
A GRID SIMULATION INFRASTRUCTURE SUPPORTING
ADVANCE RESERVATION

Anthony Sulistio and Rajkumar Buyya
GRIDS Laboratory and NICTA Victoria Laboratory,

Department of Computer Science and Software Engineering,
The University of Melbourne, Australia

ICT Building, 111 Barry Street, Carlton, VIC 3053
email: {anthony, raj}@cs.mu.oz.au

ABSTRACT
Advance Reservation (AR) for global grids becomes an im-
portant research area as it allows users to gain concurrent
access for their applications to be executed in parallel, and
guarantees the availability of resources at specified future
times. Evaluating various AR scenarios can not feasibly
be carried out on a real grid environment due to its dy-
namic nature. Therefore, we extend a GridSim simulation
package to support AR for repeatable and controlled evalu-
ations. This paper discusses the design and implementation
of AR within GridSim, together with the effects of AR from
users’ and resources’ point of view in the experiments.

KEY WORDS
advance reservation, grid simulation, and grid computing.

1 Introduction

Grid computing has emerged as the next-generation par-
allel and distributed computing that aggregates dispersed
heterogeneous resources for solving a range of large-scale
parallel applications in science, engineering and com-
merce [1]. In most Grid scheduling systems, submitted jobs
are initially placed into a queue if there are no available re-
sources. Therefore, there is no guarantee as to when these
jobs will be executed. This causes problems in parallel ap-
plications, where most of them have dependencies among
each other.

Advance Reservation (AR) is a process of requesting
resources for use at a specific time in the future [2]. Com-
mon resources whose usage can be reserved or requested
are CPUs, memory, disk space and network bandwidth. AR
for a grid resource solves the above problem by allowing
users to gain concurrent access to adequate resources for
applications to be executed. AR also guarantees the avail-
ability of resources to users and applications at the required
times.

There are some systems that support AR capability,
such as Globus Architecture for Reservation and Alloca-
tion (GARA) [3] and Maui Scheduler [4]. However, to
validate the effectiveness of these scheduling systems, all
possible scenarios need to be evaluated. Given the inherent
heterogeneity of a Grid environment, it is difficult to pro-

duce performance evaluation in a repeatable and controlled
manner. In addition, Grid testbeds are limited, and creating
an adequately-sized testbed is expensive and time consum-
ing. Therefore, it is easier to use simulation as a means of
studying complex scenarios.

Some tools are available for application scheduling
simulation in the Grid computing environment, such as
Bricks [5], SimGrid [6] and OptorSim [7]. However, none
of them have the capability of simulating reservation-based
systems. To address this weakness, we extend GridSim to
support AR mechanisms.

GridSim [8] is a Java-based grid simulation package
that provides features for application composition, infor-
mation services for resource discovery, and interfaces for
assigning applications. GridSim also has the ability to
model heterogeneous computational resources of variable
performance.

In this work, GridSim has been extended with the
ability to handle: (1) creation or request of a new reser-
vation for one or more CPUs; (2) commitment of a newly-
created reservation; (3) activation of a reservation once the
current simulation time is the start time; (4) modification
of an existing reservation; and (5) cancellation and query
of an existing resevation.

The rest of this paper is organized as follows: Sec-
tion 2 describes the general life-cycle of a reservation,
while Section 3 presents the architecture of GridSim for
AR. Section 4 describes how a user can use GridSim’s
functionalities. Section 5 conducts an experiment to show
the effects of AR from users’ and resources’ point of view.
Section 6 concludes the paper and suggests further work.

2 States of Advance Reservation

A reservation can be in one of several states during its
lifetime as shown in Figure 1. The life-cycle of a reser-
vation in GridSim is influenced by recommendations from
the Global Grid Forum (GGF) draft [9] and the Application
Programming Interface (API) [10]. Transitions between
the states are defined by the operations that a user performs
on the reservation. These states are defined as follows:

• Requested: Initial state of the reservation, when a re-



Figure 1. A state transition diagram for advance reservation

quest for a reservation is first made.

• Rejected: The reservation is not successfully allo-
cated due to full slots, or an existing reservation has
expired.

• Accepted: A request for a new reservation has been
approved.

• Committed: A reservation has been confirmed by a
user before the expiry time, and will be honoured by a
resource.

• Change Requested: A user is trying to alter the re-
quirements for the reservation prior to its starting. If
it is successful, then the reservation is committed with
the new requirements, otherwise the values remain the
same.

• Active: The reservation’s start time has been reached.
The resource now executes the reservation.

• Cancelled: A user no longer requires a reservation
and requests that it is to be cancelled.

• Completed: The reservation’s end time has been
reached.

• Terminated: A user terminates an active reservation
before the end time.

The following sections describe the implementation
and usage of these states into GridSim.

3 GridSim Resource Design

In GridSim, a grid resource is represented by a
GridResource object. Each GridResource object
contains only one scheduler of type AllocPolicy class.
In this case, the GridResource only acts as an interface

Figure 2. A GridSim resource class diagram

m

m

m

 1

 2

 
 P

. . .

CPU

Figure 3. A queueing network model for the GridSim
scheduling system

between users and the local scheduler, and it is up to the
scheduler to handle and to process submitted jobs. This ap-
proach gives the flexibility to implement various schedul-
ing algorithms for a specific resource-based system. Cur-
rently, GridSim has TimeShared and SpaceShared
objects that use Round Robin and First Come First Serve
(FCFS) approaches respectively.

To support AR in GridSim, a new type of re-
source entity named ARGridResource inherited from
GridResource is added as shown in Figure 2. Similarly,
a new abstract scheduler class called ARPolicy inherited
from AllocPolicy is also added. The extension to the
current grid resource architecture is needed to incorporate
the states of AR as discussed earlier.

The advantage of this design is that adding a new
scheduler does not require modification of existing re-
source and/or other scheduling classes. Creating a new
scheduler is as simple as extending the AllocPolicy or
ARPolicy class, and implementing the required abstract
methods. For an example, ARSimpleSpaceShared as
shown in Figure 2, is a child of ARPolicy class, that uses
FCFS approach to schedule reserved jobs.

3.1 System Model

GridSim mainly focuses on simulating computational
grids. In this context, GridResource entities in GridSim



Figure 4. Flowchart for requesting a new reservation

are mainly related to processing capability and the cost of
processing. Currently, a scheduler within a grid resource
focuses on reserving CPUs. An open queueing network
model of a resource is considered as seen in Figure 3. There
is a finite buffer with size S to store objects waiting to be
processed by one of P independent CPUs. They are con-
nected by a high-speed network with negligible communi-
cation delays. m is the CPU speed, measured in the form
of Million Instructions Per Second (MIPS) rating as per
SPEC (Standard Performance Evaluation Corporation) [11]
benchmarks. CPUs can be homogeneous or heterogeneous.
For homogeneous ones, all m have the same MIPS rating.
Different m exist for heterogeneous CPUs.

3.2 Scheduling System for Advance Reserva-
tion

Currently, GridSim uses FCFS approach for the
ARSimpleSpaceShared object for a reservation-
based system. For requesting a new reservation, Figure 4
shows the steps needed. A scheduler must find any
potential conflicts with existing reservations or an empty
slot for determining to accept/reject a new request. Before
further explanation of the details of the algorithm for
finding an empty reservation slot, the following parameters
are defined:

• List: A reservation list. An accepted reservation is
stored and sorted into this list, based on its start time.

• tempList: A temporary list to store List indexes.

• Ri: the i-th reservation object in List.

• Rnew: A new reservation.

• starti: Start time for Ri.

• startnew : Start time for Rnew.

• finishi: Finish time for Ri.

• finishnew: Finish time for Rnew.

• CPUi: Number of CPU required by Ri.

• CPUreserv : Total number of CPU reserved by other
reservations.

• CPUnew: Number of CPU required by a new request.

• CPUresource: Total number of CPU owned by a re-
source.

Algorithm 1 explains how GridSim’s scheduler finds
an empty reservation slot. Lines (1) to (2) are for a simple
case, where no reservations exist. Hence, the scheduler will
accept a new request straight away. If List is not empty,
then line (4) to (9) finds reservations that might be conflict-
ing with a new request. Line (6) handles a case where a
reservation is within the startnew −→ finishnew inter-
val. By storing indexes of all reservations that lay within
this time interval, CPUreserv can be calculated as in line
(13).

Algorithm 1 Finding an empty slot
1: if List is empty then
2: no conflict found. Hence, accepts a new reservation.
3: else
4: for i = 0 to List size− 1 do
5: put i into tempList if one of the following prop-

erties are true:
6: −startnew ≤ starti && finishnew ≥ finishi

7: −startnew ≤ finishi

8: −finishnew ≤ finishi

9: end for
10: if tempList is empty then
11: no conflict found. Hence, accepts this reservation.
12: else
13: calculate CPUreserv if start −→ end time inter-

val for a reservation overlaps with others
14: if CPUreserv + CPUnew ≤ CPUresource then
15: empty CPUs found. Hence, accepts this reser-

vation.
16: else
17: no empty CPUs found. Hence, rejects this

reservation
18: end if
19: end if
20: end if



Figure 5. AdvanceReservation class diagram

4 GridSim API

The GridSim client-side API for AR is encoded in the
method calls of the AdvanceReservation class as
shown in Figure 5. In this class diagram, attributes and
methods are prefixed with characters + and − indicating
access modifiers public and private respectively. Due to
space constraints, only few methods are drawn and dis-
cussed in this paper. Detailed API of this class can be found
on the GridSim website [12].

The transactionID attribute is a unique identi-
fier for a reservation, and is used to keep track of each
transaction or method call associates with the reservation.
The booking list is an important attribute to store reser-
vations that have been accepted and/or committed. In the
AdvanceReservation object, timeZone is a very
important attribute as resources are located geographically
in different time zone. Hence, a user’s local time will be
converted into a resource’s local time when the resource
receives a reservation.

For creating or requesting a new reservation, a user
needs to invoke the createReservation() method.
Before running a GridSim program, an initialization of
some parameters is required. One of the parameters is the
simulation start time Ts. Ts can be a current clock time
represented by a Java’s Calendar object. Therefore, a
reservation’s start time needs to be ahead of Ts. The start
time can be of type Calendar object or long represent-
ing time in milli seconds. Reservations can also be done
immediately, i.e. the current time is being used as the start
time with or without specifying a duration time.

If a new reservation has been accepted, then the
createReservation() method will return a unique
booking id as a String object. Otherwise, it will return
an approximate busy time in the interval of 5, 10, 15, 30
and 45 in time units. The time unit can be in seconds or
minutes or hours. If a request is rejected, the user can ne-
gotiate with the resource by modifying the requirements,
such as reducing the number of CPUs needed or shortening

the duration time.
Once a request for a new reservation has

been accepted, the user must confirm it before
the expiry time of this reservation by invoking the
commitReservation() method. The expiry time
is determined by the resource or its scheduler. The
commitReservation() method returns an integer
value representing error or success code.

Committing a reservation acts as a contract for both
the resource and the user. By committing, the resource is
obliged to provide CPUs at the specified time for a certain
period. A reservation confirmation, as depicted in Figure 5,
can be done in one of the following ways:

• committing first before the expiry time by sending a
booking id. Then, once a job is ready, committing
it again with the job attached before the reservation’s
start time.

• committing before the expiry time together with a job
if reserving only one CPU. In GridSim, a job or an
application is represented by a Gridlet object.

• committing before the expiry time together with a
list of jobs if reserving two or more CPUs. A
GridletList object is a linked-list of Gridlet ob-
jects. This approach is highly desirable for parallel
applications as mentioned in Section 1.

The queryReservation() method aims to
find out the current status of the overall reservation.
Cancellation and modification of the reservation can
be done by invoking cancelReservation() and
modifyReservation() respectively.

The overall sequence from a new reservation until the
completion of jobs is captured in Figure 6.

5 Simulation Results and Discussions

5.1 Experiment Setups

The experiment models and simulates four resources with
different characteristics, configurations and capabilities.
The four selected resources mentioned in [8] are included
in this experiment based on their location. A new cluster
resource in our University is also modeled. Table 1 summa-
rizes all the resource relevant information. The processing
ability of these CPUs in simulation time units is modeled
after the base value of SPEC CPU (INT) 2000 benchmark
ratings published in [13].

This experiment simulates a scenario demonstrating
GridSim’s ability to handle AR functionalities. In addition,
this experiment aims to find out the effects of AR from
users’ and resources’ point of view. The following simu-
lation setups are carried out:

• Five created resources, each able to handle AR func-
tionalities.



Table 1. Testbed resources simulated using GridSim.

Resource Name Simulated resource characteristics: host name A SPEC Num Time zone
in simulation vendor, type, OS and location Rating (m) CPU (P ) (GMT)

R0 Compaq, AlphaServer, Tru64 UNIX grendel.vpac.org 515 4 +10
VPAC, Melbourne, Australia

R1 Intel, Pentium4 2GHz, Linux manjra.cs.mu.oz.au 684 13 +10
Melbourne Univ., Australia

R2 SGI, Origin 3200, IRIX onyx3.zib.de 410 16 +2∗

ZIB, Berlin, Germany
R3 SGI, Origin 3200, IRIX mat.ruk.cuni.cz 410 6 +2∗

Charles Univ., Prague,
Czech Republic

R4 Sun, Ultra, Solaris pitcairn.mcs.anl.gov 377 8 −5∗

ANL, Chichago, USA
∗ denotes daylight saving time (+1 hour) occurred in this area at the time of writing this paper.

Figure 6. A sequence diagram for performing a new reser-
vation in GridSim

• 50 created users, each with 100 Jobs.

• Job size is uniformly distributed in [500,000 ...
8,000,000] in Millions Instructions (MI) unit.

• Poisson distribution is used for job arrival time. Aver-
age jobs for all users per time unit is 5.

• Assuming 1 simulation time is equivalent to 1 minute,
maximum arrival time for this experiment is 500 min-
utes.

• Sending jobs are uniformly distributed among the five
resources as mentioned in Table 1.

• Only concerns scheduling jobs to empty CPUs. All
resources and users are assumed to have same network
bandwidth and I/O operations.

• A scheduler from each resource will start the job at the
requested start time.

In addition, a reservation job can be restartable
or non-restartable. A restartable job means a job
will be paused if running longer than allocated, then re-
sume execution from the point where it was paused if there
is an empty CPU. A non-restartable job means a job will
be executed from start until finish or be pre-empted by a
scheduler, and straight away the finished or partially com-
pleted job sent back to a user. For this experiment, only
0%, 10% and 20% of total jobs using reservations and it
follows similar approach done by [2]. However, experi-
ments conducted in [2] use workload traces taken from su-
percomputers in Argonne National Laboratory (ANL) [14],
the Cornell Theory Center (CTC) [15], and the San Diego
Supercomputer Center (SDSC) [16].

5.2 Advance Reservation Analysis

The metrics used in this experiment are the Mean Waiting
Time (MWT) and Mean Offset from requested reservation
Time (MOT). MWT is the average amount of time that jobs



Figure 7. Mean Waiting Time

have to wait before receiving resources. It examines the
effect of a reservation-based system on a scheduler’s per-
formance. MOT is the average difference between users’
initial start time to the actual guaranteed or obtained start
time. It measures how well the scheduler performs at satis-
fying reservation requests.

Achieving accurate prediction of a job’s execution
time is a difficult problem for AR. Therefore, the effects of
the job’s estimation on resource utilization and on the num-
ber of rejections are presented. For a non-restartable job, a
reservation must have an overestimated completion time so
a job can finish executing without the risk of running out
of time and being pre-empted. For a restartable job, un-
derestimated completion time is allowed as the scheduler
will put it into a queue if completion time takes longer than
allocated.

5.2.1 Mean Waiting Time

Figure 7 displays the impact on MWT of queued jobs when
reservations are enabled in all resources. For all the jobs in
five resources, queue wait times increase an average of 20%
when 10% of the jobs are reservations and 71% when 20%
of the jobs are reservations.

5.2.2 Mean Offset Time

Figure 8 displays MOT of 0%, 10% and 20% jobs us-
ing reservations for all five resources. The figure shows
that the offset is larger when there are more reservations.
0% reservations mean that they are immediate reservations
with current time as the start time. These immediate reser-
vations also have duration and number of CPUs requested.
When comparing between immediate and advanced reser-
vations, the result benefits significantly to jobs that request
resources ahead of time. For 10% reservations, the mean
difference from requested reservation time is 48 minutes.
For 20% reservations, the mean difference is 62 minutes.
This is an increase of 29% over the mean difference from

Figure 8. Mean Offset Time

Figure 9. Number of utilization

requested reservation time when 10% of the jobs are reser-
vations.

5.2.3 Resource Utilization

Figure 9 displays the utilization of resources being simu-
lated in this experiment. When reservations are supported,
resource utilization drops to between 60% and 80%. The
result finds that utilization does not change for restartable
jobs. This is because when they are running longer, they
will be put into a queue if a slot is taken and will be
processed later. In this experiment, restartable jobs are
given an underestimated completion time. In constrast,
non-restartable jobs are given an overestimated completion
time to prevent from being pre-empted by other reserva-
tions. As a result, resource utilization is lower as most non-
restartable jobs are finished earlier.

5.2.4 Number of Rejections

Figure 10 displays the number of rejections for requesting
new reservations in this experiment. It is expected that as
more reservations are requested, the number of rejections
will be higher. Non-restartable jobs have a higher rejection
rate since they request a longer duration time.



Figure 10. Number of rejections

Figure 11. Parallel Jobs using AR

5.2.5 Parallel Jobs

The results seemed to disadvantage a system using AR.
However, for parallel applications, as depicted in Figure 11,
AR is very beneficial. For this experiment, all the jobs are
parallel and required 4 CPUs for being executed simultane-
ously. Sending parallel jobs without reserving beforehand
has the lowest percentage of successful completion. 10%
of jobs using AR perform better than 20% of jobs as they
have less competition to access the same resource.

6 Conclusion and Future Work

Advance reservation for grid resources allows users to gain
concurrent access for their applications to be executed in
parallel. It also guarantees the availability of resources at
the specified times in the future.

This paper introduced advance reservation mecha-
nisms incorporated into GridSim, a grid simulation tool.
The design and implementation for supporting advance
reservation in GridSim are also discussed.

Experimental results have shown that a reservation-
based system benefits parallel and reserved jobs signifi-
cantly, as the resources are guaranteed to be available at
the specified time. Also, the mean offset from requested
reservation time is lower for reserved jobs. However, the

effects of advance reservation resulted in lower CPU uti-
lization and a higher number of rejections in accepting new
jobs.

Future work on GridSim will look into introducing
policies and penalties for canceling and modifying reserva-
tions. In addition, a priority system for reserving resources
needs to be introduced.

References

[1] I. Foster and C. Kesselman (Ed.), The Grid: Blueprint for a
Future Computing Infrastructure, (San Mateo: Morgan Kauf-
mann Publishers, 1999).

[2] W. Smith, I. Foster, and V. Taylor, Scheduling with Advanced
Reservations, Proc. of the Int. Parallel and Distributed Pro-
cessing Symposium (IPDPS) Conf., Cancun, Mexico, 2000,
127–132.

[3] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, and
A. Roy, A Distributed Resource Management Architecture
that Supports Advance Reservations and Co-Allocation, Int.
Workshop on Quality of Service, London, U.K., 1999, 27–36.

[4] Maui Scheduler.
http://www.supercluster.org/maui

[5] K. Aida, A. Takefusa, H. Nakada, S. Matsuoka, S. Sekiguchi,
and U. Nagashima, Performance Evaluation Model for
Scheduling in a Global Computing System, Int. J. of High
Performance Computing Applications, 14(3), 2000, 268–279.

[6] H. Casanova, Simgrid: A Toolkit for the Simulation of Ap-
plication Scheduling. Proc. of the First IEEE/ACM Int. Sym-
posium on Cluster Computing and the Grid, Brisbane, Aus-
tralia, 2001, 430–437.

[7] W. H. Bell, D. G. Cameron, L. Capozza, A. P. Millar, K.
Stockinger, and F. Zini, OptorSim – A Grid Simulator for
Studying Dynamic Data Replication Strategies, Int. J. of High
Performance Computing Applications, 17(4), 2003, 403–416.

[8] R. Buyya and M. Murshed, GridSim: A Toolkit for the Mod-
eling and Simulation of Distributed Resource Management
and Scheduling for Grid Computing, J. of Concurrency and
Computation: Practice and Experience, 14(13–15), 2002,
1175–1220.

[9] J. MacLaren (Ed.), Advance Reservations: State of the Art
(draft), GWD-I, Global Grid Forum (GGF), June 2003
http://www.ggf.org

[10] A. Roy and V. Sander, Advance Reservation API, GFD-E.5,
Scheduling Working Group, Global Grid Forum (GGF), May
2002.

[11] Standard Performance Evaluation Corporation.
http://www.spec.org

[12] GridSim website.
http://www.gridbus.org/gridsim

[13] SPEC. SPEC CINT2000 Results.
http://www.specbench.org/cpu2000

[14] Argonne National Laboratory.
http://www.anl.gov

[15] Cornell Theory Center.
http://www.tc.cornell.edu

[16] San Diego Supercomputer Center.
http://www.sdsc.edu


