
 1

Alchemi: A .NET-based Enterprise Grid Computing System

Akshay Luther, Rajkumar Buyya, Rajiv Ranjan, and Srikumar Venugopal

Grid Computing and Distributed Systems (GRIDS) Laboratory

Department of Computer Science and Software Engineering
The University of Melbourne, Australia

Email:{akshayl, raj, rranjan, srikumar}@cs.mu.oz.au

Abstract: Computational grids that couple geographically

distributed resources are becoming the de-facto computing

platform for solving large-scale problems in science,

engineering, and commerce. Software to enable grid

computing has been primarily written for Unix-class

operating systems, thus severely limiting the ability to

effectively utilize the computing resources of the vast

majority of Windows-based desktop computers. Addressing

Windows-based grid computing is particularly important

from the software industry’s viewpoint where interest in

grids is emerging rapidly. Microsoft’s .NET Framework

has become near-ubiquitous for implementing commercial

distributed systems for Windows-based platforms,

positioning it as the ideal platform for grid computing in

this context. In this paper we present Alchemi1, a .NET-

based framework that provides the runtime machinery and

programming environment required to construct

enterprise/desktop grids and develop grid applications. It

allows flexible application composition by supporting an

object-oriented application programming model in addition

to a file-based job model. Cross-platform support is

provided via a web services interface and a flexible

execution model supports dedicated and non-dedicated

(voluntary) execution by grid nodes.

1 Introduction
The idea of metacomputing [2] is very promising as it
enables the use of a network of many independent
computers as if they were one large parallel machine,
or virtual supercomputer for solving large-scale
problems in science, engineering, and commerce.
With the exponential growth of global computer
ownership, local networks and Internet connectivity,
this concept has been taken to a global level –
popularly called as grid computing [1][8]. This,
coupled with the fact that desktop PCs (personal
computers) in corporate and home environments are
heavily underutilized – typically only one-tenth of
processing power is used [32]– has given rise to
interest in harnessing these underutilized resources

1 Alchemi Project is supported by an ARC Discovery
Project and Melbourne University internal grants.

(e.g., CPU cycles) of desktop PCs connected over the
Internet. This new paradigm has been dubbed as
Internet computing, which is also called by several
different names including enterprise/desktop grid
computing [16], peer-to-peer (P2P) computing [17],
and public distributed computing.

There is rapidly emerging interest in grid computing
from commercial enterprises. A Microsoft Windows-
based grid computing infrastructure will play a
critical role in the industry-wide adoption of grids
[9][14][16][21] due to the large-scale deployment of
Windows within enterprises. This enables the
harnessing of the unused computational power of
desktop PCs and workstations to create a virtual
supercomputing resource at a fraction of the cost of
traditional supercomputers. However, there is a
distinct lack of service-oriented architecture-based
grid computing software in this space. To overcome
this limitation, we have developed a Windows-based
grid computing framework called Alchemi
implemented on the Microsoft .NET Platform.

While the notion of grid computing is simple enough,
the practical realization of grids poses a number of
challenges. Key issues that need to be dealt with are
heterogeneity, reliability, application composition,
scheduling, resource management and security [13].
The Microsoft .NET Framework [3] provides a
powerful toolset that can be leveraged for all of these,
in particular support for remote execution (via .NET
Remoting [4] and web services [22]), multithreading,
security, asynchronous programming, disconnected
data access, managed execution and cross-language
development, making it an ideal platform for grid
computing middleware.

Alchemi was conceived with the aim of making grid
construction and development of grid software as
easy as possible without sacrificing flexibility,
scalability, reliability and extensibility. The key
features supported by Alchemi are:

 2

� Internet-based clustering [19][20] of
heterogeneous desktop computers;

� dedicated or non-dedicated (voluntary)
execution by individual nodes;

� object-oriented grid application
programming model (fine-grained
abstraction);

� file-based grid job model (coarse-grained
abstraction) for grid-enabling legacy
applications and

� web services interface supporting the job
model for interoperability with custom grid
middleware e.g. for creating a global, cross-
platform grid environment via a custom
resource broker component.

Alchemi has already been used in creating and
deploying several science and commercial
applications on enterprise Grids. They include: (a)
BLAST (Basic Local Alignment Search Tool) used in
identifying similarities between biological sequences,
(b) Gridbus broker [33] that supports
integration/utilisation of Alchemi-based enterprise
grids as nodes within global grids, (c) CSIRO
Australia’s hydrology application for catchments
modeling and simulation, (d) Microsoft Excel
spreadsheet processing [35], (e) Satyam India’s
Microarray data analysis application that aids in early
detection of breast cancer, and (f) high performance
cryptography for encryption/decryption [34].

The rest of the paper is organized as follows. Section
2 presents the Alchemi architecture and discusses
configurations for creating different grid
environments. Section 3 discusses the system
implementation and presents the lifecycle of an
Alchemi-enabled grid application demonstrating its
execution model. Section 4 presents the object-
oriented grid thread programming model supported
by the Alchemi API. Section 5 presents the results of
an evaluation of Alchemi as a platform for execution
of applications written using the Alchemi API. It also
evaluates the use of Alchemi nodes as part of a global
grid alongside Unix-class grid nodes running Globus
software. Section 5 presents related works along with
their comparison to Alchemi. Finally, we conclude
the paper with work planned for the future.

2 Architecture
Alchemi’s layered architecture for an enterprise grid
computing environment is shown in Figure 1.
Alchemi follows the master-worker parallel
programming paradigm [29] in which a central
component dispatches independent units of parallel
execution to workers and manages them. In Alchemi,
this unit of parallel execution is termed ‘grid thread’

and contains the instructions to be executed on a grid
node, while the central component is termed
‘Manager’.

A ‘grid application’ consists of a number of related
grid threads. Grid applications and grid threads are
exposed to the application developer as .NET classes
/ objects via the Alchemi .NET API. When an
application written using this API is executed, grid
thread objects are submitted to the Alchemi Manager
for execution by the grid. Alternatively, file-based
jobs (with related jobs comprising a task) can be
created using an XML representation to grid-enable
legacy applications for which precompiled
executables exist. Jobs can be submitted via Alchemi
Console Interface or Cross-Platform Manager web
service interface, which in turn convert them into the
grid threads before submitting then to the Manager
for execution by the grid.

Alchemi Manager

e-Science
Application

e-Business
Application

e-Engineering
Application

Windows-based machines with .NET Framework

Precompiled executables

e-Commerce
Application

Alchemi
Executor

Alchemi
Executor

Alchemi
Executor

Alchemi Jobs
(XML representation)

Grid Threads (.NET objects)

Alchemi .NET API
(Object-Oriented

Grid Programming)
Alchemi Console

Interface
Alchemi Cross-

Platform Manager

Alchemi Manager

e-Science
Application

e-Business
Application

e-Engineering
Application

Windows-based machines with .NET Framework

Precompiled executables

e-Commerce
Application

Alchemi
Executor

Alchemi
Executor

Alchemi
Executor

Alchemi Jobs
(XML representation)

Grid Threads (.NET objects)

Alchemi .NET API
(Object-Oriented

Grid Programming)
Alchemi Console

Interface
Alchemi Cross-

Platform Manager

Figure 1. A layered architecture for an enterprise

grid computing environment.

2.1 Application Models

Two models for parallel application composition are
supported by Alchemi.

2.1.1 Grid Thread Model

Minimizing the entry barrier to writing applications
for a grid environment is one of Alchemi’s key goals.
This goal is served by an object-oriented
programming environment via the Alchemi .NET API
which can be used to write grid applications in any
.NET-supported language.

The atomic unit of independent parallel execution is a
grid thread with many grid threads comprising a grid

 3

application (hereafter, ‘applications’ and ‘threads’
can be taken to mean grid applications and grid
threads respectively, unless stated otherwise). The
two central classes in the Alchemi .NET API are
GThread and GApplication, representing a grid
thread and grid application respectively. There are
essentially two parts to an Alchemi grid application.
Each is centered on one of these classes:

� “Remote code”: code to be executed
remotely i.e. on the grid (a grid thread and
its dependencies) and

� “Local code”: code to be executed locally
(code responsible for creating and executing
grid threads).

A concrete grid thread is implemented by writing a
class that derives from GThread, overriding the void
Start() method, and marking the class with the
Serializable attribute. Code to be executed
remotely is defined in the implementation of the
overridden void Start() method.

The application itself (local code) creates instances of
the custom grid thread, executes them on the grid and
consumes each thread’s results. It makes use of an
instance of the GApplication class which represents
a grid application. The modules (.EXE or .DLL files)
containing the implementation of this GThread-
derived class and any other dependency types that not
part of the .NET Framework must be included in the
Manifest of the GApplication instance. Instances of
the GThread-derived class are asynchronously
executed on the grid by adding them to the grid
application. Upon completion of each thread, a
‘thread finish’ event is fired and a method subscribing
to this event can consume the thread’s results. Other
events such as ‘application finish’ and ‘thread failed’
can also be subscribed to. Thus, the programmatic
abstraction of the grid in this manner described
allows the application developer to concentrate on the
application itself without worrying about "plumbing"
details.

A sample list of applications created using Alchemi’s
Grid thread programming model include: parallel
Mandelbrot set generator, high performance
encryption/decryption [34], and spreadsheet
processing [35].

2.1.2 Grid Job Model

Traditional grid implementations have offered a high-
level, abstraction of the "virtual machine", where the
smallest unit of parallel execution is a process. In this
model, a work unit is typically described by
specifying a command, input files and output files. In

Alchemi, such a work unit is termed ‘job’ with many
jobs constituting a ‘task’.

Although writing software for the “grid job” model
involves dealing with files, an approach that can be
complicated and inflexible, Alchemi’s architecture
supports it for the following reasons:

� grid-enabling existing applications; and
� interoperability with grid middleware that

can leverage Alchemi via the Cross Platform
Manager web service

Tasks and their constituent jobs are represented as
XML files conforming to the Alchemi task and job
schemas. Figure 2 shows a sample task representation
that contains two jobs to execute the Reverse.exe
program against two input files.

<task>

 <manifest>

 <embedded_file name="Reverse.exe"

location="Reverse.exe" />

 </manifest>

 <job id="0">

 <input>

 <embedded_file name="input1.txt"

location="input1.txt" />

 </input>

 <work run_command="Reverse.exe input1.txt >

result1.txt" />

 <output>

 <embedded_file name="result1.txt"/>

 </output>

 </job>

 <job id="1">

 <input>

 <embedded_file name="input2.txt"

location="input2.txt" />

 </input>

 <work run_command="Reverse input2.txt >

result2.txt" />

 <output>

 <embedded_file name="result2.txt"/>

 </output>

 </job>

</task>

Figure 2. Sample XML-based task representation.

Before submitting the task to the Manager, references
to the ‘embedded’ files are resolved and the files
themselves are embedded into the task XML file as
Base64-encoded text data. When finished jobs are
retrieved from the Manager, the Base64-encoded
contents of the ‘embedded’ files are decoded and
written to disk. It should be noted that tasks and jobs
are represented internally as grid applications and
grid threads respectively. Thus, any discussion that
applies to ‘grid applications’ and ‘grid threads’
applies to ‘grid tasks’ and ‘grid jobs’ as well.

 4

A sample list of applications created using Alchemi’s
Grid job model include: BLAST (Basic Local
Alignment Search Tool) used in identifying
similarities between biological sequences and
Gridbus broker [33] that supports
integration/utilisation of Alchemi-based enterprise
grids as nodes within global grids.

2.2 Distributed Components

Four types of nodes (or hosts) take part in enterprise
grid construction and application execution (see
Figure 3). An Alchemi enterprise grid is constructed
by deploying a Manager node and deploying one or
more Executor nodes configured to connect to the
Manager. One or more Users can execute their
applications on the cluster by connecting to the
Manager. An optional component, the Cross Platform
Manager provides a web service interface to custom
grid middleware. The operation of the Manager,
Executor, User and Cross Platform Manager nodes is
described below.

E

M

E EE

X

E

U

Custom Grid
Middleware

M

X

E

U User Node

Manager Node

Executor Node

Cross Platform
Manager Node

Legend

E

M

E EE

X

E

U

Custom Grid
Middleware

M

X

E

U

M

X

E

U User Node

Manager Node

Executor Node

Cross Platform
Manager Node

Legend

Figure 3. Distributed components and their

relationships.

2.2.1 Manager

The Manager provides services associated with
managing execution of grid applications and their
constituent threads. Executors register themselves
with the Manager, which in turn monitors their status.
Threads received from the User are placed in a pool
and scheduled to be executed on the various available
Executors. A priority for each thread can be explicitly
specified when it is created or submitted. Threads are
scheduled on a Priority and First Come First Served
(FCFS) basis, in that order. The Executors return
completed threads to the Manager which are
subsequently collected by the respective users. A
scheduling API is provided that allows custom
schedulers to be written.

2.2.2 Executor

The Executor accepts threads from the Manager and
executes them. An Executor can be configured to be
dedicated, meaning the resource is centrally managed
by the Manager, or non-dedicated, meaning that the
resource is managed on a volunteer basis via a screen
saver or explicitly by the user. For non-dedicated
execution, there is one-way communication between
the Executor and the Manager. In this case, the
resource that the Executor resides on is managed on a
volunteer basis since it requests threads to execute
from the Manager. When two-way communication is
possible and dedicated execution is desired the
Executor exposes an interface so that the Manager
may communicate with it directly. In this case, the
Manager explicitly instructs the Executor to execute
threads, resulting in centralized management of the
resource where the Executor resides. Thus, Alchemi’s
execution model provides the dual benefit of:

� flexible resource management i.e.
centralized management with dedicated
execution vs. decentralized management
with non-dedicated execution; and

� flexible deployment under network
constraints i.e. the component can be
deployment as non-dedicated where two-
way communication is not desired or not
possible (e.g. when it is behind a firewall or
NAT/proxy server).

Thus, dedicated execution is more suitable where the
Manager and Executor are on the same Local Area
Network while non-dedicated execution is more
appropriate when the Manager and Executor are to be
connected over the Internet.

2.2.3 User

Grid applications are executed on the User node. The
API abstracts the implementation of the grid from the
user and is responsible for performing a variety of
services on the user’s behalf such as submitting an
application and its constituent threads for execution,
notifying the user of finished threads and providing
results and notifying the user of failed threads along
with error details.

2.2.4 Cross-Platform Manager –Web Services

The Cross-Platform Manager is a web services
interface that exposes a portion of the functionality of
the Manager in order to enable Alchemi to manage
the execution of grid jobs (as opposed to grid
applications utilizing the Alchemi grid thread model).
Jobs submitted to the Cross-Platform Manager are
translated into a form that is accepted by the Manager
(i.e. grid threads), which are then scheduled and

 5

executed as normal in the fashion described above. In
addition to support for the grid-enabling of legacy
applications, the Cross-Platform Manager allows
custom grid middleware to interoperate with and
leverage Alchemi on any platform that supports web
services.

3 Design and Implementation
Figure 4 and Figure 5 provide an overview of the
design and implementation by way of a deployment
diagram and class diagram (showing only the main
classes without attributes or operations) respectively.

3.1 Overview

The .NET Framework offers two mechanisms for
execution across application domains – Remoting
and web services (application domains are the unit of
isolation for a .NET application and can reside on
different network hosts). .NET Remoting allows an
object to be “remoted” and expose its functionality
across application domains. Remoting is used for
communication between the four Alchemi distributed
grid components as it allows low-level interaction
transparently between .NET objects with low
overhead (remote objects are configured to use binary
encoding for messaging).

Web services were considered briefly for this
purpose, but were decided against due to the
relatively higher overheads involved with XML-
encoded messages, the inherent inflexibility of the
HTTP protocol for the requirements at hand and the
fact that each component would be required to be
configured with a web services container (web
server). However, web services are used for the
Cross-Platform Manager’s public interface since
cross-platform interoperability was the primary
requirement in this regard.

The objects remoted using .NET Remoting within the
four distributed components of Alchemi, the
Manager, Executor, Owner and Cross-Platform
Manager are instances of GManager, GExecutor,
GApplication and CrossPlatformManager

respectively.

It should be noted that classes are named with respect
to their roles vis-à-vis a grid application. This
discussion therefore refers to an ‘Owner’ node
synomymously with a ‘User’ node, since the node
where the grid application is being submitted from
can be considered to “own” the application.

Figure 4. Alchemi architecture and interaction between its components.

 6

The prefix ‘I’ is used in type names to denote an
interface, whereas ‘G’ is used to denote a ‘grid node’
class. GManager, GExecutor, GApplication derive
from the GNode class which implements generic
functionality for remoting the object itself and
connecting to a remote Manager via the IManager
interface.

The Manager executable initializes an instance of the
GManager class, which is always remoted and exposes
a public interface IManager. The Executor executable
creates an instance of the GExecutor class. For non-
dedicated execution, there is one-way communication
between the Executor and the Manager. Where two-
way communication is possible and dedicated
execution is desired, GExecutor is remoted and
exposes the IExecutor interface so that the Manager
may communicate with it directly. The Executor
installation provides an option to install a screen
saver, which initiates non-dedicated execution when
activated by the operating system.

Figure 5. Main classes and their relationships.

The GApplication object in Alchemi API
communicates with the Manager in a similar fashion
to GExecutor. While two-way communication is
currently not used in the implementation, the
architecture caters for this by way of the IOwner
interface.

The Cross-Platform Manager web service is a thin
wrapper around GManager and uses applications and
threads internally to represent tasks and jobs (the
GJob class derives from GThread) via the public
ICrossPlatformManager interface.

3.2 Grid Application Lifecycle

To develop and execute a grid application the
developer creates a custom grid thread class that
derives from the abstract GThread class. An instance
of the GApplication object is created and any
dependencies required by the application are added to
its DependencyCollection. Instances of the GThread-
derived class are then added to the GApplication’s
ThreadCollection.

The GApplication serializes and sends relevant data
to the Manager, where it is persisted to disk and
threads scheduled. Application and thread state is
maintained in a SQL Server / MSDE database. Non-
dedicated executors poll for threads to execute until
one is available. Dedicated executors are directly
provided a thread to execute by the Manager.

Threads are executed in .NET application domains,
with one application domain for each grid
application. If an application domain does not exist
that corresponds to the grid application that the thread
belongs to, one is created by requesting, desterilizing
and dynamically loading the application’s
dependencies. The thread object itself is then
desterilized, started within the application domain and
returned to the Manager on completion.

After sending threads to the Manager for execution,
the GApplication polls the Manager for finished
threads. A user-defined GThreadFinish delegate is
called to signify each thread’s completion and once
all threads have finished a user-defined
GApplicationFinish delegate is called.

4 Performance Evaluation

4.1 Alchemi Enterprise Grid

Testbed

The testbed is an Alchemi cluster consisting of six
Executors (Pentium III 1.7 GHz desktop machines
with 512 MB physical memory running Windows
2000 Professional). One of these machines is
additionally designated as a Manager.

Test Application & Methodology

The test application is the computation of the value of
Pi to n decimal digits. The algorithm used allows the
computation of the p’th digit without knowing the
previous digits [27]. The application utilizes the
Alchemi grid thread model. The test was performed
for a range of workloads (calculating 1000, 1200,
1400, 1600, 1800, 2000 and 2200 digits of Pi), each
with one to six Executors enabled. The workload was

 7

sliced into a number of threads, each to calculate 50
digits of Pi, with the number of threads varying
proportionally with the total number of digits to be
calculated. Execution time was measured as the
elapsed clock time for the test program to complete
on the Owner node.

Table 1. Grid resources.

Results

Figure 6 shows a plot between thread size (the
number of decimal places to which Pi is calculated to)
and total time (in seconds taken by the all threads to
complete execution) with varying numbers of
Executors enabled.

At a low workload (1000 digits), there is little
difference between the total execution time with
different quantity of Executors. This is explained by
the fact that the total overhead (network latency and
overheads involved in managing a distributed

execution environment) is in a
relatively high proportion to
the actual total computation
time. However, as the
workload is increased, there is
near-proportional difference
when higher numbers of
executors are used. For
example, for 2200 digits, the
execution time with six
executors (84 seconds) is
nearly 1/5th of that with one
executor (428 seconds). This is
explained by the fact that for
higher workloads, the total
overhead is in a relatively
lower proportion to the actual
total computation time.

4.2 Alchemi as a Global Grid Node

Testbed

A global grid was used for evaluating Alchemi in a
cross-platform environment with the Gridbus Grid
Service Broker managing five grid resources (see
Table 1). One of the grid nodes was powered by
Alchemi while the other resources by Globus 2.4 [7].
The Gridbus resource brokering mechanism used in

Resource Location Configuration Middleware Jobs
Completed

maggie.cs.mu.oz.au
[Windows cluster]

University
of
Melbourne

6 * Intel
Pentium IV 1.7
GHz

Alchemi 21

quidam.ucsd.edu
[Linux cluster]

Univ. of
California,
San Diego

1 * AMD
Athlon XP
2100+

Globus 16

belle.anu.edu.au
[Linux cluster]

Australian
National
University

4 * Intel Xeon
2

Globus 22

koume.hpcc.jp
[Linux cluster]

AIST,
Japan

4 * Intel Xeon
2

Globus 18

brecca-2.vpac.org
[Linux cluster]

VPAC
Melbourne

4 * Intel Xeon
2

Globus 23

0

50

100

150

200

250

300

350

400

450

1000 1200 1400 1600 1800 2000 2200

Thread Size (no. of digits of Pi)

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
o

n
d

s
)

1 Executor

2 Executors

3 Executors

4 Executors

5 Executors

6 Executors

Figure 6: A plot of thread size vs. execution time on an enterprise desktop grid.

 8

#Parameter definition

parameter X integer range from 1 to 100 step 1;

parameter Y integer default 1;

#Task definition

task main

 #Copy necessary executables depending on node type

 copy calc.$OS node:calc

 #Execute program with parameter values on remote node

 node:execute ./calc $X $Y

 #Copy results to home node with jobname as extension

 copy node:output ./output.$jobname

endtask

this test obtains the users’ application requirements
and evaluates the suitability of various resources for
the purpose. It then schedules the jobs to various
resources in order to satisfy those requirements.

Test Application & Methodology

For the purpose of evaluation, we used an application
that calculates mathematical functions based on the
values of two input parameters. The first parameter X,
is an input to a mathematical function and the second
parameter Y, indicates the expected calculation
complexity in minutes plus a random deviation value
between 0 to 120 seconds—this creates an illusion of
small variation in execution time of different
parametric jobs similar to a real application. A plan
file modeling this application as a parameter sweep
application using the Nimrod-G parameter
specification language [12] is shown in Figure 7. The
first part defines parameters and the second part
defines the task that is to be performed for each job.
As the parameter X varies from values 1 to 100 in
step of 1, this plan file would create 100 jobs with
input values from 1 to 100.

Results

The results of the experiment shown in Figure 8 show
the number of jobs completed on different Grid
resources at different times. The parameter calc.$OS
directs the broker to select appropriate executables
based a target Grid resource architecture. For
example, if the target resource is Windows/Intel, it
selects calc.exe and copies to the grid node before its
execution. It demonstrates the feasible to utilizing
Windows-based Alchemi resources along with other
Unix-class resources running Globus.

5 Related Work
A number of enterprise Grid systems have been
developed by in academia and industries. They
include Condor [18], SETI@home [9][14] , Entropia
[16], GridMP [21], and XtermWeb [15]. Compared to

these related systems, Alchemi has several
distinguished features (see Table 2) in addition to its
implementation based on service-oriented
architecture based state-of-the-art Web services

technologies such as XML, .Microsoft’s .NET
framework and platform.

6 Summary and Future Work
We have discussed a .NET-based grid computing
framework that provides the runtime machinery and
object-oriented programming environment to easily
construct enterprise grids and develop grid
applications. Its integration into the global cross-
platform grid has been made possible via support for
execution of grid jobs via a web services interface
and the use of a broker component.

3

6

9

1
2

1
5

1
8

2
1

2
4

2
7

3
0

3
3

0

5

10

15

20

25

Jobs Completed

Time (in min.)

quidam.ucsd.edu koume.hpcc.jp maggie.cs.mu.oz.au belle.anu.edu.au brecca-2.vpac.org

Figure 8. A plot of the number of jobs completed

on different resources versus the time.

Figure 7: Parametric job specification.

 9

Table 2. Comparison of Alchemi and some related

enterprise grid systems.

We plan to extend Alchemi in a number of areas.
Firstly, support for additional functionality via the
API including inter-thread communication is planned.
Secondly, we are working on support for multi-
clustering with peer-to-peer communication between
Managers. Thirdly, we plan to support utility-based
resource allocation policies driven by economic,
quality of services, and service-level agreements.
Fourthly, we are investigating strategies for
adherence to OGSI (Open Grid Services
Infrastructure) standards by extending the current
Alchemi job management interface. This is likely to
be achieved by its integration with .NET-based low-
level grid middleware implementations (e.g.,
University of Virginia’s WSRF.NET [31] platform)
that conform to grid standards such as WSRF (Web
Services Resource Framework), which is an extension
of OGSI (Open Grid Services Infrastructure)
[23][30]. Finally, we plan to provide data grid
capabilities to enable resource providers to share their
data resources in addition to computational resources.

7 References
[1] Ian Foster and Carl Kesselman (editors), The Grid:

Blueprint for a Future Computing Infrastructure,
Morgan Kaufmann Publishers, USA, 1999.

[2] Larry Smarr and Charlie Catlett, Metacomputing,
Communications of the ACM Magazine, Vol. 35, No.
6, pp. 44-52, ACM Press, USA, Jun. 1992.

[3] Microsoft Corporation, .NET Framework Home,
http://msdn.microsoft.com/netframework/ (accessed
November 2003)

[4] Piet Obermeyer and Jonathan Hawkins, Microsoft

.NET Remoting: A Technical Overview,
http://msdn.microsoft.com/library/en-
us/dndotnet/html/hawkremoting.asp (accessed
November 2003)

[5] Microsoft Corp., Web Services Development Center,
http://msdn.microsoft.com/webservices/ (accessed
November 2003)

[6] D.H. Bailey, J. Borwein, P.B. Borwein, S. Plouffe,
The quest for Pi, Math. Intelligencer 19 (1997),pp.
50-57.

[7] Ian Foster and Carl Kesselman, Globus: A
Metacomputing Infrastructure Toolkit, International

Journal of Supercomputer Applications, 11(2): 115-
128, 1997.

[8] Ian Foster, Carl Kesselman, and S. Tuecke, The
Anatomy of the Grid: Enabling Scalable Virtual
Organizations, International Journal of

Supercomputer Applications, 15(3), Sage
Publications, 2001, USA.

[9] David Anderson, Jeff Cobb, Eric Korpela, Matt
Lebofsky, Dan Werthimer, SETI@home: An
Experiment in Public-Resource Computing,
Communications of the ACM, Vol. 45 No. 11, ACM
Press, USA, November 2002.

[10] Yair Amir, Baruch Awerbuch, and Ryan S.
Borgstrom, The Java Market: Transforming the
Internet into a Metacomputer, Technical Report

CNDS-98-1, Johns Hopkins University, 1998.

[11] Peter Cappello, Bernd Christiansen, Mihai F.
Ionescu, Michael O. Neary, Klaus E. Schauser, and
Daniel Wu, Javelin: Internet-Based Parallel
Computing Using Java, Proceedings of the 1997

 System

Property
Alchemi Condor SETI@home Entropia XtermWeb Grid MP

Architecture Hierarchical Hierarchical Centralized

Centralized

Centralized

Centralized

Implementation

Technologies

C#, Web

Services, &

.NET
Framework

C C++, Win32 C++, Win32 Java, Linux C++, Win32

Multi-Clustering Yes Yes No No No Yes

Global Grid

Brokering

Mechanism

Yes (via

Gridbus

Broker)

Yes (via

Condor-G)
No No No No

Thread

Programming

Model

Yes No No No No No

Level of

integration of
application,

programming

and runtime

environment

Low

(general
purpose)

Low

(general
purpose)

High

(single purpose,
single application

environment)

Low

(general
purpose)

Low

(general
purpose)

Low

(general
purpose)

Web Services

Interface
Yes No No No No Yes

 10

ACM Workshop on Java for Science and

Engineering Computation, June 1997.

[12] Rajkumar Buyya, David Abramson, Jonathan Giddy,
Nimrod/G: An Architecture for a Resource

Management and Scheduling System in a Global

Computational Grid, Proceedings of 4th
International Conference on High Performance
Computing in Asia-Pacific Region (HPC Asia 2000),
Beijing, China, 2000.

[13] Rajkumar Buyya, Economic-based Distributed
Resource Management and Scheduling for Grid
Computing, Ph.D. Thesis, Monash University
Australia, April 2002.

[14] W. T. Sullivan, D. Werthimer, S. Bowyer, J. Cobb,
D. Gedye, D. Anderson, A new major SETI project

based on Project Serendip data and 100,000

personal computers, Proceedings of the 5th
International Conference on Bioastronomy, 1997.

[15] Cecile Germain, Vincent Neri, Gille Fedak and
Franck Cappello, XtremWeb: building an

experimental platform for Global Computing,
Proceedings of the 1st IEEE/ACM International
Workshop on Grid Computing (Grid 2000),
Bangalore, India, Dec. 2000.

[16] Andrew Chien, Brad Calder, Stephen Elbert, and
Karan Bhatia, Entropia: architecture and
performance of an enterprise desktop grid system,
Journal of Parallel and Distributed Computing,
Volume 63, Issue 5, Academic Press, USA, May
2003.

[17] Andy Oram (editor), Peer-to-Peer: Harnessing the

Power of Disruptive Technologies, O’Reilly Press,
USA, 2001.

[18] M. Litzkow, M. Livny, and M. Mutka, Condor - A

Hunter of Idle Workstations, Proceedings of the 8th
International Conference of Distributed Computing
Systems (ICDCS 1988), January 1988, San Jose,
CA, IEEE CS Press, USA, 1988.

[19] N. Nisan, S. London, O. Regev, and N. Camiel,
Globally Distributed computation over the Internet:

The POPCORN project, International Conference on
Distributed Computing Systems (ICDCS’98), May
26 - 29, 1998, Amsterdam, The Netherlands, IEEE
CS Press, USA, 1998.

[20] Y. Aridor, M. Factor, and A. Teperman, cJVM: a

Single System Image of a JVM on a Cluster,
Proceedings of the 29th International Conference on
Parallel Processing (ICPP 99), September 1999,
Fukushima, Japan, IEEE CS Press, USA.

[21] Intel Corporation, United Devices’ Grid MP on Intel

Architecture,

http://www.ud.com/rescenter/files/wp_intel_ud.pdf
(accessed November 2003)

[22] Ardaiz O., Touch J. Web Service Deployment Using

the Xbone, Proceedings of Spanish Symposium on
Distributed Systems SEID 2000.

[23] Ian Foster, Carl Kesselman, Jeffrey Nick, and Steve
Tuecke. The Physiology of the Grid: An Open Grid

Services Architecture for Distributed Systems

Integration, January 2002.

[24] P. Cauldwell, R. Chawla, Vivek Chopra, Gary
Damschen,Chris Dix, Tony Hong, Francis Norton,
Uche Ogbuji, Glenn Olander, Mark A. Richman,
Kristy Saunders, and Zoran Zaev, Professional XML

Web Services, Wrox Press, 2001.

[25] E. O’Tuathail and M. Rose, Using the Simple Object
Access Protocol (SOAP) in Blocks Extensible
Exchange Protocol (BEEP), IETF RFC 3288, June
2002.

[26] E. Christensen, F. Curbera, G. Meredith, and S.
Weerawarana, Web Services Description Language

(WSDL) 1.1.W3C Note 15, 2001.
www.w3.org/TR/wsdl.

[27] World Wide Web Consortium, XML Schema Part

0:Primer: W3C Recommendation, May 2001.

[28] Fabrice Bellard, Computation of the n'th digit of pi

in any base in O(n^2),
http://fabrice.bellard.free.fr/pi/pi_n2/pi_n2.html
(accessed June 2003).

[29] C. Kruskal and A. Weiss, Allocating independent
subtasks on parallel processors, IEEE Transactions

on Software Engineering, 11:1001--1016, 1984.

[30] Global Grid Forum (GGF), Open Grid Services

Infrastructure (OGSI) Specification 1.0,
https://forge.gridforum.org/projects/ogsi-wg
(accessed January 2004).

[31] Glenn Wasson, Norm Beekwilder and Marty
Humphrey, OGSI.NET: An OGSI-Compliant

Hosting Container for the .NET Framework,

University of Virginia, USA, 2003.
http://www.cs.virginia.edu/~humphrey/GCG/ogsi.ne
t.html (accessed Jan 2004).

[32] M. Mutka and M. Livny, The Available Capacity of
a Privately Owned Workstation Environment,
Journal of Performance Evaluation, Volume 12,

Issue 4, , 269-284pp, Elsevier Science, The
Netherlands, July 1991.

[33] Srikumar Venugopal, Rajkumar Buyya, and Lyle
Winton, A Grid Service Broker for Scheduling
Distributed Data-Oriented Applications on Global
Grids, Proceedings of the 2nd International
Workshop on Middleware for Grid Computing (Co-
located with Middleware 2004, Toronto, Ontario -
Canada, October 18, 2004), ACM Press, 2004, USA.

[34] Agus Setiawan, David Adiutama, Julius Liman,
Akshay Luther and Rajkumar Buyya, GridCrypt:

High Performance Symmetric Key using Enterprise

Grids, Proceedings of the 5th International
Conference on Parallel and Distributed Computing,
Applications and Technologies (PDCAT 2004,
December 8-10, 2004, Singapore), Springer Verlag
Publications (LNCS Series), Berlin, Germany.

[35] Krishna Nadiminti, Yi-Feng Chiu, Nick Teoh,
Akshay Luther, Srikumar Venugopal, and Rajkumar
Buyya, ExcelGrid: A .NET Plug-in for Outsourcing

Excel Spreadsheet Workload to Enterprise and

Global Grids, Proceedings of the 12th International
Conference on Advanced Computing and
Communication (ADCOM 2004, December 15-18,
2004), Ahmedabad, India.

