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Abstract. The management of cloud resources for dynamic workloads
presents a significant challenge. Learning-driven methods, including deep
reinforcement learning, have emerged as promising solutions but neces-
sitate extensive datasets for model training. Due to the practical con-
straints of acquiring real-world data, simulators are often used to gener-
ate the necessary training workloads. However, a critical bottleneck arises
from the architectural disconnect between CPU-bound simulation envi-
ronments and GPU-accelerated training processes, leading to substantial
data transfer overhead. To address this inefficiency, we propose a novel
GPU-accelerated simulator implemented in the Julia programming lan-
guage. Our framework is designed to unify simulation, model training,
and inference, allowing these phases to execute almost entirely on GPUs.
This approach effectively eliminates the traditional CPU-GPU commu-
nication bottleneck. Experimental evaluations demonstrate substantial
performance gains over existing simulators, achieving up to a 96% re-
duction in wallclock time. This work facilitates more efficient and scal-
able development of learning-driven cloud resource management models,
offering significant potential for both research and practical applications
in cloud computing.

Keywords: Cloud Resource Optimisation · GPU-Acceralated Simula-
tion · learning-driven Resource Management.

1 Introduction

Cloud computing has revolutionised the digital landscape by enabling scal-
able, on-demand access to computational resources, driving advancements across
sectors like business, healthcare, and scientific research[1]. However, the rapid
growth of cloud services has come at a cost, particularly in terms of energy con-
sumption and resource management challenges. Efficient resource management,
which includes dynamic provisioning and scheduling of workloads, is critical
to maintaining performance while minimising operational costs. Traditional re-
source management approaches, which rely heavily on static heuristics or manual
tuning, are ill-suited to handle the growing complexity and variability of mod-
ern cloud workloads. In response, learning-based cloud resource management
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approaches, particularly those using machine learning and reinforcement learn-
ing techniques, have garnered attention for their potential to adapt dynamically
to real-time changes. Yet, a significant gap remains: these learning-driven ap-
proaches require vast amounts of data for training, which is challenging to gen-
erate in real-time, making cloud simulators an indispensable tool for addressing
this need.

Cloud simulators, such as CloudSim[2] and recently released CloudSim 7G[3],
enable the generation of synthetic workload data in controlled environments,
helping researchers train learning-driven models without the high costs and re-
source constraints associated with real-world cloud platforms. These simulators
mimic real-world cloud environments by providing metrics on CPU utilisation,
memory usage, network traffic and latency, which are essential for training AI
models to optimise resource management. However, existing simulators are usu-
ally CPU-bound, which has limited parallelism, slow neural network training and
inference, poor scaling with high-dimensional spaces compared to GPU-based
ones. In this research, we present a cloud simulator integrated with GPU accel-
eration to speed up the data generation process, enabling faster model training.
Our approach streamlines the workflow by reducing the time and computational
cost associated with training AI models for resource management tasks.

Our main contributions are summarised as follows:

– We propose a high-performance cloud simulator that can utilise GPUs. To
the best of our knowledge, this work appears to be among the first to propose
cloud simulation on GPUs. This work can accelerate future research in deep
learning and reinforcement learning-based cloud resource management.

– We design the architecture of such a simulator and detail the core compo-
nents.

– We implement the core simulator in the Julia programming language. Com-
pared to predominant cloud simulators such as Cloudsim[2], it reduces sim-
ulation wallclock time by 96%.

2 Background and Related Work

Cloud simulators play a pivotal role in the design, development and optimisa-
tion of cloud resources, providing researchers and developers with a platform to
test and validate algorithms in controlled environments. They can be used for
evaluating and optimising infrastructure performance, cost efficiency, energy con-
sumption, scheduling algorithms, and service-level objectives without incurring
the high costs and complexity of real-world deployment. Several cloud simula-
tors have emerged to meet the needs of the cloud computing community, each
offering distinct features and benefits.

CloudSim[2][3] is one of the most widely used and extensible cloud computing
simulators with many extensions created by the research community. Developed
by the CLOUDS Lab at the University of Melbourne, it provides a comprehen-
sive framework for modelling and simulating cloud environments, including data
centres, virtual machines, and user workloads. CloudSim enables researchers to
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study cloud resource management techniques, such as scheduling, load balancing,
and energy-efficient provisioning, without the need for a real cloud infrastruc-
ture.

iCanCloud [4] has a highly modular and extensible model that focuses on
predicting the trade-offs between performance and costs in cloud environments,
helping users simulate large data centres with minimal computational resources.
iCanCloud emphasises economic modelling, allowing users to predict the cost-
performance ratio of different cloud setups. The main limitation of iCanCloud
is its steep learning curve, as it requires a deep understanding of the underlying
architecture to customise simulations.

GreenCloud [5] is a cloud simulator tailored for energy-aware cloud comput-
ing research. Its primary focus is on modelling the energy consumption of data
centre networks, virtual machines, and servers. Researchers use GreenCloud to
test and evaluate energy-efficient cloud computing solutions and analyse the im-
pact of different resource management policies on power consumption.[6] While
GreenCloud excels at energy modelling, it has limited support for some advanced
cloud features, such as complex scheduling algorithms or the simulation of dy-
namic, heterogeneous workloads.

SimGrid [7] provides a versatile framework for simulating distributed com-
puting infrastructures, including clouds, grids, and peer-to-peer systems. It is
known for its flexibility and accuracy in simulating large-scale environments and
allows the study of distributed systems in both controlled and real-world condi-
tions. However, its complexity and steep learning curve can be a challenge for
users unfamiliar with distributed systems.

GroudSim[8] is a simulation framework for both grid and cloud computing
environments. It is designed to evaluate job scheduling algorithms, resource al-
location policies, and the behaviour of distributed applications under different
conditions. GroudSim integrates cloud and grid simulation, allowing users to
model hybrid environments that combine cloud and grid resources. This makes
it particularly useful for research in areas that overlap both paradigms, although
it may not be as specialised as other simulators in purely cloud-based scenarios.

Simulator
Focus Area Strengths Limitations
Extensibility Language Workload type

CloudSim[2]
General cloud simulation Widely used, flexible, comprehensive framework Limited scalability for large-scale environments

Highly extensible Java Batch, interactive

iCanCloud[4]
Performance-cost modelling Detailed economic modelling, modular Steep learning curve, requires deep customisation

Extensible for specific cloud providers C++ Batch, Real-time

GreenCloud[5]
Energy efficiency Focus on energy modelling in data centres Limited support for complex scheduling

Moderate extensibility C++ (with NS2/NS3) Energy-efficient workload

SimGrid[7]
Distributed systems (cloud, grid, HPC) Accurate large-scale simulation, flexible High complexity, steep learning curve
Extensible across distributed paradigms C large-scale distributed systems, batch processing, real-time distributed applications

GroudSim[8]
Grid and cloud computing Hybrid cloud/grid simulation Not specialised for pure cloud environments

Supports hybrid environments Java Hybrid cloud/grid workloads, batch jobs

This Work
General cloud simulation High performance, flexible, comprehensive framework Less popular programming language

Support integration with other language Julia Batch, interactive

Table 1: Comparison of Cloud Simulators

Table 1 compares the differences of related work in the focus area, strengths,
limitations, extensibility, programming language and workload type. While these
simulators provide a robust platform for experimentation, one common limi-
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tation is that they are CPU-bound, which creates bottlenecks when training
learning-driven models that require extensive data, as deep learning typically
leverages GPU acceleration. Additionally, many cloud simulators lack function-
alities such as real-time metric collection, which makes it difficult to integrate
into dynamic, real-world cloud environments. The integration of GPU-based sim-
ulation and real-time metric generation is a growing area of interest, as these
enhancements could significantly improve the utility of simulators for learning-
driven cloud resource management research. Therefore, our proposed new GPU-
driven simulation system is a timely contribution.

3 Architecture and Core Components

To overcome the aforementioned shortfalls in existing simulators, we propose a
novel cloud simulation framework. This section details its architecture design
and system components. Figure 1 demonstrates the core components of the pro-
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posed simulation framework. The simulator consists of six main components:
Environments The environments module provides a configurable and extensible
simulation substrate for evaluating resource management strategies in cloud and
edge computing infrastructures. It includes support for CloudSim-style abstrac-
tions such as Cloudlets, Physical Machines (PMs), and Virtual Machines (VMs),
as well as more lightweight container-based deployments. By modelling resource
heterogeneity and dynamic workload arrivals, researchers can simulate a wide
range of scenarios.

Policies Module For simple scheduling problems, such as VM-to-PM map-
ping or container-to-VM mapping, basic heuristics and meta-heuristics are im-
plemented as baselines. This component implements a wide range of baseline
and advanced scheduling policies, spanning rule-based heuristics (e.g., HEFT,
Round-Robin), metaheuristics (e.g., Genetic Algorithms, Particle Swarm Opti-
misation, NSGA-II), and learned strategies. These policies can be used individ-
ually or as part of hybrid ensembles for comparative evaluation. The availability
of standard benchmarks enables fair comparisons and ablation analyses. Re-
searchers can also prototype novel policy paradigms and plug them into the
experimental pipeline. The policy module is the locus of control decisions and
central to the simulator’s research utility.

The Workload Modelling component captures the probabilistic and empiri-
cal behaviour of workloads and system dynamics. It integrates surrogate mod-
elling techniques to approximate performance and energy metrics, thereby re-
ducing the computational burden of detailed simulation. The component also
supports stochastic queuing models and statistical workload distributions (e.g.,
Poisson arrivals, Normal durations) to emulate realistic system behaviour under
uncertainty. This flexibility enables controlled scenario generation and validation
against established analytical baselines. The module is critical for training learn-
ing agents under both abstract and trace-driven assumptions. The RL Toolkit
implements several baseline algorithms that researchers can use to compare and
evaluate their own new algorithms. It supports running parallel experiments and
managing experience buffers and logs. A few baseline algorithms such as Rain-
bow DQN, Reinforce[9], [10], A2C[11], A3C[12], TRPO[13], PPO[14], DDPG[15]
are implemented and provided as baselines.

Distributed Toolkit stores agent-environment interaction tuples—comprising
state, action, reward, and next state—for later reuse during training. It sup-
ports both online (on-policy) and offline (off-policy) learning, depending on the
algorithm employed. Replay mechanisms enhance sample efficiency and training
stability, particularly for deep neural networks. The buffer can be partitioned
or prioritised based on importance sampling or temporal difference error to ac-
celerate convergence. It plays a crucial role in decoupling data collection from
gradient updates, thereby facilitating parallelism and robustness.

The plugin architecture allows seamless interoperability with external pro-
gramming languages and ML toolkits. It supports JavaCall, PythonCall, and
CCall interfaces, facilitating cross-language composition and reuse of established
libraries. These are Julia’s native ways to interface with those languages. This
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enables integration of learning models written in TensorFlow[16], PyTorch[17], or
exported via ONNX. By leveraging these mature ecosystems, the simulator ben-
efits from advanced neural architectures and pretrained components. The plugin
system ensures extensibility and lowers the barrier to adopting the simulator in
diverse research contexts.

The monitoring subsystem provides real-time telemetry collection for both
simulation and infrastructure layers. Prometheus integration enables time-series
analysis of CPU, memory, and energy metrics to support feedback-driven learn-
ing and profiling. These insights can be used to inform reward design, identify
resource bottlenecks, and validate the effectiveness of policies. Monitoring data
can also support closed-loop control when integrated with online learning algo-
rithms.

4 Design and Implementation

To design and develop a novel learning-driven cloud simulator, the first choice to
make is the programming language to implement it with. As discussed in Table 1,
existing cloud simulators are mainly implemented in JAVA or C/C++, although
Python has become the de facto programming language in deep learning, with
PyTorch and Tensorflow as the primary DL frameworks. Those frameworks are
in fact implemented with highly optimised C/C+ code[16], [17]. As a scripting
language with a global interpreter lock (GIL), Python is known to be slower than
other languages. This slowness becomes a problem in simulator or reinforcement
learning-based policy research, because these use cases require billions of simu-
lation steps to be executed. To tackle this problem, we chose Julia over Python
for developing a learning-driven cloud resource management simulator for the
following reasons: Performance and Speed Julia is designed for high-performance
computing with Just-In-Time (JIT) compilation via LLVM, which allows Julia
code to run as fast as C or Fortran in many cases. This is crucial for simula-
tors that require fast execution of complex numerical calculations or large-scale
simulations, as seen in cloud resource management tasks.

Ease of Writing High-Performance Code In Julia, high-level code often per-
forms on par with low-level languages like C, without needing the programmer
to drop to lower-level languages for optimisation. This makes it easier to develop
and maintain high-performance code, particularly for cloud simulation models
that handle resource scheduling, machine learning, and optimisation algorithms
in real-time.

Support for Machine Learning and Numerical Computing Julia provides na-
tive support for machine learning and numerical computing through libraries
such as Flux.jl for machine learning and DifferentialEquations.jl for simulation
and differential equation modelling. These tools are part of Julia’s ecosystem, al-
lowing seamless integration between high-performance simulations and learning-
driven models.

Parallelism and Distributed Computing Julia has built-in support at the lan-
guage level [18] for parallelism and distributed computing with simple syntax.
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These features are handy for cloud simulators, where tasks need to be scheduled
across distributed systems or simulated on multiple cores or machines. Julia’s
straightforward handling of concurrency enables efficient scaling for extensive
simulations.

GPU Integration Julia integrates seamlessly with GPUs through packages
like CUDA.jl, which allows you to write GPU kernels directly in Julia, without
needing a separate language like CUDA-C.

Numerical Accuracy and Mathematical Libraries Julia is built with high nu-
merical accuracy in mind, particularly for scientific and mathematical comput-
ing, ensuring that floating-point precision and other numerical operations are
handled efficiently and accurately.

Scalability As a learning-driven cloud resource management simulator scales
in complexity (e.g., larger workloads, more intricate machine learning models),
Julia’s performance does not degrade as significantly as Python’s in heavy com-
putational scenarios. The ability to run simulations, train models, and perform
inference all within Julia’s ecosystem, without switching between languages or
environments, ensures more streamlined scalability.

To implement a complex cloud simulator, building from scratch is a chal-
lenging task, if not infeasible. Hence, we surveyed and built upon some open
source libraries that are useful for our simulator. The selected libraries with
their description and relevance are listed in Table 3 in the appendix section.

5 Core Simulation Framework Using GPUs

GPUs are particularly well-suited for processing matrices and vectorised envi-
ronments due to their architecture, which is optimised for parallel computations
and data-level parallelism (DLP): 1) They have numerous cores (thousands,
compared to CPUs’ few cores) that can handle many operations in parallel.
This makes them highly effective for vectorised computations where the same
operation needs to be applied to multiple data points, such as matrix operations
in machine learning or simulations. 2) The architecture of GPUs is designed for
Single Instruction, Multiple Data (SIMD) execution, where a single instruction
operates on multiple data elements simultaneously, improving the efficiency of
vectorised operations. 3) Libraries like CUDA and cuBLAS allow developers to
leverage GPUs for efficient matrix and tensor operations. These libraries are opti-
mised for performing mathematical computations, such as matrix multiplication
or convolutions, which are core operations in many vectorised workloads.

5.1 Modelling Cloud Environment as Vectorised Environment

Inspired by CloudSim[2], we model cloud environments as a collection of entities:
Data Centre, Hosts, VMs. For each physical host at time t, denoted as Ht,
consider both capacity and current utilisation, which is given by:

Ht =

[
H

u(t)
cpu H

u(t)
mem H

u(t)
iops H

u(t)
bandwidth ...

H
c(t)
CPU H

c(t)
mem H

c(t)
iops H

c(t)
bandwidth ...

]
(1)
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Where H
u(t)
R reprenents resource utilisation of host H at time t, and H

c(t)
R

denotes resources capacity of Host H. In the initial implementation, resource
R = [CPU,mem, iops, bandwidth, ...]. This entity can be easily extened with
Julia’s multi-dispatch paradigm if a new type of resources needs to be considered.
Then, a data centre DC consisting of n hosts can be represents as a three-
dimensional matrix.

DC =


H1

H2

. . .

Hn

 =



[
H

u(t)
cpu H

u(t)
mem H

u(t)
iops H

u(t)
bandwidth . . .

H
c(t)
CPU H

c(t)
mem H

c(t)
iops H

c(t)
bandwidth . . .

]
[
H

u(t)
cpu H

u(t)
mem H

u(t)
iops H

u(t)
bandwidth . . .

H
c(t)
CPU H

c(t)
mem H

c(t)
iops H

c(t)
bandwidth . . .

]
. . .[

H
u(t)
cpu H

u(t)
mem H

u(t)
iops H

u(t)
bandwidth . . .

H
c(t)
CPU H

c(t)
mem H

c(t)
iops H

c(t)
bandwidth . . .

]


(2)

Many data centres are typically organised with different physical tiering, for
instance, multiple floors, server rooms and racks. In such a case, those entities can
be further extended by adding additional dimensions, e.g. to add a server rack di-
mension, DC becomes a four-dimensional matrix instead of a three-dimensional
one.

5.2 Modelling the network behaviour

Modelling the network behaviour in a cloud environment should also be an es-
sential consideration. While data centres can use different network topologies in
their environments, for instance, fat-tree, star topologies, mesh topology, etc.,
the QoS parameters such as latency can be modelled as a multi-dimensional ad-
jacency matrix. A multi-dimensional adjacency matrix extends the concept to
represent relationships between nodes across multiple dimensions or layers. In
a multi-layered network, a graph consists of various layers, and each layer has
its own adjacency matrix. The relationships between the same nodes across dif-
ferent layers (or dimensions) can also be captured. Hence, a multi-dimensional
adjacency matrix can be seen as a tensor (multi-dimensional array) where each
“slice” represents the adjacency matrix for a different layer, dimension, or type
of connection.

A
(k)
ij =

{
l if there is a connection between i,j in layer k,

0 otherwise.
(3)

Where A(k) represents the adjacency matrix for layer k, and i and j are nodes
(hosts) in the graph, l is the latency between node i and j. While it’s physically
impossible to have zero latency in real life, we can use 0 to denote that there is
no direct connection between i and j (i.e. inter-connection between i and j has
to go through additional hops in the same or different layer.)

For example, in a 3D adjacency matrix:
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1. The first dimension represents nodes.
2. The second dimension represents other nodes (as in the traditional adjacency

matrix).
3. The third dimension (or depth) represents the different layers or types of

relationships.

A =
[
A(1) A(2) . . . A(n)

]
(4)

Virtual machines(VMs) and containers can be modelled similarly to hosts
with tensors at time t, capturing their capacities and utilisation. With the for-
mulation of a multi-dimensional matrix (tensor), we can then convert the simu-
lator’s behaviour and logic to tensor operations on GPUs. In the simulation of
provisioning or allocations, we assume the data centre has a broker and queues
requests (a request can be VM, container or job execution). As the simulator
clock advances, based on the capacity of available hosts, unless a policy has been
specified, jobs are scheduled to hosts in a FIFO and round-robin manner. Users
of the simulator should always override this behaviour to evaluate their own
policies. Remaining capacities H

r(t)
R of a resource R on each host can be calcu-

lated as H
r(t)
R = H

c(t)
R − H

u(t)
R , 0. Here when the host’s utilisation exceeds the

capacity, i.e. overbooking, remaining capacity returns a negative value to show
the degree or severity of overbooking. However, no further job will be assigned
to the host until it has some capacity.

Due to page number constraints, we include an example training workflow
and algorithm in the appendix.

6 Performance Evaluation

To evaluate the performance of gCloudSim, we create a data centre with sets of
hosts and cloudlets and run simulations comparing CloudSim and gCloudSim.
We use permutation of Nhosts = 100, 500, 1000, 2000 hosts and Ncloudlets =
1000, 2000, 5000, 10000 cloudlets, hence 16 experiments in total. The experiments
are conducted on a Linux machine (Ubuntu 24.04 LTS) with an Intel i7-14700K
CPU, nVidia RTX 3070 8GB and 192 GB of Memory. For CloudSim, JDK17
is used with the G1 garbage collector and JVM parameters -Xms8G -Xmx8G.
By using a fixed JVM heap size and allocating enough memory to the JVM, it
will minimise the impact of the garbage collection process. Table 2 compares
the runtime of CloudSim and gCloudSim across various workloads and host
configurations. For 1000 cloudlets in CloudSim, the times are 5.84s, 6.80s, 6.57s
and 6.95s for 100, 500, 1000 and 2000 hosts, respectively. The increase in hosts
does not impact the runtime much since the decision time mainly depends on
the number of cloudlets. Interestingly, the runtime is higher when the number of
hosts is low and the number of cloudlets is high. We suspect it takes more time to
make a placement decision when all the hosts are overloaded, e.g. some cloudlets
need to wait in the queue until some hosts have free capacity. As the number
of cloudlets increases—from 1,000 to 10,000—the runtime of CloudSim rises
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No. of Hosts No. of Cloudlets Runtime CloudSim(s) Runtime gCloudSim (s) Improvement
100 1000 5.84 1.43 75.50%
100 2000 6.75 1.24 81.59%
100 5000 9.92 1.42 85.73%
100 10000 36.55 3.15 91.37%
500 1000 6.80 1.24 81.71%
500 2000 7.11 1.63 77.14%
500 5000 9.68 1.04 89.23%
500 10000 33.93 1.19 96.48%
1000 1000 6.57 1.38 79.02%
1000 2000 7.25 1.26 82.63%
1000 5000 9.90 1.41 85.76%
1000 10000 31.97 3.28 89.73%
2000 1000 6.95 1.24 82.17%
2000 2000 7.20 1.58 78.08%
2000 5000 10.09 1.16 88.52%
2000 10000 31.89 3.37 89.42%

Table 2: Performance Comparison between CloudSim and Our work
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Fig. 2: Runtime comparison between CloudSim and gCloudSim under varying
cloudlet counts.

sharply, particularly under high-load scenarios (e.g., 10,000 cloudlets), where
it reaches over 36 seconds in some cases. In contrast, gCloudSim consistently
maintains significantly lower runtimes, demonstrating minimal growth even as
workloads scale. This trend is consistent across all host configurations (100, 500,
1000, and 2000 hosts), highlighting gCloudSim’s scalability and computational
efficiency. Figure 2 provides a visual summary of this trend, clearly illustrating
the disparity in performance between the two simulators.
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7 Conclusions and Future Work

In this research, we propose a novel cloud simulator that can utilise GPU hard-
ware using Julia to provide high-performance simulation for learning-based cloud
research. For future work and development, we can further enhance the simu-
lator by extending the GPU-accelerated simulator to model task offloading for
latency-sensitive applications across hybrid cloud and edge computing environ-
ments. Also, enhancing the simulator to model multi-tenant environments, in-
corporating resource contention, QoS degradation, and priority scheduling to
analyse performance under competitive loads.
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Algorithm 1 GPU-Accelerated DRL Training in Cloud Scheduling Simulator
1: Initialize environment E and agent policy πθ

2: Initialize experience buffer D ← ∅
3: Initialize parallel environments {E1, . . . , EN} across N simulators
4: Initialise GPU-based actor and learner modules
5: for each training iteration do
6: for each environment Ei in parallel do
7: Observe current state sit
8: Select action ai

t ∼ πθ(s
i
t) ▷ Actor on GPU

9: Execute ai
t in Ei, observe reward rit and next state sit+1

10: Store transition (sit, a
i
t, r

i
t, s

i
t+1) in D

11: end for
12: for each learner update step do
13: Sample mini-batch {(s, a, r, s′)} ∼ D
14: Compute target y = r + γ · Target(s′)
15: Compute loss L(θ) = E(s,a,r,s′)

[
(y −Qθ(s, a))

2
]

16: Update policy θ ← θ − α · ∇θL(θ) ▷ Backprop on GPU
17: end for
18: Log training metrics (e.g., average reward, loss)
19: end for

The above Fig. 1 indicates the general flow of Actor-Critic-based model train-
ing. This general algorithm can be applied to the class of algorithms that use
Actor-Critic techniques. We start the training flow by initialising the environ-
ments in parallel, then run the training episodes on GPUs using CUDA kernels.
Each learner collects its own experience and adds it to the experience buffer,
updating the policy network accordingly. At the end of each training loop, the
average reward and loss value are logged, which can be used later in visualisation.
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In this appendix, we describe an example training algorithm with an Actor-Critic
algorithm, more specifically, using Proximal Policy Optimisation (PPO). Let the
cloud system at time t be represented by a set of container or VM states:

St = {s1t , s2t , . . . , snt }, sit ∈ Rd (5)

where each sit encodes CPU, memory, energy usage, and queue information.
Jobs arrive via a stochastic model:

jt ∼ Parrival(λ), duration(jt) ∼ Pservice(µ) (6)

A surrogate function estimates performance:

fsur(jt, st)→ Rk (7)

We simulate N environments E1, . . . , EN in parallel:

∀i ∈ {1, . . . , N}, simulate Ei independently (8)

Each generates transitions:

τi = {(sit, ait, rit, sit+1)}Tt=1, D =

N⋃
i=1

τi (9)

The actor network is πθ(at | st) and the critic is Vϕ(st).
We compute the advantage estimate:

Ât =

K∑
l=0

(γλ)lδt+l, δt = rt + γVϕ(st+1)− Vϕ(st) (10)

The PPO loss:

LPPO(θ) = Et

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
(11)

With:

rt(θ) =
πθ(at | st)
πθold(at | st)

(12)

Critic loss:

LV(ϕ) =
1

2
Et

[(
Vϕ(st)− R̂t

)2
]

(13)

Parameter updates (computed on GPU):

θ ← θ − α∇θLPPO, ϕ← ϕ− β∇ϕLV (14)

Let the GPU have M streaming multiprocessors. CUDA streams {s1, . . . , sM}
run concurrently.
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Each CUDA thread k computes:

Threadk 7→ ∇θℓk, reduce via warp-level atomic add (15)

Algorithm 2 PPO Training for CUDA-Accelerated Job Scheduling
1: Initialize environment E = {E1, . . . , EN} on GPU
2: Initialize policy network πθ and value network Vϕ

3: Initialize experience buffer D ← ∅
4: for each training epoch do
5: for each environment Ei in parallel do
6: Observe current state sit = observe(Ei)
7: Sample action ai

t ∼ πθ(s
i
t)

8: Store (sit, a
i
t) in buffer

9: end for
10: Launch CUDA kernel to assign jobs and update machine loads
11: Synchronise GPU and increment job indices
12: for each environment do
13: Compute reward rit = −max(machine loads)
14: Store (rit, s

i
t+1) in buffer

15: end for
16: Sample minibatch B ⊂ D
17: for each sample (s, a, r, s′) ∈ B do
18: Estimate advantage Â(s, a)
19: Compute PPO loss:

LPPO = min
(
rθÂ, clip(rθ, 1− ϵ, 1 + ϵ)Â

)
20: Compute value loss: LV = 1

2
(Vϕ(s)− R̂)2

21: end for
22: Update θ ← θ − α∇θLPPO

23: Update ϕ← ϕ− β∇ϕLV

24: end for
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