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Abstract 
Computational Grids are a promising platform for executing 
large-scale resource intensive applications. However, 
resource management and scheduling in the Grid environment 
is a complex undertaking as resources are (geographically) 
distributed, heterogeneous in nature, owned by different 
individuals or organizations with their own policies, have 
different access and cost models, and have dynamically 
varying loads and availability. This introduces a number of 
challenging issues such as site autonomy, heterogeneous 
interaction, policy extensibility, resource allocation or co-
allocation, online control, scalability, transparency, resource 
brokering, and “computational economy”.  

 A number of Grid systems (such as Globus and Legion) 
have addressed many of these issues with exception of a 
computational economy. We argue that a computational 
economy is required in order to create a real world scalable 
Grid because it provides a mechanism for regulating the Grid 
resources demand and supply. It offers incentive for resource 
owners to be part of the Grid and encourages consumers to 
optimally utilize resources and balance timeframe and access 
costs. We propose a ‘computational economy framework’ that 
builds on the existing Grid middleware systems and offers an 
infrastructure for resource management and trading in the 
Grid environment.  We discuss the usage economic models for 
resource trading in the Nimrod/G resource broker and present 
deadline and cost-based scheduling experimental results on 
the Grid.  

1. Introduction 

Grid [13] based computational infrastructure is a 
promising next generation computing platform for 
solving large-scale resource intensive problems. It 
couples a wide variety of geographically distributed 
computational resources (such as PCs, workstations, and 
clusters), storage systems, data sources, databases, 
computational kernels, and special purpose scientific 
instruments and presents them as a unified integrated 
resource. However, including application development, 

the management and scheduling of computations in the 
Grid environment is a complex undertaking as resources 
are geographically distributed, heterogeneous in nature, 
owned by different individuals or organizations with 
their own policies, have different access cost models 
with dynamically varying loads and availability 
conditions. A typical market-oriented Grid environment 
is shown in Figure 1. It encompasses a wide range of 
software technologies from local operating 
environments (operating or queuing systems) to global 
resource brokers and applications that are designed to 
exploit Grid capability. The interactions between these 
components must be secure and adapt to the changing 
resource status. Internationally, there are many projects 
[2][16] actively exploring the design and development 
of different Grid system components and services for 
secure execution of applications on wide-area resources.  

As shown in Figure 1, the users in global Grid 
environment essentially interact with a Grid Resource 
Broker (GRB) that hides the complexity of resource 
management and scheduling. The broker discovers 
resources using Grid Information Services (GIS), 
negotiates with grid-enabled resources or their agents 
for service costs, performs resource selection, maps and 
schedules tasks to resources, stages the application and 
data for processing on remote resources, and finally 
gathers results and hands them to the user. It is also 
responsible for monitoring application execution 
progress along with managing and adapting to changes 
in the Grid environment such as resource failures. 

In this paper we identify requirements of users 
(resource providers and consumers) in the Grid 
economy and various resource management issues that 
need to be addressed in realizing such a Grid system. 
We briefly discuss popular economic mo dels for 
resource trading and present related work that employs 
computational economy in resource management. We 
propose a scalable architecture and new services for the 
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Grid that provide mechanisms for addressing user 
requirements. The proposed architecture leverages 
services offered by the existing Grid systems such as 
Globus and offers new core services for resource 
trading. We discuss the use of these economic models 
and services for developing tools such as the Nimrod/G 
resource broker. We discuss a case study consisting of 
scheduling a parameter-sweep application on a large 
computational Grid spanning four continents and 
present some experimental results. 

 
Figure 1: A Generic view of interaction between 

players in an Economy Grid. 

2. Grid Economy and Resource 
Management Issues 

The current research and investment into computational 
grids is motivated by an assumption that coordinated 
access to diverse and geographically distributed 
resources is valuable.  In this paradigm, we need 
mechanisms that allow such coordinated access, but also 
sustainable, scalable models and policies that promote 
precious Grid resource sharing. Based on the success of 
economic institutions in the real world as a sustainable 
model for exchanging and regulating resources, goods 
and services, we propose a computational economy 
framework. Among other things, this framework 
provides a mechanism to indicate which users should 
receive priority. In [4], we have presented several 
arguments in favor of developing Grid architecture for 
computational economy and its benefits.  

Like all systems involving goals, resources, and 
actions, computations can be viewed in economic 
terms [51]. With the proliferation of networks, high-end 
computing systems architecture has moved from 
centralized toward decentralized models of control and 
action; use of economic driven market mechanisms 
would be a natural extension of this development. The 
ability of trade and price mechanisms to combine local 

decisions by diverse entities into globally effective 
characteristic implies their value for organizing 
computations in large systems such as Internet scale 
computations Grids.   

The two key players in market oriented 
computational Grid are resource providers (we refer 
hereafter as GSPs—Grid Service Providers) and 
resource consumers (we refer hereafter as GRBs —Grid 
Resource Broker that acts as a consumer’s software 
agent). Both have their own expectations and strategies 
for being part of the Grid. In this Grid economy, 
resource consumers adopt the strategy of solving their 
problems at low cost within a required timeframe and 
resource providers adopt the strategy of obtaining best 
possible return on their investment. The resource 
owners try to maximize their resource utilization by 
offering a competitive service access cost in order to 
attract consumers. The users (resource consumers) have 
an option of choosing the providers that best meet their 
requirements. If resource providers have local users, 
they will try to recoup the best possible return on 
“idle/leftover” resources. In order to achieve this, the 
Grid systems need to offer tools and mechanisms that 
allow both resource providers and consumers to express 
their requirements. The Grid resource consumers 
interact with brokers (also called super-schedulers) to 
express their requirements such as the budget that they 
are willing invest for solving a given problem and a 
deadline, a timeframe by which they need results. They 
also need capability to trade between these two 
requirements and steer the computations accordingly. 
The Grid Service Providers need tools for expressing 
their pricing policies and mechanisms that help them to 
maximize the profit and resource utilization. Various 
economic models, ranging from commodity market to 
auction-based, can be adopted for deciding pricing 
strategies. The Grid infrastructure needs to support these 
economic models for resource trading. 

To date, individuals or organizations that have 
contributed resources to the Grid have been largely 
motivated by the public good, prizes, fun, fame, or 
collaborative advantage. This is clearly evident from the 
construction of private grids (but on volunteer 
resources) or research test-beds such as Distributed.net 
[9], SETI@Home [20], Condor pool [7], DAS 
(Distributed ASCI Supercomputer) [10], GUSTO [14], 
and eGrid [11]. Even commercial companies such as 
Entropia, ProcessTree, Popular Power, Mojo Nation, 
United Devices, and Parabon are exploiting idle CPU 
cycles from desktop machines to build a commercial 
computational Grid [16]. These companies are able to 
develop large-scale infrastructure for Internet computing 
and use it for their own financial gain by charging for 
access to CPU cycles for their customers without 
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offering fiscal incentive to all resource contributors. In 
the long run, this model is less likely to succeed in 
creating a maintainable and sustainable infrastructure. 
Therefore, a Grid economy seems a better for model for 
managing and handling requirements of both Grid 
providers and consumers. It is interesting to note that, 
even in electricity Grid, bid-based electricity trading 
over the Internet has been adopted to develop 
competitive forces in the electricity marketplace [27]. 

An economy approach to grid computing introduces 
a number of new issues to be addressed in addition to 
those already addressed by existing Grid systems. Grid 
toolkits such as Globus [8] have addressed the five 
challenging resource management problems introduced 
by computational grids: site autonomy, heterogeneous 
substrate, policy extensibility, resource allocation or co-
allocation, and online control. In [4], we proposed a 
“computational economy” as another key challenging 
issue that needs to be addressed for developing a service 
oriented Grid. We proposed an economy -based resource 
management architecture called GRACE (GRid 
Architecture for Computational Economy). The 
GRACE architecture is designed in such a way that it  
reuses or leverages services supported by the existing 
infrastructures (such as Globus [12], Legion [18], 
Condor/G [7], QBank [37], and NetCash [39]) as much 
as possible. It offers new services that are particularly 
missing in them for constructing an economy Grid. The 
economy Grid framework needs to provide 
infrastructure that offers the following: 

• An Information and Market directory for 
publicizing Grid entities  

• Models for establishing the value of resources  
• Resource pricing schemes and publishing 

mechanisms  
• Economic models and negotiation protocols  
• Mediators to act as a regulatory agency for 

establishing resource value, currency standards, 
and crisis handling. 

• Accounting, Billing, and Payment Mechanisms  

3. Economy Models and Related Work 
A market-based approach in computational system 
design has been the topic of research over the years 
[19][26][28][40]. Some of these systems have 
developed a substantial theoretical foundation but 
without large-scale deployment, experimental 
validation, and testing. A number of recent systems are 
attempting to apply computational economy for Web-
based computing or for cluster-based systems. Research 
in the area of artificial intelligence and agents based 
computing has explored economy -based approach for 
migration of agents and resource allocation. FIPA 

(Foundation for Intelligent Physical Agents), a 
consortium of the software agents community, has 
proposed a specification for agents negotiation [24]. 

Various economic models for resource trading and 
establishing pricing strategies have been proposed 
[6][19][27][29][41][42] and they include, 

• A Commodity Market (Flat or Demand & 
Supply driven pricing) Model 

• A Posted Price Model 
• A Bargaining Model 
• A Tendering/Contract-Net Model 
• An Auction Model 
• A Bid-based Proportional Resource Sharing 

Model 
• A Community/Coalition/Bartering Model 

In [6], we presented architecture and issues 
associated in implementing the above economic models 
in the Grid environment. In the context of business 
negotiation on the Internet these models have been 
discussed in [23]. The resource providers and 
consumers can use any one or more of these economic 
models or even a combination of them while 
establishing access price depending upon their objective 
functions. Either the GSP or the GRB can initiate 
resource trading and participate in a market like 
environment depending on their requirements. In the 
commodity market model, resource providers 
competitively set the price and advertise their service in 
business directory as service providers (see Figure 1). 
The pricing scheme can be static or dynamic in nature. 
Consumers choose resource providers through cost-
benefit analysis. The posted price model is similar to 
commodity market model except that it posts offers long 
before scheduling. In the bargaining model, providers 
and consumers negotiate for resource access cost and 
time that maximizes their objectives. In these three 
models other consumers do not influence the price for 
access to services. The negotiation happens privately 
between a consumer and a provider and there is no way 
for a consumer to know how much others value the 
resource services. Accordingly, the consumers need to 
decide whether to accept/reject offer depending on its 
private objective function.  

In the Tender/Contract Net  model, the consumer 
(GRB) invites sealed bids from several GSPs and selects 
those bids that offer lowest service cost within their 
deadline and budget. In the Auction model, producers 
invite bids from many consumers and each bidder is free 
to raise their bid accordingly. The auction ends when no 
new bids are received. The auction can be performed 
through open or closed bidding protocols. In the bid-
based proportional resource-sharing model, the amount 
of resource allocated to consumers is proportional to the 
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value of their bids.  

In the Community/Coalition/Bartering  model, a 
group of individuals can create a cooperative computing 
environment to share each other’s resources. Those who 
are contributing resources to a common pool can get 
access to resources when in need. A sophisticated model 
can also be employed for deciding the share of resources 
a contributor can obtain and can allow a user to 
accumulate credit for future needs. Systems like 
Mojonation.net employ this credit-based bartering 
model for storage sharing across the community 
network. This model works when all participants in the 
Grid are both service providers and consumers.  

Several research systems (see Table 1) have 
attempted to apply the concept of computational 
economy for information management, CPU cycles, 
Storage, and Network access. They include Mariposa 
[19], Mungi [30], Popcorn [33], Java Market [31], 
Enhanced MOSIX [32], JaWS [17], Xenoservers [34], 
D’Agents [35], Rexec/Anemone [29], Spawn [36], Mojo 
Nation [25]. These systems can manage either single or 
multiple resources and they are categorized as follows: 

• Single Domain Systems: Enhanced MOSIX and 
Rexec/Anemone. 

• Web-based Systems: Popcorn, Java Market, and 
JaWS. 

• Agent-based systems: Xenoservers and D’Agents. 
• Database/Storage systems: Mariposa and Mungi. 

Each of the resource management systems discussed 
in Table 1 follows a single model for resource trading. 
They have been designed with a specific goal in mind 
either for CPU or storage management. In order to use 
some of these systems, applications have to be designed 
using their proprietary programming models, which is 
generally discouraging, as applications need to be 
specifically developed for executing on those systems. 
Also, resource trading and job management modules 
have been developed as integrated monolithic systems. 
In our system, we have separated these two concerns 
through layered design approach. The resource trading 
services are offered as core services and they can be 
used by higher-level services/tools such as resource 
brokers. Another key advantage of our system (a 
combination of GRACE and Nimrod/G) is that it allows 
the execution of legacy applications on large wide-area 
distributed systems. 

4. Grid Architecture for Computational 
Economy (GRACE) 

A computational economy -based architecture for Grid 
resource management is shown in Figure 2. We 
generally refer to this architecture as GRACE (Grid 
Architecture for Computational Economy). This 

architecture is generic enough to accommodate different 
economic models used for resource trading for 
determining the service access cost. The key 
components of Grid include, 

• User Applications (sequential, parametric, parallel, 
or collaborative applications) 

• Higher Level Services and Tools (such as 
Resource Brokers or Market oriented 
programming environments) 

• Middleware (services resource trading and 
coupling distributed wide area resources) 

• Grid Fabric components including local resource 
managers (e.g., Queuing systems) 

As mentioned earlier, our goal is to realize this 
economy Grid architecture by leveraging existing 
infrastructures such as Globus/Legion as much as 
possible and develop new services that are particularly 
missing in them. Therefore, we mainly focus on two 
things: first, develop middleware services for resource 
trading using different economic models, second use 
these services along with other middleware services in 
developing advanced user-centric Grid resource brokers. 
Throughout this section, we discuss how we are 
realizing our economy Grid vision and show co-
existence of our modules with other systems. 

 

Figure 2: Abstract Grid Architecture  

GRACE provides services that help resource owners 
and user-agents maximize their objective functions. The 
resource providers can contribute their resource to the 
Grid and charge for services. They can use GRACE 
mechanisms to define their charging and access policies 
and the GRACE resource trader works according to 
those policies. The users interact with the Grid by 
defining their requirements through high-level tools 
such as resource brokers (also known as superschedulers 
or metaschedulers). The resource brokers work for the 
consumers and attempts to maximize user utility. They 
can use GRACE services for resource trading and 
identifying GSPs that meets its requirements.  
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4.1 Grid Resource Broker (GRB) 

The resource broker acts as a mediator between the user 
and grid resources using middleware services. It is 
responsible for resource discovery, resource selection, 
binding of software, data, and hardware resources, 
initiating computations, adapting to the changes in grid 
resources and presenting the grid to the user as a single, 
unified resource. The components of resource broker are 
the following: 

• Job Control Agent (JCA): This is a persistent 
control engine responsible for shepherding a job 
through the system.  It coordinates with schedule 
adviser for schedule generation, handles actual 
creation of jobs, maintenance of job status, 
interacting with clients/users, schedule advisor, and 
dispatcher. 

• Schedule Advisor (Scheduler): This is responsible 
for resource discovery (using grid explorer), 
resource selection and job assignment (schedule 
generation) so as to ensure that the user requirements 
are meet. 

• Grid Explorer: This is responsible for resource 
discovery by interacting with grid-information 
server and identifying the list of authorized 
machines, and keeping track of resource status 
information.  

• Trade Manager (TM): This works under the 
direction of resource selection algorithm (schedule 
advisor) to identify resource access costs. It uses 
market directory services and GRACE negotiation 
services for trading with grid service provides (i.e., 
their representative trade servers).  

• Deployment Agent (DA): It is  responsible for 
activating task execution on the selected resource as 
per the scheduler’s instruction and periodically 
update the status of task execution to JCA. 

Our Nimrod/G broker has components that support 
similar functions. 

4.2 Economy Grid Middleware in Globus 
Context 

The grid middleware offers services that help in 
coupling a grid user and remote resources through a 
resource broker or grid enabled application. It offers 
core services [2] such as remote process management, 
co-allocation of resources, storage access, directory 
information, security, authentication, and Quality of 
Service (QoS) such as resource reservation for 
guaranteed availability and trading for minimizing 
computational cost. Many of these services are already 
offered by Globus [12] components and they include, 
• Resource allocation and process management 

(GRAM).  

• Resource Co-allocation services (DUROC) 
• Unicast and multicast communications services 

(Nexus)  
• Authentication and related security services (GSI) 
• Distributed access to structure and state information 

(MDS)  
• Status and Health Monitoring components (HBM) 
• Remote access to data via sequential and parallel 

interfaces (GASS) 
• Construction, caching, and location of executables 

(GEM) 
• Advanced resource reservation (GARA) 

We provide comp onents (see Figure 3) that offer 
services required for constructing economy Grid and 
that can co-exist with systems like Globus: 

• A resource broker (e.g., Nimrod/G) 
• Various resource trading protocols  
• A mediator for negotiating between users and grid 

service providers (Grid Market Directory) 
• A deal template for specifying resource requirements 

and services offers 
• A trade server  
• A pricing policy specification 
• Accounting (e.g., QBank) and payment management 

(GBank) 
The new middleware services being proposed are 

designed to offer low-level services that co-exist with 
Globus services and infrastructure. These core services 
can be used by higher level services and tools such as 
the Nimrod/G Resource Broker that can use various 
economic models suitable for meeting user 
requirements. 

 

Figure 3 : Economy Grid Components within Globus 
context. 

The Grid service providers specifically deal with the 
following components along with Globus components: 

• Trade Server (TS): This is a resource owner agent 
that negotiates with resource users and sells access 
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to resources. It aims to maximize the resource 
utility and profit for its owner i.e., earn as much 
money as possible. It consults pricing policies 
during negotiation and directs the accounting 
system for recording resource consumption and 
billing the user according to the agreed pricing 
policy. 

• Pricing Policies : These define the prices that 
resource owners would like to charge users. The 
resource owners may follow various policies to 
maximise their profit and resource utilisation and 
the price they charge may vary from time to time 
and one user to another user. The pricing can also 
be driven by demand and supply like in the real 
market environment. That is, in this commodity 
market model, pricing is essentially determined by 
objective functions of service providers and users. 
The pricing policy can also be based on auction. In 
this auction based economic model, pricing is 
driven by how much users value for the service 
and the highest bidder wins the access to Grid 
services. 

• Resource Accounting and Charging components 
(such as GBank along with QBank) are responsible 
for recording resource usage and bills the user as 
per the usage agreement between resource broker 
(TM, a user agent) and trade server (resource 
owner agent).  

4.3 Grid Open Trading Protocols and Deal 
Template 

The resource trading protocols define the rules and 
format for exchanging commands between a GRACE 
client (Trade Manager) and Trade Server. Figure 4 
shows a finite state machine representation of multilevel 
negotiation protocols that both client and server need to 
follow for the bargaining/tender model. In this model, 
the Trade Manager (TMs) contacts Trade Server (TSs) 
with a request for a quote. The TM specifies resource 
requirements in a Deal Template (DT), which can be 
represented by a simple structure with its fields 
corresponding to deal items or by a “Deal Template 
Specification Language”, similar to the ClassAds 
mechanism employed by the Condor [7] system. The 
contents of DT include, CPU time units, expected usage 
duration, storage requirements along with its initial 
offer. The TM looks into DT and updates its contents 
and sends back to TS. This negotiation between TM and 
TS continues until one of them indicates that its offer is 
final. Following this, the other party decides whether to 
accept or reject the deal. If accepted, then both work as 
per the agreement mentioned in the deal. The overhead 
introduced by the multilevel point-to-point protocol can 

be reduced when resource access prices are announced 
through grid information services (e.g., MDS) or market 
directory.   

Some interaction protocols for a business negotiation 
on the Internet have been presented in [23]. This paper 
highlights some commonalties in the structure of 
different price negotiation mechanisms such as fixed 
price sales, auctions, and brokerages. These business 
negotiation models and protocols are also applicable for 
our resource trading and we have already explored such 
models and protocols in our resource management and 
scheduling system. 

Figure 4: A finite state representation of resource 
trading negotiation (for market/bargain model). 

4.4 Pricing, Accounting, and Payment 
Mechanisms 

In a computational economy Grid environment, both 
resource owners and users want to maximize their 
benefits. As there will be many GSPs offering similar 
services, they need to have competitive pricing structure 
in order to attract users, efficiently utilize resources, and 
maximize profit. The resources consumed by the user 
applications need to be accounted and charged. Various 
payment mechanisms need to be supported. The users 
can purchase resource access credits in advance or pay-
after-usage. Each GSP can maintain this by using 
systems like QBank or there can be global Grid-wide 
bank called that mediates payment for services accessed 
by the user.  Figure 5 shows various components at GSP 
node and their interactions during resource trading, 
consumption, metering (measuring), billing, and 
payment handling. 
How to determine the Price? 
A simple pricing scheme is a fixed price model, but this 
does not work when the users demand QoS. This 
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requirement changes between applications and across 
time. The demand/supply and QoS driven pricing 
schemes have been investigated by many researchers in 
the context of software Agents [21][22]. The pricing 
schemes based on various parameters can be developed 
and they include, 

• A flat price model (the same cost for applications 
and no QoS like in today’s Internet [44])  

• Usage timing (peak, off-peak, lunch time like 
pricing telephone services) 

• Usage period and duration (short/long) 
• Demand and supply (e.g., Smale model [46]) 
• Foresight-based [21] (i.e., an ability to model and 

predict responses by competitors) 
• Loyalty of Customers (like Airlines favoring 

frequent flyers!) 
• Historical data 
• Advance agreement/contract with service provides 
• Calendar based 
• Bulk Purchase  
• Voting in which trade unions decide pricing 

structure 
• Resource capability as benchmarked in the capital 

market 
• Application areas in which academic R&D or public 

good applications can be offered at cheaper rate 
compared to commercial applications. 
 

 
Figure 5: An Interaction between GSP resource 

management components. 

 In [22], five different provider pricing strategies, 
ranging widely from ones that require perfect 
knowledge and unlimited computational power to ones 
that require very little knowledge or computational 
capability, are employed in two different buyer 
populations, namely quality-sensitive and price sensitive 
buyers. The resulting collective dynamics have been 
investigated using a combination of analysis and 
simulation. In a population of quality-sensitive buyers, 

all pricing strategies lead to a price equilibrium 
predicted by a game-theoretic analysis. However, in a 
population of price-sensitive buyers, most pricing 
strategies lead to large-amplitude cyclical price wars. 
These pricing strategies and issues are also applicable to 
the Grid and strategies need to be designed such that the 
resource providers benefit through efficient resource 
utilization and consumers will have the ability to trade-
off between cost and timeframe in the Grid marketplace. 
Service items to be Charged and Accounted 

User applications have different resource requirements 
depending on computations performed and algorithms 
used in solving problems. Some applications can be 
CPU intensive while others can be I/O intensive or a 
combination. For example, in CPU intensive 
applications it may be sufficient to charge only for CPU 
time whilst offering free I/O operations.  This scheme 
cannot be applied for I/O intensive applications. 
Therefore, consumption of the following resources need 
to be accounted and charged: 

• CPU - User time (consumed by user App.) and 
System time (consumed while serving user App.)   

• Memory 
• Maximum resident set size - page size 
• Amount of memory used 
• Page faults 
• Storage used 
• Network activity  
• Signals received, context switches 
• Software and Libraries accessed (particularly 

required for the emerging ASP world). 
Access to each these entities can be charged 
individually or in combination. Combined pricing 
schemes need to have a costing matrix that takes a 
request for multiple resources in pricing. An economic 
model proposed by Smale [46] allows formulation of 
such pricing schemes for resource allocation. 
Payment Mechanisms 
A computational economy Grid needs to support various 
payment mechanisms. They include: 

• Prepaid – Pay and use in which users need to buy 
credits in advance from GSPs or Grid Bank 

• Use and pay later 
• Pay as you go 
• Grants based 

Each GSP can bill their users directly and handle all 
payment processing issues themselves. This method 
introduces a great burden for both providers and users in 
a large-scale Grid environment. This can be simplified 
by having mediators like a Grid-wide Bank. The users 
can inform GSPs about their Grid Bank account details 
for which they can charge directly or users can pay by 
other electronic cash systems. This can be achieved by 
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using digital currency mechanisms such as: 

• NetCheque: [38] - Users registered with NetCheque 
accounting servers can write electronic cheques and 
send them to service providers. When deposited, the 
balance is transferred from sender to receiver 
account automatically.  

• NetCash  [39] - This supports anonymity and it uses 
the NetCheque system to clear payments between 
currency servers. 

• Paypal [47] –  This is an example of credit-card 
based automated mediator for payments processing. 

Such electronic payment mechanisms satisfy the diverse 
requirements of service providers and their users. We 
are still investigating mechanisms for integrating such 
systems in our economy grid infrastructure.    

4.5 System Prototype & Demo Experience 

A prototype implementation of the Nimrod/G resource 
brokering and trading mechanisms has been 
demonstrated during the HPDC 2000 conference in 
Pittsburgh. In this parameter study experiment, we have 
been able to perform scheduling of parametric 
computations over Grid resources in Australia (Monash 
University Linux cluster and Solaris workstation) and 
the United States (DOE Argonne National Laboratories 
SGI/IRIX, IBM SP2, and Sun HPC machines, USC/ISI 
SGI-IRIX machine, and University of Virginia Linux 
cluster). These Unix-class HPC machines were Grid 
enabled by using Globus, Legion, and Condor/G system 
services. The modular or component-oriented 
architecture of Nimrod/G [3] resource broker allowed us 
to develop mechanisms for scheduling computations 
over resources enabled by these Grid middleware 
services (with minimal effort). The users prepare their 
application for parameter studies using Nimrod as usual 
[1]. The resulting parameter-sweep application can be 
executed on the Grid by submitting it to the Nimrod/G 
engine that mediates between the scheduler and 
deployment modules. The Nimrod/G scheduler uses 
directory services like the Globus MDS for resource 
discovery and the GRACE trading services for 
establishing an access price. Depending on the user 
preferences such as deadline, budget, and optimization 
parameters, Nimrod selects the best scheduling 
algorithm [5] for generating the schedule and assigning 
jobs to suitable resources. The Deployment Agent (DA) 
selects the right service module (Globus 
GASS/GEM/GRAM, Legion, or Condor/G) depending 
on the resource type for staging job/application and data 
on (remote) Grid resources, initiate computations and 
monitor their progress. As the performance of the Grid 
resources is not static, Nimrod/G performs rescheduling 
when scheduling event is raised.  When job execution is 
finished, the DA gathers results from resources to the 

user space. During HPDC 2000 Demo, we started an 
experiment on our Solaris workstation in Australia from 
Pittsburgh and connected to the Nimrod/G engine for 
computational monitoring and steering. Using this 
remote steering client, we have been able to change 
deadline and budget to trade-off cost vs. timeframe for 
online demonstration of Grid marketplace dynamics.  

Nimrod/G keeps record of all resource utilization and 
agreed pricing for resource access for accounting 
purpose. This information is useful for resource 
consumers for computational steering and verifying 
discrepancies in GSP billing statement and the actual 
amount of consumption. Resource provider can keep a 
record of resource consumption and bill/charge the user 
according to the agreed pricing. 

5. Resource Trading and Scheduling 
Experimentation 

In our previous experiments  (performed on GUSTO 
test bed in 1999 [1]), the resource prices were hardwired 
into a file owned by the user. It was up to the user to 
ensure the prices in this file reflected the actual prices 
for each resource, and they were fixed for the entire 
duration of the experiment. This meant that the user 
needed to set the price to the highest price for a resource 
to ensure that their budget was not exceeded. This 
limitation is overcome by using GRACE resource-
trading services. The Nimrod/G scheduler has been 
modified to use services of Grid Trade Servers running 
on each (gatekeeper) resource for establishing 
resource/service price. In order to test the operation of 
the Grid Trade Server, we performed an experiment by 
implementing the Posted Price Market Model for the 
Nimrod/G resource broker. A Grid testbed (shown in 
Figure 6) containing computational resources across 
four continents has been used in this experiment.  

 
Figure 6: Global Economy Grid (EcoGrid) Testbed. 
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Resources selected for this experiment from the 
testbed are shown in Table 2. To test the Grid Trade 
Server with the current scheduler, we ran an experiment 
entirely during peak time and the same experiment 
entirely during off-peak time. It is important to note 
access price variations during peak and off-peak times 
and also time difference between Australia and US. The 
access price is expressed in Grid units (G$) per CPU 
second.  

We selected 5 systems (shown in Table 2) from the 
testbed, each effectively having 10 nodes available for 
our experiment. Monash University has a 60-processor 
Linux cluster running Condor, which was reduced to 10 
available processors for the experiment. Similarly, a 96-
node SGI at Argonne National Laboratory (ANL) was 
made to provide 10 nodes by using Condor glidein  to 
add 10 processors to the Condor pool. An 8-node Sun at 
Argonne and a 10-node SGI at the Information Sciences 

Graph 1: Computational Scheduling during Australian Peak (or US off-peak) Time.
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Institute (ISI) of the University of Southern California 
were accessed using Globus directly. Argonne’s 80-
node SP2 was also accessed directly through Globus. 
We relied on its high workload to limit the number of 
nodes available to us. We assigned artificial-cost (access 
price per second) for each of those resources depending 
on their relative capability. This is achieved by setting 
resource cost database, which is maintained on each of 
the resources by their owners. The resource cost 
database contains access cost (price) that they like to 
charge to all their grid users at different times of the 
day. The access price is generally various from users to 
users and time to time. The resource broker negotiates 
with trading servers for establishing access price using 
resource trading services (APIs) provided by the 
GRACE infrastructure. 

We performed an experiment of 165 jobs. Each job 
was a CPU-intensive task of approximately 5 minutes 
duration. The experiment was run twice, once during the 
Australian peak time, when the US machines were in 
their off-peak times, and again during the US peak, 
when the Australian machine was off-peak. The 
experiments were configured to minimise the cost, 
within one-hour deadline. This requirement instructs the 
Nimrod/G broker to use “Cost-Optimization Scheduling 
algorithm” [5] in scheduling over the grid. 

The number of jobs in execution/queued on resources 
(Y-axis) at different times (X-axis) during the 
experimentation is shown in Graph 1 and Graph 2. The 
results for the Australian peak experiment (Graph 1) 
show the expected typical results. After an initial 
calibration phase, the jobs were distributed to the 
cheapest machines for the remainder of the experiment. 
This characteristic of the scheduler is clearly visible in 
the Graphs 1 and 2. During Australian peak experiment, 
after calibration period, the scheduler excluded the 
usage of Australian resources as they were expenses and 
scheduler predicted that it could still meet the deadline 
using cheaper resources from US resources, which are 
in off-peak time phase. However, during Australia off-
peak experiment, the scheduler never excluded the 
usage of Australian resources and in fact, it excluded the 
usage of some of the US resources as they were 
expensive at that time due to US in peak-time phase and 
their resources were expensive comparatively. The 
results for the US peak experiment (Graph 2) are 
somewhat more interesting. When the Sun becomes 
temporarily unavailable, the SP2, at the same cost, was 
also busy, so a more expensive SGI is used to keep the 
experiment on track to complete before the deadline. 

When the scheduling algorithm tries to minimize the 
cost, the total cost Australian peak time experiment is 
471205 units and the off-peak time is 427155 units. The 
result is that costs were quite low in both cases. An 

experiment using all resources without the cost 
optimization algorithm during the Australian peak cost 
686960 units for the same workload. The cost difference 
indicates a saving in computational cost and it is 
certainly a successful measure of our budget and 
deadline-driven scheduling on the grid. 

Graph 3: No. of Resources in use @ AU Peaktime. 

Graph 4: Cost of Resources in use @AU Peaktime. 
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different times during the execution of scheduling 
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deadline is meet and at the same time it ensures that the 
cost of computation is within a given budget. 

The total cost of resource (sum of the access price for 
all resources) in use at different times during the 
execution of scheduling experimentation at Australian 
peak-time is shown in Graph 3. It is interesting to 
observe the pattern of variation of cost during 
calibration phase is similar to that of number of 
resources in use. However, this is not the same as 
experiment progresses and in fact the cost of resources 
decreases almost linearly even thought resources in use 
does not decline at that rate. The reason for this 
behavior is that a large number of resources that the 
scheduler selected were from off-peaktime zone (i.e., 
US was in off-peak time when Australia was in Peak 
hours) as they were cheaper. Another reason is that the 
EconomyGrid testbed contains more US resources 
compared to Australian resources.  

Graph 5: No. of Resources in use @ AU Off-peaktime. 

Graph 6: Cost of Resources in use @AU Off-Peaktime. 

Similar behavior did not occur in scheduling 
experiment conducted during Australian off-peak time 

(see Graph 5 and 6). The variation pattern of total 
number of resources in use and their total cost is similar 
due to the fact that the larger numbers of US resources 
were available cheaply. Although the scheduler has used 
Australian resources throughout the experiment (see 
Graph 2), the scheduler had to depend on US resources 
to ensure that the deadline is meet even if resources 
were expensive. 

6. Conclusion and Future Work 
We have discussed motivations for creating an economy 
Grid and issues involved in the development of resource 
management systems driven by computational 
economy. We proposed Grid Architecture for 
Computational Economy (GRACE) framework that 
takes benefits of existing middleware services and tools 
and offers new services that are essential for realizing a 
real world Grid. We briefly discussed economy models 
for resource trading in the Grid. They include 
commodity market, posted prices, bargaining, tendering, 
auction, proportional resource sharing or shareholder, 
and community/coalition/bartering models. We 
discussed the usage of resource trading in Grid 
brokering for posted price economic model and 
presented preliminary experimental results. The 
computational economics driven brokering system can 
be applied to peer-to-peer computing [48] applications 
that enable content sharing. Systems like Napster[49] or 
Gnutella [50] could use infrastructure that is similar to 
GRACE for encouraging people to share files, contents, 
or music in larger scale by providing them economic 
incentive. The brokering systems like Nimrod/G can 
discover the best content provider that meets consumers 
QoS requirements. 

A computational economy approach for Grid 
resource management requires extensive exploration. 
For example, currently our Nimrod/G scheduler does 
not allow changes in the price of resources once initial 
scheduling decisions are made. That is, in scheduling 
the remaining jobs over the resources within the 
remaining budget, the scheduler makes significant 
assumptions about the future price of the resources. In 
addition, the scheduler uses the current price to calculate 
the cost of jobs that have completed in the past. Hence, 
using the current scheduler in a system where price 
varies over time makes the cost estimations 
meaningless, and the budget cannot be guaranteed. In 
order to overcome this limitation, we are currently 
investigating new scheduling algorithms that not only 
adapt to dynamic changing in resource conditions 
during runtime, but also to changes to access prices 
even during the execution of jobs. We will also be 
investigating new economic models such Auctions and 
Contract Net protocols for resource allocation. We 
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expect that economy driven approach to resource 
management and scheduling will make a great impact 
on the eventual success and widespread adoption of the 
Grid in day-to-day computational activities. 
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SYSTEM NAME ECONOMY MODEL PLATFORM 
 

COMMENTS 
 

Mariposa [19] 
(UC Berkeley) 

Bidding (Tendering/ 
ContractNet). Pricing based on 
load and historical info.  

Distributed 
database. 

It supports budget-based query 
processing and storage 
management.   

Mungi [30] 
(UNSW, Sydney) 
(It is a single-address-
space operating system)  

Commodity market (renting 
storage space that increases as 
available storage runs low, 
forcing users to release 
unneeded storage.) 

Storage servers. 

It supports storage objects based 
on bank accounts from which rent 
is collected for the storage 
occupied by objects. .  

Popcorn [33] 
(Hebrew Uni., Israel) 

Auction. (Highest bidder gets 
access to resource and it 
transfers credits from buyer to 
the seller account.) 

Web browsers. 
(Popcorn based 
parallel code run 
within a browser 
of CPU cycles 
seller.) 

Popcorn API-based parallel 
applications need to specify a 
budget for processing each of its 
modules. 

Java Market [31] 
(John Hopkins Uni) 

QoS based computational 
market. (The resource owner 
receives f(j, t) award for 
completing f in time t.) 

Web browsers. 
(JavaMarket runs 
standard Java 
Applets within a 
browser).  

One can sell CPU cycles by 
pointing Java-enabled browser to 
Portal & allow execution of 
Applets.  

Enhanced MOSIX [32] 
(Hebrew Uni., Israel) 
 

Commodity market (resource 
cost of each node is known) 

Clusters of 
computers (Linux 
PCs) 

It supports process migration such 
that overall cost of job execution 
is kept low.  

JaWS [17] 
(Uni. of Crete, Greece) 

Bidding (Tendering) Web browsers It is similar to Popcorn. 

Xenoservers [34] 
(University of 
Cambridge) 

Bidding (Proportional 
resource sharing) Single computer 

Accounted execution of untrusted 
code.  

D’Agents [35] 
(Dartmouth College) 

Bidding (Proportional 
resource sharing) 

Single computer 
or Mobile Agents 

Agents bid function is 
proportional to benefit. 

Rexec/Anemone [29] 
(UC Berkeley) 

Bidding/Auction (for 
proportional resource sharing) 

Clusters 
(A market-based 
Cluster Batch 
Queue System) 

Users assign utility value to their 
application and system allocates 
resources proportionally.  

Mojo Nation [25] 
 
(Autonomous Zone 
Industries, CA) 

A Credit-based partnership 
and/or bartering model.  
(Contributors earn credits by 
sharing storage and spend 
them when required)  

Network storage. 

It is a content-sharing community 
network. It combines marketplace 
and bartering approach for 
file/resource sharing. 

Spawn [36] 
(Xerox PARC) 

Second-price Auction (uses 
sponsorship model for funding 
money to each task depending 
on some requirements) 

Network on 
workstations. 
Each WS 
executes a single 
task per time slice 

It supports execution of 
concurrent program expressed in 
the form of hierarchy of processes 
that expand and shrink size 
depending on the resource cost. 

Supercomputing centers 
[43] (e.g., Uni. of 
Manchester computing 
services for academic 
research)  

Commodity market and 
priority-based model (they 
charge for CPU, memory, 
storage, and human support 
services) 

MPPs, Crays, and 
Clusters, and 
Storage servers. 

Any application can use this 
service and QoS is proportional to 
user priority and scheduling 
mechanisms. 

Table 1: A computational economy based resource management systems. 
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Resource Type & 
Size (No. of nodes) 

Organization & 
Location 

Grid Services 
and Fabric 

Price @ AU 
peak time  

Price @ AU 
off peak time. 

Linux cluster (60 
nodes) 

Monash, Australia Globus/Condor 20 5 

IBM SP2 (80 nodes) ANL, Chicago, USA Globus/LL 5 10 
Sun (8 nodes) ANL, Chicago, USA Globus/Fork 5 10 

SGI (96 nodes) ANL, Chicago, USA Globus/Condor-G 15 15 

SGI (10 nodes) ISI, Los Angeles, USA  Globus/Fork 10 20 

Table 2: A Sample of Economy Grid Testbed Resources used in the experiment. Price is G$ per CPU sec. 
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