derivative of the image. The Laplacian method searches

for zero crossings in the second derivative of the image to

find the edges. An edge has the one-dimensional shape of

a ramp and calculating the derivative of the image can

highlight its location. In the map function, for edge

detection, the combiner and reduce functions are not

performed, as there is no need of aggregation of the

individual map functions. The description for the map

function for sobel operator is given in Table 7.

(1) void xhmrHistogram(String inputfilename, String

outputfile)

(2) void xhmrSobel(String filename, String outputfile)

(3) void xhmrLaplacian(String filename,Stringoutputfile)

public void reduce(IntWritable key, Iterator<IntWritable>

values, OutputCollector<IntWritable, Text> output,

Reporter reporter) throws IOException {

int sum=0;

while (values.hasNext()){

 sum+=Integer.parseInt(""+values.next());

}

byte b = (byte)key.get();

int v = (int)b;

key = new IntWritable(new Integer(v));

output.collect(key,new Text(""+sum));

}

6

Table 7. Sample map function of Sobel gradient operator

public void map(LongWritable key, BytesWritable value,

OutputCollector<IntWritable, BytesWritable> output,

Reporter reporter) throws IOException {

 //read the meta data of the block and skip the block

byte [] data1 = value.getBytes();

//declare ouputdata buffer

byte [] outputdata = new byte[data.length];

InputStreamin= new

ByteArrayInputStream(value.getBytes());

FileOutputStreamfos = new FileOutputStream(new

File(fileName));

//apply the kernel on data buffer and write it to outputdata.

//finally write the output data buffer to the HDFS file.

}

4. Performance Evaluation

In this section we present the experiments conducted for

large size images of remote sensing data having different

dimensions (scans, pixels) and sizes varying

approximately from 288 Megabytes to 9.1 Gigabytes.

First we discuss the read and write performance, storage

overheads of the conventional system, both with and

without overlapping scan lines, followed by performance

comparison of histogram and sobel edge detection filter

operations. We conduct the experiments both on

conventional APIs and XHAMI libraries, and discuss how

XHAMI simplifies the programming complexity and also

increases the performance when applied to a large scale

image over Hadoop framework.

Table 8.System configuration

Type Processor

type

hostname RAM

(GB)

Disk

(GB)

Name node Intel Xeon 64

bit , 4 vCpus,

2.2 GHz

namenode 4 100

Job tracker -do- jobtracker 2 80

Data node 1 -do- datanode1 2 140

Data node 2 Intel Xeon 64

bit , 4 vCpus,

2.2 GHz

datanode2 2 140

Data node 3 Intel Xeon 64

bit , 2 vCpus,

2.2 GHz

datanode3 2 140

Data node 4 -do- datanode4 2 100

For the experimental study, we have used virtualized

environment running on Xen hypervisor with a pool of

four servers of Intel Xeon 64 bit architecture, with 2TB

internal storage. Hadoop version 2.7 is configured in the

fully distributed mode, running on the server pool of four

virtual machines with 64 bit ‘Cent OS’, the nodes

configuration is shown in Table 8.

4.1 Storage overheads

Sample data sets for experiments are described in Table 9,

the columns in the table, Image size represents the

original image size in bytes in regular file system, and the

resulted image size indicates the size in bytes in HDFS

with overlapping of 5 scan lines. A sample image with

overlap of 5 scan lines shown in red color is depicted in

Figure 4. The results show a maximum of 0.25% increase

in the image size, which is negligible.

Figure 4.Image blocks with overlap

Table 9. Sample data sets used and the resultant image size

S.No Image size

(in bytes)

Scan

line

length

Total

Scan

lines

Resulted

Image size

(in bytes)

1 288000000 12000 12000 288480000

2 470400000 12000 19600 471240000

3 839976000 12000 34999 841416000

4 1324661556 17103 38726 1327911126

5 3355344000 12000 139806 3361224000

6 9194543112 6026 762906 9202738472

Table 10. Read/write performance overheads

S.No Image

size

(MB)

Write (Sec) Read (Sec)

Default

Hadoop

XHAMI Default

Hadoop

XHAMI

1 275 5.865 5.958 10.86 10.92

2 449 14.301 14.365 19.32 19.45

3 802 30.417 30.502 40.2 40.28

4 1324 44.406 77.153 50.28 50.95

5 3355 81.353 88.867 90.3 90.6

6 6768 520.172 693.268 550.14 551.6

4.2 Read / write overheads

Performance of write and read function in default Hadoop

and XHAMI with overlap of 5 scan lines is shown in

Figure 5 and Figure 6 respectively. The results indicate

that there is a negligible overhead for both the I/O

operations, as the numbers of scan lines to be skipped are

very little, and the position of those lines is known prior,

hence there is no much performance overhead is

7

observed. The results indicate that, write function with

overlap XHAMI has little performance overheads

compared with default Hadoop as shown in

Table 10.

The write overheads for data sets in serial nos. 1 , 2, 3 and

5 is less than 5% , and for other data sets it is 33%. Read

performance for all the data sets is less than 0.2% which

is very negligible.

For data sets 4 and 6 the write overhead is significant, the

reason for it is the dimensions of the image is such that ,

the number of scans is far less than the number of pixels,

hence, partitioning of the blocks horizontally with

overlapped scan lines is not a optimal while, portioning

the blocks in vertical directions is preferred. Hence, we

can conclude that the partitioning of the blocks may be

chosen based on the dimensions of the image.

Figure 5. Image write performance

Figure 6. Image read performance

4.3 Performance Comparisons of Map/Reduce

We discuss the performance comparison of default

Hadoop and XHAMI for histogram and sobel filter on the

data sets mentioned in Table 9.

(a) Histogram operation

Histogram operation counts the frequency of the pixel

intensity in the entire image, which is similar to counting

the words in the file. However, due to XHAMI data

organization the overlapped pixels need to be counted

only once which may incur additional overheads.

The performance results of histogram operation of default

Hadoop and XHAMI system is shown in Figure 7. The

results show that, there is no significant difference in the

execution timings, which is less than 0.8%.

Figure 7. Histogram performance

(b) Fixed mask convolution operation

Convolution methods are most common operation done in

image processing. Sobel operator is one of the commonly

used method for detecting edges in the image. It involves

multiplication of 3X3 mask around each pixel. It is to be

noted for the reasons mentioned in the section 1, default

Hadoop implementation cannot produce required result,

however, to overcome this limitation, it is necessary to

introduce additional I/O operations from the adjacent

blocks.

The performance of the sobel edge detection shown in

Figure 8, illustrates that execution time of XHAMI. It is

to be noted that XHAMI implementation nearly takes the

half of the time compared to default Hadoop. This is

because due to the overlap pixels are organized within the

blocks. Apart from this, the default Hadoop system

requires more programming complexity like reading the

image, writing it to the blocks, and reading the

overlapping neighborhood pixels etc, these processes are

offered as high level APIs by XHAMI system, which not

only simplifies the programming complexity but also

allows the development of image processing applications

rapidly on Hadoop framework.

0

100

200

300

400

500

600

700

800

449 802 1324 3355 8768

Ti
m

e
 I

n
 S

e
c

Image Size in MB

Default Hadoop XHAMI

0

100

200

300

400

500

600

275 449 802 1324 3355 8768

Ti
m

e
 in

 S
e

c

Image Size in MB

Default Hadoop XHAMI

0

20

40

60

80

100

120

140

275 449 802 1324 3355 8768
T

im
e

 in
 S

e
c

Image Size in MB

Default Hadoop XHAMI

8

Figure 8. Sobel filter performance

5. Conclusions and Future Work

Image processing applications deal with processing of

pixels in parallel, for which Hadoop and MapReduce can

be effectively used to obtain higher throughputs. However

many of the algorithms in Image Processing and other

scientific computing, require use of neighborhood data,

for which the existing methods of data organization and

processing are not suitable. We presented an extended

HDFS and MapReduce interface, called XHAMI, for

image processing applications. XHAMI offers extended

library of HDFS and MapReduce to process the single

large scale images with high level of abstraction over

writing and reading the images. APIs are offered for all

the basic forms Read/Write and Query of images. Several

experiments are conducted on sample of six data sets with

a single large size image varying from approximately 288

MB to 9.1 GB.

Several experiments are conducted for reading and

writing the images with and without overlap using

XHAMI. The experimental results are compared with the

conventional Hadoop system, the experimental results

show that, though the proposed methodology incurs

marginal read and write overheads, due to overlapping of

data, the performance has scaled linearly and also

programming complexity is reduced significantly.

Currently, the system is implemented with the fixed

length record; in future it is proposed to use the

customized split function for processing, which would

allow spawning more map functions for processing.

However, challenges involved in organizing the sequence

of executed map functions for aggregations need to be

addressed. We plan to implement the bi-directional split

also in the proposed system, which would be the

requirement for large scale canvas images. The proposed

MapReduce APIs could be extended for many more

Image processing and Computer vision modules. It is also

proposed to extend the same to multiple image formats in

the native format itself.

Currently, image files are transferred one at a time from

the local storage to Hadoop cluster. In future, Data aware

scheduling discussed in our earlier work [28] will be

integrated for the large scale data transfers from the

replicated remote storage repositories and performing

group scheduling on the Hadoop cluster.

Acknowledgements

We express our thanks to Mr. Nooka Ravi of ADRIN for

discussion on GDAL library, and Mr. Rama Krishna

Reddy V. for discussions on image filters based on spatial

and frequency domains. We thank Smt. GeetaVaradan,

Director of ADRIN for her support and encouragement in

pursuing the research.

References

[1] IDC, The Digital Universe in 2020: Big Data, Bigger

Digital Shadows, and Biggest growth in the Far East,

www.emc.com/leadership/digital-universe/index.htm.

[2] K.Bakshi, Considerations for Big Data: Architecture and

Approach Aerospace Conference- Big Sky, MT, 3-10 March

2012.

[3] K. Michael, and K. W. Miller, Big Data: New opportunities

and New Challenges, IEEE Computer, 46 (6) (2013): 22-24.

[4] The Apache Hadoop Project, http://hadoop.apache.org

[5] J. Kelly, Big Data: Hadoop, Business Analytics and

Beyond, Wikibon White paper, 27th August 2012,

http://wikibon.org/wiki/v/Big Data: Hadoop, Business

Analytics and Beyond.

[6] S. Ghemawat, H. Gobioff, and S. T. Leung, The Google

File System, In Proc. 9th ACM symposium on Operating

System Principles (SOSP 2003),NY, USA 2003, pp. 29-43.

[7] K. Schvachko, H. Kuang, S. Radia, R. Chansler, The

Hadoop Distributed File System, in: Proc. IEEE 26th

Symposium on Mass Storage Systems and Technologies (

MSST 2010), Incline Village, Nevada, USA, May 2010.

[8] J. Dean, and S. Ghemat, MapReduce: Simplified Data

Processing on Large Cluster, Communications of the ACM,

51(1) (2008): 107-113.

[9] C. Jin, and R. Buyya, MapReduce Programming Model for

.NET-Based Cloud Computing, Euro-Par 2009 Parallel

Processing, Lecture Notes in Computer Science, 5704 (2009):

417- 428.

[10] J. Ekanayake, S. Pallickara, and G. Fox, MapReduce for

datat intensive analyses, in: Proc. IEEE fourth International

Conference on e-Science, Indiana Police, Indiana, USA, Dec

2008, pp. 277-284.

[11] Satellite imaging corporation,

http://www/satimagingcorp.com/satellite-sensors

[12] Y. Ma, H. Wu, L. Wang, B. Huang, R. Ranjan, A. Zomaya,

and W. Jie, Remote Sensing Big Data computing: Challenges

0

100

200

300

400

500

600

700

800

900

1000

275 449 802 1324 3355 8768

T
im

e
 in

 S
e

co
n

d
s

Image size in MB

Default Hadoop XHAMI

http://hadoop.apache.org/

9

and opportunities, Future Generation Computer Systems,

Volume 51, October 2015, Pages 47–60.

[13] R. C. Gonzalez, and R. E. Woods, Digital Image

Processing, 3rd Edition, 2007 (chapters 1, and 3).

[14] X. Cao, S. Wang, Research about Image Mining

Technique, Journal of Communications in Computer and

Information Sciences, 288(2012): 127-134.

[15] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S. Bae, J.

Qiu, and G. Fox, Twister: A Runtime for Iterative

MapReduce, in: Proc. 19th ACM International Symposium on

High Performance Distributed Computing (HPDC

2010),Chicago, Illinois, USA 2010,pp. 810-818.

[16] W. Jiang, V. T. Ravi, G. Agarwal, A Map-Reduce System

with an Alternate API for Multi-Core Environments, in: Proc.

10th IEEE/ACM International Conference on Cluster, Cloud

and Grid Computing (CCGRID 2010), Melbourne, May

2010,pp. 84-93.

[17] L. Kennedy, M. Slaney, and K. Weinberger, Reliable Tags

using Image Similarity: Mining Specificity and Expertise

from Large-Scale Multimedia Databases, in: Proc. 1st

workshop on Web-Scale Multimedia Corpus, Beijing,

October 2009, pp. 17-24.

[18] L. L. Shi, B. Wu, B. Wang, and X. G. Yang, Map/Reduce

in CBIR Applications, in: Proc. International Conference on

Computer Science and Network Technology (ICCSNT),

Harbin, December 2011, pp. 2465-2468.

[19] C. T. Yang, L. T. Chen, W. L. Chou, and K. C. Wang,

Implementation on Cloud Computing, in: Proc. IEEE

International Conference on Cloud Computing and

Intelligence Systems (CCIS 2011), Beijing, September 2011,

pp. 482-485.

[20] H. Kocalkulak, and T. T. Temizel, A Hadoop Solution for

Ballistic Image Analysis and Recognition, in: Proc.

International Conference on High Performance Computing

and Simulation (HPCS 2011), Istanbul, July 2011, pp. 836-

842.

[21] M. H. Almeer, Cloud Hadoop MapReduce For Remote

Sensing Image Analysis, Journal of Emerging Trends in

Computing and Information Sciences, vol. 3, 637-644.

[22] I. Demir, and A. Sayar, Hadoop Optimization for Massive

Image Processing: Case Study of Face Detection,

International Journal of Computers and Communications and

Control, 9(6) (2014), 664-671.

[23] T. White, The Small files problem: 2009,

http://www.cloudera.com/blog/2009/02/02/the-small-files-

problem.

[24] C. Sweeney, L. Liu, S. Arietta, and J. Lawrence, HIPI: A

Hadoop Image Processing Interface for Image-based

MapReduce Tasks, undergraduate thesis, University of

Virginia, USA.

[25] P. Jakovits, and S. N. Srirama, Large Scale Image

Processing Using MapReduce, thesis, Tartu University, 2013.

[26] GDAL, Gdal- geospatial data abstraction library.

[27] Apache HBASE project, http://www.hbase.apache.org

[28] R. Kune, K. P. Kumar, A. Agarwal, C. R. Rao, and R.

Buyya, Genetic Algorithm based Data-aware

GroupScheduling for Big Data Clouds, in: Proc. International

Symposium on Big Data Computing (BDC 2014), London,

December 2014, pp. 96-104.

