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Abstract

With the growth of Utility Grids and various Grid
market infrastructures, the need for efficient and
cost effective scheduling algorithms is also increasing
rapidly, particularly in the area of meta-scheduling.
In these environments,users not only may have con-
flicting requirements with other users, but also they
have to manage the trade-off between time and cost
such that their applications can be executed most eco-
nomically in the minimum time. Thus, choosing of
the best Grid resources becomes a challenge in such
a competitive market. This paper presents two novel
heuristics for scheduling parallel applications on Util-
ity Grids that manage and optimize the trade-off be-
tween time and cost constraints. The performance
of the heuristics is evaluated through extensive sim-
ulations of a real-world environment with real paral-
lel workload models to demonstrate the practicality
of our algorithms. We compare our scheduling algo-
rithms against other common algorithms used by cur-
rent meta-schedulers. The results shows that our al-
gorithms outperform other algorithms by minimizing
the time and cost of application execution on Utility
Grids.

Keywords: Grid market, scheduling, meta-broker,
cost.

1 Introduction

Grid computing enables the harnessing of a wide
range of heterogeneous, distributed resources for exe-
cuting compute- and data-intensive application. Re-
cently, it has been rapidly moving towards a pay-as-
you-go model wherein providers expect an economic
compensation for the computational resources or ser-
vices offered to users. Thus, Grid computing has
gained a lot of attention from industry leaders such
as IBM, HP, Intel and Sun which are involved in this
business. For example, IBM has “e-business on de-
mand”, HP has “Adaptive enterprise” and Sun Mi-
crosystems has “pay as- you-go”.

On one side, there are users with applications to
execute and, on the other side, there are providers
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willing to offer their resources or computing services
in return for regular payments. Environments with
this decoupling of users from providers are gener-
ally termed as Utility Grids. Resource providers
price their goods to reflect supply and demand in
order to make a profit or to regulate consumption.
Scheduling in Utility Grids is complex due to the
distributed ownership of resources. Moreover, con-
sumers and providers are independent from one an-
other and have different access policies, scheduling
strategies and objectives (Chun & Culler 2002). Pre-
vious work has proposed Grid market infrastructures
(Abramson et al. 2002)(Neumann et al. 2007)(Alt-
mann et al. 2007) for Utility Grids. Although these
works provide the basis for resource markets, appli-
cation scheduling considering aspects such as the dis-
tributed resource ownership and cost minimization
under these scenarios is still in its infancy. Grid bro-
kers (meta-schedulers) are part of these infrastruc-
tures which work on the behalf of users and mediate
access to distributed resources by discovering suitable
resources for a given user application and optimally
mapping jobs to resources. Existing Grid brokers,
that consider either cost minimization or time min-
imization, are generally single-user based (Yu et al.
2005)(Abramson et al. 2002). These single-user bro-
kers may lead to sub-optimal schedules and are cer-
tainly not designed with the aim of minimizing the
cost and time for a group or community of Grid users.
In Utility Grids, users can make a reservation with
a service provider in advance to ensure the service
availability, and users can also negotiate with service
providers on Service Level Agreements for required
QoS (Buco et al. 2004).

In this work, we focus on meta-scheduling of dif-
ferent applications from a community of users consid-
ering a commodity market. In commodity markets,
service providers primarily charge the end user for
services that they consume based on the value they
derive from it. Pricing policies are based on the de-
mand from the users and the supply of resources is
the main driver in the competitive, commodity mar-
ket models. Therefore, a user competes with other
users and a resource owner with other resource own-
ers. The financial institution Morgan Stanley is an ex-
ample of a user community that has various branches
across the world. Each branch has computational
needs and QoS constraints that can be satisfied by
Grid resources. In this scenario, it is more appealing
for the company to schedule various applications in a
coordinated manner. Furthermore, another goal is to
minimize the cost of using resources to all users across
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the community (the company in this case). Therefore,
we study the problem of resource scheduling with the
goal of minimizing overall execution time and cost.
This scheduling problem, which aims to minimize the
cost of using resources for all users across the com-
munity, is found to be NP-hard due to its combina-
torial nature (Martello & Toth 1981). The problem
becomes more challenging when a user has to relax
its QoS requirements such as makespan under limited
budget constraints. The users sometimes may prefer
to use cheaper services with a relaxed QoS that is
sufficient to meet their requirements. Thus, the user
has to choose between multiple conflicting optimiza-
tion objectives. This research is not only strongly
NP-hard, but also non-approximable, i.e., it cannot
be approximated in polynomial time within arbitrar-
ily good precision (Kumar et al. 2007). Moreover,
the scheduling in Utility Grids needs to be online
which further add to the challenge. Hence, we pro-
pose heuristics to solve the problem.

In this work, first, we propose two meta-
scheduling online heuristics Min-Min Cost Time
Tradeoff (MinCTT) and Max-Min Cost Time Trade-
off (MaxCTT) to manage the trade-off between over-
all execution time and cost and minimize them simul-
taneously on the basis of a trade-off factor. The trade-
off factor indicates the priority of optimizing cost over
time. These heuristics can be easily integrated in ex-
isting meta-brokers (or meta-schedulers) of Grid Mar-
ket Infrastructures (Neumann et al. 2007)(Altmann
et al. 2007). Second, in order to study the effective-
ness and efficiency of the proposed heuristics, we eval-
uated our heuristics by an extensive simulation study.
These heuristics can run in either batch mode or im-
mediate mode(Maheswaran et al. 1999). In the batch
mode, the meta-broker waits for a certain time inter-
val (called schedule interval). Then at the end of the
schedule interval, the meta-broker allocates all user
applications (that are submitted during that interval)
to available resources. In contrast, immediate mode
heuristics immediately map a task to some machine
in the system for execution upon the arrival of the
application. In our simulation we have studied the
heuristics in batch mode.

The rest of paper is organized as follows. In the
next section, we discuss related cost- and time-based
scheduling heuristics and meta-schedulers. Section 3
presents the system model and details of our schedul-
ing mechanism are presented in Section 4. Sections 5
presents the experimental setup used for performance
evaluation and Section 6 discusses the results. Fi-
nally, we conclude the paper and present future work
in this direction.

2 Related Works

The research on meta-scheduling mechanisms in Util-
ity Grids can be divided into two parts on the basis
of market models, i.e., auctions and commodity mar-
ket models. As our work is relevant for commodity
markets in Grid, in this section we compare our with
other resource allocation mechanisms for this market
model. Resource management using economy-based
principles and market-oriented models have proven to
be useful for scheduling applications in Grids (Cheli-
otis et al. 2004).

The work that is most related to this paper is by
Buyya et al. (2005), Wolski et al. (2001), Feng et al.
(2003) and Dogan & Ozgiiner (2002). In our previous
work, Gridbus Broker (Buyya et al. 2005) and Nim-
rod/G (Abramson et al. 2002), a greedy approach is
proposed to schedule a parameter sweep application
with deadline and cost constraints. To be precise, our
this previous work on Grid scheduling was focused on

application-level scheduling, i.e., a personal broker for
the efficient deployment of an individual application
on Utility Grids. In contrast, this current paper is fo-
cused on scheduling of many applications from multi-
ple users having different QoS requirements with the
aim of global optimization.

Gcommerce (Wolski et al. 2001) is another
economic-based study that applies strategies for pric-
ing Grid resources to facilitate resource trading. It
compares auction and commodity market models us-
ing these pricing strategies. Feng et al. (2003) pro-
posed a deadline cost optimization model for schedul-
ing one application with dependent tasks. These
studies have some limitations: (1) algorithms pro-
posed are not designed to accommodate concurrent
users competing for resources; (2) the application
model is for an independent task or parametric sweep
application. In this work, we have modelled paral-
lel applications submitted by concurrent users. Sim-
ilarly, Dogan & Ozgiiner (2002) proposed a meta-
scheduling algorithm considering many concurrent
users, but the application model assumed that each
application consists of one task and each application
is independent. In this paper, we have considered
multiple and concurrent users competing for resources
in a meta-scheduling environment to minimize the
combined cost and time of all user applications.

Many Genetic Algorithms (GA) based heuristics
are also proposed in the literature. Kim & Weiss-
man (2004) proposed a novel GA-based algorithm
which schedules a divisible data intensive applica-
tion. Di Martino & Mililotti (2002) presented a GA-
based scheduling algorithm where the goal of super-
scheduling was to minimize the release time of jobs.
These GA-based heuristic based solutions do not con-
sider QoS constraints of concurrent users such as bud-
get and deadline. Singh et al. (2007) presented a
multi-objective GA formulation for provisioning re-
sources for an application using a slot-based resource
model to optimize cost and performance. Due to the
time consuming nature of GA, these heuristics are not
suitable for online meta-scheduling.

For scheduling approaches outside Grid comput-
ing, Min-Min, Min-Max and Sufferage (Maheswaran
et al. 1999) are three major task-level heuristics em-
ployed for resource allocation. As they are devel-
oped based on specific domain knowledge, they can-
not be applied directly to Grid scheduling problems,
and hence have to be enhanced accordingly.

The main contribution of this paper is thus to de-
sign two heuristics to manage and optimize the trade-
off between cost and execution time of user applica-
tion in a concurrent user’s environment for Utility
Grids. We adopt some ideas from Min-Min and Min-
Max heuristics to design our algorithm.

3 Meta-Broker System

The meta-broker presented in this work envisions fu-
ture market models (Neumann et al. 2007) where var-
ious service providers with large computing installa-
tions and consumers from educational, industrial and
research institutions will meet (Figure 1). In this
model, service providers sell the CPU time slots on
their resources (clusters or supercomputers) and the
consumers (or users) will buy these time slots to run
their applications. The meta-broker may have con-
trol over allocations to some or all processors in a re-
source for some time intervals. This scenario can be
formulated as an economic system with three main
participants:

• Service Providers: Each of the resources (clus-
ter, servers, supercomputer) can be considered as
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Figure 1: Meta-Broker System

a provider of services such as CPU time slots.
Each free CPU slot includes two parameters:
number of processors and time for which they
are free. Providers have to satisfy requests of the
local users at each site and Grid user requests
that arrive through the meta-broker. Providers
assign CPUs for the exclusive use of the meta-
broker through advanced reservation, and supply
information about the availability of CPUs and
usage cost per second at regular intervals. The
economic system considered here is co-operative
in nature, that is, the participants trust and ben-
efit each other by co-operating with each other.
Therefore, the possibility of providers supplying
wrong or malicious information is discounted. It
is assumed that service price does not change
during the scheduling of applications.

• Users: Users submit their applications to the
meta-scheduler for execution at the resources in
the computing installation/Grid. The users re-
quire that the applications be executed in the
most economic and efficient manner. The users
also can provide a trade-off factor to indicate the
importance of cost over execution time, otherwise
it will be set by the meta-broker. The trade-off
factor can be calculated by user on the basis of
urgency and budget for executing the applica-
tion. In the current system, we assume user ap-
plications are based on the parallel application
model, that is, the the application requires a cer-
tain number of CPUs simultaneously on the same
Grid resource for certain time interval.

• Meta-Broker: The meta-broker uses the infor-
mation supplied by the providers and the users
to match jobs to the appropriate services. The
scheduling of user applications is done in batch
mode at the end of a Schedule Interval (SI). At
the end of a SI, the meta-broker calculates the
best schedule for all user applications after nego-
tiating the time slots with the service providers.
The objective of the meta-broker is to schedule
all user application such that both total time and
cost for applications execution are minimized.
The proposed meta-scheduling mechanisms are
presented in the next section.

4 Meta-Scheduling Mechanisms

In general, users have two QoS requirements, i.e.,
the processing time and execution cost for executing

their applications on pay-per-use services (Yu et al.
2005). The users normally would like to get the ex-
ecution done at the lowest possible cost in minimum
time. Thus, we introduce trade-off factor which indi-
cates the importance level of cost for users over time.
In this section, we present our two meta-scheduling
heuristics that aim to manage the trade-off between
execution cost and time.

4.1 Mathematical model and Terminologies

We model parallel applications submitted by users to
meta-broker. Let n(t) be the number of user appli-
cations submitted by users during scheduling interval
that ends at time t. Every application i requires pi

CPUs for execution. Let T (t) be the set of appli-
cations that meta-broker has to schedule at time t.
The estimated time to compute (ETC) values of each
application on each compute resource are assumed
to be known based on user-supplied information, ex-
perimental data, application profiling or benchmark-
ing, or other techniques. The performance estimation
for resource services can be achieved by using exist-
ing performance estimation techniques (e.g. analyti-
cal modelling (Nudd et al. 2000), empirical (Cooper
et al. 2004) and historical data (Smith et al. 1998,
Jang et al. 2005)) to predict task execution time on
every discovered resource service. As a result, the
application execution time can be obtained for differ-
ent resources. The assumption of ETC information
is common practice in resource allocation study (Xu
et al. 2001). We assume that an application cannot
be executed until all of the required CPUs are avail-
able simultaneously. Let m(t) be the total number
of service providers available and R(t) is the set of
service providers available during scheduling interval
end at time t. Each service provider has mi CPUs to
rent. Let cj be the cost of using a CPU on resource
j per unit time.

Let s(i, j) and f(i, j) be the submission time and
finish time of application i on resource j, respectively.
The response time of application i is defined as

α(i, j) = f(i, j) − s(i, j)

The average execution time of application i is given
by

βi =

∑
jεR(t) ETC(i, j)

m(t)

The cost spent in execution of application i on re-
source j is given by

c(i, j) = cj × pi × ETC(i, j)

The average cost of execution of application i is given
by

γi =

∑
jεR(t) c(i, j)

m(t)

Thus, given δ is the trade-off factor for all user appli-
cations, the trade-off cost metric for each user appli-
cation is given by,

φ(i, j, t) = δ
c(i, j)

γi

+ (1 − δ)
α(i, j)

βi

(1)

Thus, the objective of our scheduling algorithm is
to minimize the summation of trade-off metric for all
user applications, i.e.,

minimize(
∑

∀(iεT (t),t)

min∀jφ(i, j, t))
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The scheduling problem is to map every appication
iεT (t) onto a suitable resource jεR(t) to minimize the
total execution time and cost of all user applications.

Algorithm 1: Pseudo code for MinCTT

Input: set of applications (submission time, execution
time, CPUs required) and resources (time slots,
number of available CPUs)

Output: Mapping of applications to resources
Collect all user applications untill Schedule Interval1

ends
Get list of available time slots for all resources2

foreach user application ui do3

foreach each resource rj do4

Find all feasible time slots5

Find time slot TS which minimizes cost metric6

φ(i, j, t) = δ
c(i,j)

γi
+ (1 − δ)

α(i,j)
βi

Insert TS and resource pair in feasible7

schedule queue S

endfch8

(TSi, rj)← element with minimum cost metric9

value from S
Insert (ui, (TSi, rj)) pair in a queue K10

endfch11

(u, (TS, r))← element with minimum cost metric value12

from K
Allocate time slot TS on resource r to user application13

u
Update the time slots list for resource r14

Remove u from user application list15

Repeat 3 − 15 until all applications are allocated16

4.2 Min-Min Cost Time Trade-off (MinCTT)
Heuristics

MinCTT is based on the concept of Min-Min heuristic
(Maheswaran et al. 1999)(Ibarra & Kim 1977). For
each user application, MinCTT finds the time slot on
a resource with minimum value of cost metric as de-
fined in (1). From these user application/time slot
pairs, the pair that gives the overall minimum is se-
lected and that application scheduled onto that time
slot of the resource. This procedure is repeated until
all of the user applications have been scheduled. The
pseudo code for MinCTT is given in Algorithm 1.

4.3 Max-Min Cost Time Trade-off (Max-
CTT) Heuristics

MaxCTT is based on the concept of Max-Min heuris-
tic (Maheswaran et al. 1999)(Ibarra & Kim 1977).
This algorithm removes fragmentation from the time
slot reservations. For each user application, first Max-
CTT finds the time slot on a resource with minimum
value of cost metric as defined in (1). Finally, from
these user application/time slot pairs, the pair that
gives the overall maximum is selected and that appli-
cation scheduled onto that time slot of that resource.
This procedure is repeated until all of the user ap-
plications have been scheduled. The pseudo code for
MaxCTT is given in Algorithm 2.

4.4 Time Complexity

The main operations performed during MinCTT and
MaxCTT for a scheduling interval are the following

• To allocate any resource to an application, the
number of iteration is to be done over each user
application and resource i.e. m(t)n(t) times

• In each iteration (step 5 to 8 in Algorithm 1),
time slot with minimum execution time is to
be searched. This is of order of available time
slots. For resource j, the number of available
time slots for an application i at time t is given
by TS(j, i, t).

Algorithm 2: Psuedo code for MaxCTT

Input: set of applications (submission time, execution
time, CPUs required) and resources (time slots,
number of available CPUs)

Output: Mapping of appications to resources
Collect all user applications untill Schedule Interval1

ends
Get list of available time slots for all resources2

foreach user application ui do3

foreach each resource rj do4

Find all feasible time slots5

Find time slot TS which minimizes cost metric6

φ(i, j, t) = δ
c(i,j)

γi
+ (1 − δ)

α(i,j)
βi

Insert TS and resource pair in feasible7

schedule queue S

endfch8

(TSi, rj)← element with minimum cost metric9

value from S
Insert (ui, (TSi, rj)) pair in a queue K10

endfch11

(u, (TS, r))← element with maximum cost metric value12

from K
Allocate time slot TS on resource r to user application13

u
Update the time slots list for resource r14

Remove u from user application list15

Repeat 3 − 15 until all applications are allocated16

• the above operations are to be done for each ap-
plication, i.e., n(t) times

Therefore, the resultant complexity of the meta-
scheduling mechanism is combination of above oper-
ations, i.e., O(n2

∑
jεR(t) TS(j, i, t)).

5 Simulation Setup

For our experiments, we use GridSim (Buyya & Mur-
shed 2002) to simulate our meta-scheduler model and
Grid testbed. The simulation facilitates evaluation
as the same testbed environment can be repeated for
different approaches. User applications are modeled
as parallel applications which require all CPUs to be
allocated at the same time and on same resource.
About 1,000 user applications are generated accord-
ing to the Lublin workload model (Lublin & Feitelson
2003). The model specifies the arrival time, number
of CPUs required, and executiong time (µ) of appli-
cation. We divided the arrival times by 1000 to re-
duce the overall time to run the experiments. Since
the generated workload gives execution time on one
resource, the ETC matrix is thus generated using ran-
dom distributions. The variation of the application’s
execution time on different resources can be high or
low. A high variation in execution time of the same
application is generated using the gamma distribu-
tion method presented by Ali et al. (2000). In the
gamma distribution method (Ali et al. 2000), a mean
task execution time and coefficient of variation (COV)
are used to generate ETC matrices. The mean task
execution time of an application is set to µ and a
COV value of 0.9 is used. Similarly, the low varia-
tion in the execution time is generated using uniform
distribution with minimum value of µ and standard
deviation of 20 sec.

The computing installation modeled in our sim-
ulation is that of a subset of the European Data
Grid(EDG) 1 testbed (Hoschek et al. 2000) which
contains five Grid resources spread across four coun-
tries connected via high capacity network links. The
configurations assigned to the resources in the testbed
for the simulation are listed in Table 1. The configu-
ration of each resource is decided so that the modeled
test bed would reflect the heterogeneity of platforms
and capabilities that is normally the characteristic of
such installations. All the resources were simulated as
clusters of Processing Elements (PEs) or CPUs that
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Table 1: Simulated EDG Testbed Resources
Resource
name(Country)

Number
of PEs

Single
PE
rating
(MIPS)

Inconsistent
execution
price (G$)

Consistent
execution
price (G$)

RAL(UK) 20 1320 0.0074 0.0353
Imperial College(UK) 26 1330 0.0100 0.1424
NorduGrid (Norway) 265 1100 0.0139 0.0032
NIKHEF (Netherlands) 54 1166 0.0097 0.0069
Lyon (France) 60 1160 0.0095 0.0061

employed easy backfilling policies and allow advance
reservation in order to improve responsiveness. The
average initial price of using each PE on a Grid re-
source is given in Table 1. These resources send the
availability of time slots to the meta-broker regularly.
The schedule interval of the meta-broker is 50 simu-
lation seconds.

We compare our proposed heuristics (denoted as
MinCTT and MaxCTT) with a common heuristic
which is used in previous work i.e. cost based Greedy
heuristic (Greedy). This approach is derived from the
cost optimization algorithm in Nimrod-G (Abramson
et al. 2002), which is initially designed for schedul-
ing independent tasks on Grids and thus enhanced
for parallel applications. The Greedy heuristic sorts
services by the value of cost metrics and assign appli-
cations to services with the minimum trade-off cost.

We tested our meta-scheduling heuristics
(MinCTT and MaxCTT) by performing a se-
ries of experiments that compare our algorithm with
the Greedy heuristic. The experiments are conducted
for the following two cases:

1. Case 1: The trade-off factor is set by the meta-
broker.The performance of heuristics is studied
in two configurations.

• High variation in execution time of applica-
tions for different resources

• Low variation in execution time of applica-
tions for different resources

2. Case 2: The trade-off factor is provided by each
user. The performance of heuristics is studied in
four configurations.

• High variation in execution time and incon-
sistent prices of resources (HIUC)

• High variation in execution time and con-
sistent prices of resources (HICC)

• Low variation in execution time and incon-
sistent prices of resources (LOUC)

• Low variation in execution time and consis-
tent prices of resources (LOCC)

The consistent prices of resources means as the
pricing of resources increases the execution time of
applications will decrease. It means that if an appli-
cation has highest execution time on a resource, the
resource will be cheapest one. In other words the price
of the slowest resource will be lowest. Otherwise, the
pricing of resources will be inconsistent. The prices
for resources considered in the CASE I are all incon-
sistent.

The two metrics used to evaluate the scheduling
approaches are overall makespan and average execu-
tion cost. The former indicates maximum time when
all the submitted applications finish execution, while
the latter indicates how much it costs to schedule all
the applications on the testbed.

6 Analysis of Results

This section shows the comparison between MaxCTT,
MinCTT and Greedy heuristics. This section also
shows how the proposed heuristics reduces execution
cost and makespan in different scenarios.

6.1 CASE 1: Trade-off Factor Set by Meta-
broker

The results for the two types of variation in execution
time with varying trade-off factor is shown in Figure
2 and 3. This section presents the effect of differ-
ent trade-off factors on the performance of heuristics.
Both MaxCTT and MinCTT outperformed Greedy
heuristic in optimizing the overall execution cost and
makespan.

It can be noted from Figure 2(a) and 3(a) that
as the trade-off factor is increasing, the overall to-
tal execution cost is decreasing. This is because of
the increase in scheduling of more applications on the
cheaper resources due to increase in the weight of cost
over time. The effect of variation in execution time
of applications across various resources can be seen
clearly from these figures. In Figure 2(a)) the de-
crease in total execution cost is more in comparison
to Figure 3(a). Due to the low variation in execu-
tion time, with increase in trade-off factor, execution
time of an application doesn’t effect the cost metric
as defined in (1). Thus, execution cost dominates
in this case which results in low execution cost when
trade−offfactor = 1 in Figure 2(a). while change in
overall execution cost in other case remains approxi-
mately same i.e., in 3(a).

In Figure 2(b), the makespan is increasing with
trade-off factor for both Greedy and MinCTT but in
the case of MaxCTT the trend is not fixed. This is
because in some cases MaxCTT results in the sched-
ule with less fragmentation which results in decrease
of makespan. In Figure, 2(b), we can note that there
is slight decrease in makespan with increase in value
of trade-off factor. This trend is not expected as an
increase in the trade-off factor indicates that weight
of time in cost metric (1) should decrease and thus
results in increase of makespan. This is because of
the inconsistent pricing of resources. Thus, with the
increase in trade-off factor, many application are ex-
ecuted on resources which are not only cheaper but
also faster.

6.2 CASE 2: Trade-off Factor Set by User

This section discusses the performance of the heuris-
tics in four different configurations of ETC matrix
and resource pricing.

6.2.1 Impact on User i.e. Makespan and Ex-
ecution Cost

In Figure 4, the overall execution cost and makespan
of all user applications is compiled for four different
configurations. The Greedy heuristic performed the
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(a) Overall Average Cost of Execution

(b) Overall Makespan of Applications

Figure 2: Low Execution Time Variation

worst by generating the most expensive schedule with
the maximum makespan in almost all four configura-
tions. This is due to the fact that Greedy heuristics
does not consider the effect of other applications in
the meta-broker while generating the schedule for any
application. Moreover, in the case of the LOCC con-
figuration in Figure 4(a), the anomaly in the usual
behavior of all heuristics shows how well MinCTT
and MaxCTT are managing the time and cost trade-
off which results in lower values of makespan with
very slight increase in the execution cost as observed
from Figure 4(b) for LOCC configuration. Figure 4(a)
shows that MinCTT gives the schedule with almost
same overall execution cost as MaxCTT , while Fig-
ure 4(b) shows that MinCCT gives the schedule with
lower makespan than MaxCTT except for the HICC
configuration.

6.2.2 Application Distribution on Resources

Figure 5 shows how the applications are distributed
on various resources by the meta-scheduling heuris-
tics in four different configurations. This measure is
taken to study how the pricing of resources affects the
selection process of the heuristics. In Figure 5(a) and
5(b), it can be observed that, a maximum number
of applications are allocated on NorduGrid in all the
configurations i.e. LOUC, HIUC, LOCC and HICC.
This is due to the fact that NorduGrid has maximum
CPUs thus more applications can be scheduled which
will result in lower makespan. Moreover, in the case
of LOCC and HICC configurations, the price of Nor-
duGrid is the lowest.

In the case when cost is consistent with the ETC

values of application, less variation in execution time
of application across resources will results in the as-
signment of more applications to the cheapest re-
source as the effect of execution time will be very
low. Thus, it can be noted in Figure 5(a)-5(c) that
for HICC and LOCC configuration, the number of
applications on NorduGrid and LyonGrid, which are
the cheapest resources, has increased, while in other
cases, they are reduced. For both of LOCC and HICC
configurations, we also can observe that on the Im-
perial College resources more applications are sched-
uled than RAL which is cheaper. This is due to two
reasons, firstly, RAL has only 20 CPUs, thus it can
run less number of applications than Imperial College.
Secondly, even though Imperial College is expensive,
it is the fastest resource thus it will decrease the time
factor (α(i, j)) in the cost metric as defined in (1).

In Figure 5(a) and 5(b), the reason for lower total
execution cost in case of MaxCTT and MinCTT is
also clear. MaxCTT and MinCTT has allocated more
number of applications on cheaper resources than the
Greedy heuristics.

The effect of cost consistency is very low when
the variation in execution time of an application is
less across different resources. It can be observed in
Figure 5(a)-5(c) that the distribution of application
in LOUC and LOCC configurations is similar. How-
ever, in the case of high variation in execution time
of applications across the resources, the effect of cost
consistency is quite high. For example, in Figure 5(a),
the percentage of applications scheduled by MinCTT
on the Imperial College and RAL resources is about
1% in HIUC configuration; which increases to about
20% in case of HICC configuration. A similar pattern
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(a) Overall Average Cost of Execution

(b) Overall Makespan of Applications

Figure 3: High Execution Time Variation

of application distribution can be observed in Figure
5(b) and 5(c). The reason for this behavior is due to
the trade-off between execution time and cost. For
any application, all the heuristics has to choose a re-
source which is not only run faster but also cheaper.
In HIUC configuration, NorduGrid is not only cheap-
est but also has the maximum number of CPUs. The
applications on other resources is allocated to mini-
mize the total makespan.

7 Conclusion

Utility Grids provide access to computational services
which can be accessed in a secure, transparent and
shared market environment on the standard world-
wide network. Many users are required to pay for
their usage based on their QoS requirements such as
makespan and deadline. The concurrent users may
generate conflicting schedules to access the same re-
sources which are cheaper and faster. Therefore,
many user requirements must be considered during
scheduling simultaneously such as cost and execution
time. In this paper, we proposed two meta-scheduling
heuristics i.e. MaxCTT and MinCTT, that minimize
and manage the execution cost and time of user ap-
plications. We also have presented a cost metric to
manage the trade-off between the execution cost and
time.

For comparison, we also compared our meta-
scheduling heuristics with previously proposed heuris-
tic which is enhanced for the meta-scheduling envi-
ronment. We evaluated the sensitivity of the pro-
posed heuristics to the changes in the user preferences
(the trade-off factor), application execution time and

resource pricing. The results show that MaxCTT and
MinCTT not only outperforms the Greedy heuris-
tic in optimizing overall execution cost but also in
minimizing the overall makespan. In the case when
trade-off factor value is chosen by the meta-broker,
MinCTT gave the lowest makespan for both the ex-
ecution time variation (low and high) of applications
while MaxCTT gave the lowest execution cost for all
trade-off factor (TF ) values except for TF = 1. In
the case when the Trade-off factor is set by users,
we studied the behavior of heuristics in four differ-
ent configurations. Except for LOCC configuration,
both MinCTT and MaxCTT generated the cheapest
schedule with lowest makespan.

In the future, we would like to enhance our pro-
posed heuristics for the case when resources have dif-
ferent pricing functions based on demand, supply and
also usage of resources. We also will develop lower
bounds on the highest attainable value of execution
cost and makespan. In addition, we will further en-
hance our heuristics to also support applications with
different QoS needs for example, memory and network
bandwidth.
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