A Simulation Infrastructure for Resource Allocation with
Advanced Reservation in Global Grids

Anthony Sulistio

Rajkumar Buyya

Grid Computing and Distributed Systems (GRIDS) Laboratory,
Department of Computer Science and Software Engineering,

The University of Melbourne, Australia
ICT Building, 111 Barry Street, Carlton, VIC 3053

E-mail: {anthony,

Abstract

Grid applications can have large requirements and they
need concurrent access to resources in order to perform
their operations successfully. Grid resources also need to
ensure to users that they can provide guaranteed access ac-
cording to service level agreements between them. Advance
Reservation (AR) for global grids solves the above prob-
lems by allowing users to gain concurrent access for their
applications to be executed in parallel. AR also guarantees
the availability of resources to users at the specified future
times.

Evaluating various usage scenarios involving AR are not
feasible to carry out on a real grid environment due to its dy-
namic nature. Therefore, in this paper, we present GridSim
that provides a simulation infrastructure for repeatable and
controllable evaluations. This paper discusses the design
and implementation of AR within GridSim, together with
experimental results to demonstrate its suitability and va-
lidity.

Keywords: advance reservation, grid simulation, and grid
computing

1 Introduction

Grid computing has emerged as the next-generation par-
allel and distributed computing that aggregates dispersed
heterogeneous resources for solving a range of large-scale
parallel applications in science, engineering and com-
merce [1]. In most Grid scheduling systems, submitted jobs
are initially placed into a queue if there are no available re-
sources. Therefore, there is no guarantee as to when these
jobs will be executed. This causes problems in parallel ap-
plications, where most of them have dependencies among
each other.

rajl@cs.mu.oz.au

Advance Reservation (AR) is a process of requesting re-
sources for use at a specific time in the future [3]. Com-
mon resources who usage can be reserved or requested are
CPUs, memory, disk space and network bandwidth. AR for
a grid resource solves the above problem by allowing users
to gain concurrent access to adequate resources for applica-
tions to be executed. AR also guarantees the availability of
resources to users and applications at the required times.

AR is useful in eScience and eBusiness applications,
such as Drug Design [4], Brain Analysis [5] and in a stock
market environment. These applications share certain char-
acteristics that require AR, such as generated data is avail-
able for only at certain periods, huge size of data and need
for applications to be run in parallel.

A general scenario of using AR for these applications
is described in Figure 1. A resource broker or a program
on behalf of these applications can determine the patterns
and frequencies of when these data are available from an
instrument or a stock market, e.g. the data are ready by
time 75 (step 1). The broker reserves processing power at
a supercomputing center at time 72 by taking into account
the time at which the data is available, and the transfer time
to move the data into the center (step 2). Next, the bro-
ker reserves network bandwidth between the supercomput-
ing center and a data center to transport the results (step 3).
Then reserves storage facility at the data center at time T}y
(step 4), since the deadline is at time Ty5. Finally, an an-
alyst or a specialist can analyse them later on, e.g. at time
Tso (step 5).

There are some systems that support AR capability, such
as STARS [10], GARA [11] and Maui Scheduler [12].
However, to ensure the effectiveness of these scheduling
system, all possible scenarios need to be evaluated. Given
the inherent heterogeneity of a Grid environment, it is diffi-
cult to produce performance evaluation in a repeatable and
controlled manner. In addition, Grid testbeds are limited

1‘\

—

A broker fE!TtChEb

An Instrument or
A Stock Market

Analyst or Specialist look
atthe results at ime T,

'%'F‘U'

the generated
data attime Ty ﬂ'ﬂkﬂ

(’E‘ , Ihe data are
executed by a
SUpercomputer
attime T,

i
dh oy N
m

The rﬂsults are
transferred at
tirme |

Diata Center stores the
results attime Ty

Figure 1. Scenario of using AR in different types of resources

and creating an adequately-sized testbed is expensive and
time consuming. Morever, it needs to handle different ad-
ministration policies of each resource. Therefore, it is easier
to use simulation as a means of studying complex scenarios.

Some simulation tools available for application schedul-
ing simulation in Grid computing environment, are
Bricks [6], MicroGrid [7], SimGrid [8], and OptorSim [9].
However, none of them have the capability of simulating
reservation-based systems. To address this weakness, we
have developed AR mechanisms and incorporated them into
the GridSim toolkit.

GridSim [2] is a Java-based discrete-event Grid simu-
lation package that provides features for application com-
position, information services for resource discovery, and
interfaces for assigning application tasks to resources and
managing their execution. GridSim also has the ability to
model heterogeneous computational resources of variable
performance.

In this work, GridSim has been enhanced with the abil-
ity to handle: (1) creation or request of a new reservation
for one or more CPUs; (2) commitment of a newly-created
reservation; (3) activation of a reservation once the current
simulation time is the start time; (4) modification of an ex-

isting reservation; and (5) cancellation and query of an ex-
isting resevation.

The rest of this paper is organized as follows: Section 2
presents the architecture of GridSim for AR. Section 3 dis-
cusses the implementation of GridSim. Section 4 shows the
experiment of GridSim for simulating a Grid computing en-
vironment with AR functionality. Section 5 concludes the
paper and suggests further work.

2 GridSim Design for Advance Reservation
2.1 Architecture Design

As mentioned earlier, GridSim is a Java-based discrete-
event simulation package. To support AR capability, Grid-
Sim leverages Java’s concepts, such as polymorphism and
inheritance, to build a high-cohesion, low-coupling and ex-
tensible architecture.

Figure 2 shows GridSim’s class diagram that relates to
a reservation-based system. From this diagram, a Grid
resource can be categorized into a reservation-based sys-
tem (by creating ARGridResource object) or a non-
reservation system (by creating GridResource object).

GridResource

<<absiraci>> AlfocPolicy
-
1
_,:‘_K FaN
ARGridResource \- ‘J

TimeShared tﬂab\slrai::%: ARPQJch Sp;ceShared

[

ARSpaceShored

Figure 2. GridSim class diagram

As a design constraint, GridResource object con-
tains only one scheduler of the type AllocPolicy.
GridResource only acts as an interface between users
and the local scheduler, and it is up to the scheduler to han-
dle and to process submitted jobs. This approach gives the
flexibility to implement various scheduling algorithms for a
specific resource-based system.

Another advantage of this design is that adding a new
scheduler does not require modification of existing resource
and/or other scheduling classes. Creating a new scheduler
is as simple as extending the A11ocPolicy abstract class
and implement the required abstract methods. If a sched-
uler needs to be able to handle AR functionalities, then
it must extends from ARPolicy abstract class, and im-
plement the required methods from both the ARPolicy
and AllocPolicy classes. Abstract classes in this de-
sign are more appropriate than Java’s interface class be-
cause there are common methods and attributes used by the
child classes.

Currently, GridSim supports TimeShared (Round
Robin) and SpaceShared (First Come First Serve
(FCES)) scheduling for a non-reservation resource. A
reservation-based resource that uses FCFS scheduling will
be discussed in more detail in Section 3.

2.2 States of AR

The design of AR in GridSim is influenced by recom-
mendations from Global Grid Forum (GGF) draft [13] and
Application Programming Interface (API) [14]. As a result,
a reservation can be in one of several states during its life-
time as shown in Figure 3. Transitions between the states
are defined by the operations that a user performs on the
reservation. These states are defined as follows:

Requesl

Wmed
Commit Expired
L Accepted

Request Rejecteg

cammit Accepted

Chan e Specificati
—E’—M Change
Request
C angeAcceptedeEJected

Cancellatmn

@ Reguest
_—
Finish :y

Start T\me

Terminm;

Request

Q State
@ Final state

Figure 3. State transition diagram for advance
reservation

e Requested: Initial state of the reservation, when a re-

quest for a reservation is first made.

o Rejected: The reservation is not successfully allocated

due to lack of enough free slots or an existing reserva-
tion has expired.

e Accepted: A request for a new reservation has been

approved.

e Committed: A reservation has been confirmed by a

user before the expiry time, and will be honoured by
the resource scheduler.

e Change Requested: A user is trying to alter the re-

quirements for the reservation prior to its starting. If
it is successful, then the reservation is committed with
the new requirements, otherwise the values remain the
same.

e Active: The reservation’s start time has been reached.

The scheduler is now running or executing within the
reservation slot.

e Cancelled: A user no longer requires a reservation and

requests that it be cancelled.

e Completed: The reservation’s end time has been

reached.

e Terminated: A user terminates an active reservation

before the end time.

®—> |nitial state

AdvanceReservation

-transactionID: int

-booking: Arraylist

-timeZone: double

+advanceReservation (name:String, baudRate:double)
+AdvanceReservation (name:String, baudRate:double, timeZone:double)

+oreateRegervation(startTime: long, endTime: long, numCPFU:int, resourcelD:int) : String
+createReservation(startTime: long,duration:int, numCPU:int, resourcelDiint): String
+oreateRegervation(startTime:Calendar, endTime:Calendar, numCFU:int, regourcelDiint): String
+commitReservation(bookingID:String): int
+commitReservationibookingID:String,gl:Gridlet): int

+commitReservation(bookingID:String, list:Gridletlist): int
+modifyReservationibookingID:String,startTime: long,duration:int, numCPU:int): int

+modi fyReservation(bookingID:String, startTime:Calendar,duration:int, numCPU:int): int

+queryReservation (bookingID:String): int
+oueryReservation (bookingID: String,gl:Gridlet): int
+queryReservation (bookingID:String, list:Gridletlist): int

+cancelReservation(bookingID:String): int
+oancelRegervation(bookingID:String, gl:Gridlet): int
t+cancelRegervation(bookingID:String,list:iGridletlist) s int

Figure 4. AdvanceReservation class diagram

2.3 GridSim API

The GridSim client-side API for AR is encoded in the
method calls of the AdvanceReservation class as
shown in Figure 4. In this class diagram, attributes and
methods are prefixed with characters +, —, and #, indicat-
ing access modifiers public, private and protected respec-
tively.

The transactionID attribute is an unique identifier
for a reservation, and is used to keep track of each trans-
action or method call associates with the reservation. The
booking list is an important attribute to store reserva-
tions that have been accepted and/or committed. In the
AdvanceReservationobject, timeZone isavery im-
portant attribute as different resources are located geograph-
ically with different time zone. Hence, user’s local time will
be converted into a resource’s local time when the resource
receives a reservation.

For creating or requesting a new reservation, a user needs
to invoke createReservation () method. Before run-
ning a GridSim program, an initialization of some param-
eters are required. One of the parameter is the simulation
start time 7. T can be a current clock time represented by
aJava’s Calendar object. Therefore, a reservation’s start
time needs to be ahead of T in either Calendar object or
long representing time in milli seconds. Reservations can
also be done immediately, i.e. the current time is being used
as the start time with or without specifying a duration time.

If a new reservation has been accepted, then the
createReservation () method will return an unique
booking id in St ring object. Otherwise, it will return an
approximate busy time in the interval of 5, 10, 15, 30 and
45 in time unit. The time unit can be in second or minutes

or hours. If a request gets rejected, the broker, on behalf of
the user, can negotiate with the resource by modifying the
requirements, such as reducing number of CPUs needed or
shortening the duration time.

Once a request for a new reservation has been accepted,
the user must confirm it before the expiry time of this
reservation by invoking the commitReservation ()
method. The expiry time is determined by the resource or
its scheduler. The commitReservation () method re-
turns an integer value representing error or success code.

Committing a reservation acts as a contract for both
the resource and the user. By committing, the resource is
obliged to provide CPUs at the specified time for a certain
period. A reservation confirmation, as depicted in Figure 4,
can be done in one of the following ways:

e committing first before the expiry time by sending a
booking id. Once a job is ready, then committing it
again with the job attached before the reservation’s
start time.

e committing before the expiry time together with a job
if reserving only one CPU. In GridSim, a job or an
application is represented by a Gridlet object.

e committing before the expiry time together with a
list of jobs if reserving two or more CPUs. A
GridletList object is a linked-list of Gridlet ob-
jects. This approach is highly-desirable for parallel
applications as mentioned in Section 1.

According to the states of AR in Figure 3, a reserva-
tion that has been committed successfully, could be mod-
ified before its start time. This can done by invoking

modifyReservation () method, which returns an in-
teger value representing error or success code. This method
has similar parameters to createReservation ()
method, with the only difference is without the need to spec-
ify a resource id. Each booking id is unique to all resources
and reservations.

The queryReservation () method aims to find out
the current status of a reservation for one or more jobs, with
one of the following result:

e not committed: reservation has not been com-
mitted.

e not started: reservation has been committed and
not yet begun.

e expired: reservation has not been confirmed or
committed within a specified expiry time.

e active: reservation has begun and is currently exe-
cuting.

e completed: reservation is over, i.e. current time is
more than the reservation finish time.

e cancelled: reservation has been cancelled.

e terminated: reservation has been terminated dur-
ing execution.

Cancellation of a reservation can be done anytime be-
fore the completion time. The cancelReservation ()
method requires only booking id and returns an integer
value representing error or success code. As with commit-
ment and query of a reservation, cancellation can be done
for one or more jobs.

3 Advance Reservation
within GridSim

Implementation

3.1 Queueing Model

As mentioned in Section 1, common resources that can
be reserved are CPUs, memory, disk space and network
bandwidth. In this paper, GridSim only focuses on reserv-
ing CPUs. Hence, an open queueing network model of a
scheduling system is considered for implementing AR as in
Figure 5. There is a finite buffer with size S to store objects
waiting to be processed by one of P independent CPUs. m
is the CPU speed, measured in the form of Million Instruc-
tions Per Second (MIPS) rating as per SPEC (Standard Per-
formance Evaluation Corporation) [15] benchmarks. CPUs
can be homogeneous or heterogeneous. For homogeneous
ones, all m have the same MIPS rating. Different m exist
for heterogeneous CPUs.

Figure 5. Queueing network model for a Grid-
Sim scheduling system

3.2 FCFS Scheduling System

GridSim uses FCFS approach for a reservation-based
system for the queueing model as discussed earlier. For
requesting a new reservation, Figure 6 shows the steps
needed. A scheduler must find any potential conflicts with
existing reservations or an empty slot for determining to ac-
cept/reject a new request. Before further explanation into
the details of the algorithm for finding an empty reservation
slot, the following parameters are defined:

e List: A reservation list. An accepted reservation is
stored and sorted into this list based on its start time.

e templList: A temporary list to store List indexes.
e [?;: the i-th reservation object in List.

o R,cw: A new reservation.

e start;: Start time for R;.

o start,e,: Start time for R,,cqp.

e finish;: Finish time for R;.

e finishyey: Finish time for R,,c,,.

e C'PU;: Number of CPU required by R;.

® CPU,¢sery: Total number of CPU reserved by other
reservations.

e CPU,y: Number of CPU required by a new request.

® CPU,¢source: Total number of CPU owned by a re-
source.

.
Create a new :)
raservation > Receive _{he
e : reservation
.
'
4 X
'
Send the i
reservation to

Does a resource

a resource support AR?

|
NC’: ' request CPU?
. : YES
H) Is there any
<
TE . ' conflict?

v :

.
Reservation Result .
'

User ' Resource

; Flowy
NO

' ¥ Start/ End
: Generate

' Booking ID

Action

Addto a
reservation list

il

Scheduling
System

Figure 6. Flowchart for requesting a new reservation

Algorithm 1 explains on how GridSim’s scheduler finds
an empty reservation slot. Lines (1) to (2) are for a sim-
ple case, where no reservations exist. Hence, the scheduler
will accept a new request straightaway. If List is not empty,
then line (4) to (9) finds reservations that might be conflict-
ing with a new request. Line (6) handles a case where a
reservation is within start,e,, — finishye, interval. By
storing indexes of all reservations that lay within this time
interval, C'PU,.¢ser can be calculated as in line (13).

Once areservation has been accepted, it needs to be com-
mitted before an expiry time, as depicted in Figure 7. The
overall sequence from a new reservation until the job com-
pletion is described in Figure 8. A User object commu-
nicates to ARGridResource object by sending a mes-
sage. The same thing applies for returning a result or
a value from ARSpaceShared object to User object.
ARGridResource and ARSpaceShared objects are
communicating through method calls since their relation-
ship is a composition as mentioned in Figure 2.

4 Experimentation and Results
4.1 Experiment Setups

The experiment conducted models and simulates four re-
sources with different characteristics, configurations and ca-
pabilities. Selected four resources mentioned in [2] are in-
cluded in this experiment based on their location. A new
cluster resource in our University is also modeled. Table 1
summarizes all the resource relevant information. The pro-
cessing ability of these CPUs in simulation time units is
modeled after the base value of SPEC CPU (INT) 2000
benchmark ratings published in [16].

This experiment simulates a scenario demonstrating
GridSim’s ability to handle AR functionalities. The follow-
ing simulation setups are carried out:

e Created 5 resources, each is able to handle AR func-
tionalities.

e Created 50 users, each with 100 Jobs.

Commil an existing
reservation

request

Receive a commit

Find the

Y

Send reservation
Bocking ID to a
resource

reservation

Does the
reservation
exist?

v

Get the
reservation

Has the
reservation
expired?

YES
¥ NO

Put the
reservation info

the expiry list

y

Commit the

Yy Yy

Commit Resu!t\a

User

.
.
.
"
.
.
.
"
.
.
.
.
.
.
"
.
"
.
.
.
.
v
.
.
.
.
.
"
.
.
.
"
.
"
.
.
.
.
"
.
.
¥
.
"
.
.
"
.
.
.
.
.

Resource

reservation

h 4
Put back the
reservation into
the list

Scheduling System

Figure 7. Flowchart for committing a reservation

e Job size is uniformly distributed in [500,000
8,000,000] in Millions Instructions (MI) unit.

e Poisson distribution is used for job arrival time with
average jobs for all users per time unit is 5.

e Assuming 1 simulation time is equivalent to 1 minute,
maximum arrival time is 500 minutes.

e Sending jobs are uniformly distributed in [RO ... R4].

e Only concerns about scheduling jobs to empty CPUs.
All resources and users are assumed to have same net-
work bandwidth.

e A scheduler from each resource will start the job at the
requested start time.

In addition, a reservation job can be restartable
(paused if running longer, then resume execution from the
point where it was paused if there is an empty CPU), and

non-restartable (executing from start until finish or
being pre-empted by a scheduler, and straightaway sending
back to a user the finished or partially completed job). For
this experiment, only 0%, 10% and 20% of total jobs using
reservations and it follows similar approach done by [3].

The metrics used in this experiment are the Mean Wait-
ing Time (MWT) and Mean Offset from requested reser-
vation Time (MOT). MWT is the average amount of time
that jobs have to wait before receiving resources. It exam-
ines the effect of a reservation-based system on a sched-
uler’s performance. MOT is the average difference between
users’ initial start time to the actual guaranteed or obtained
start time. It measures how well the scheduler performs at
satisfying reservation requests.

In addition, this experiment is trying to determine the
effect of estimating job’s completion time on resource uti-
lization and number of rejections to request a new reserva-
tion. For a non-restartable job, a reservation must have an

User ARGIdResource

send a new resemnvation

h_‘_‘_h"" handle a new request
‘___,_.--"'"

schedule the new request

e

return bcioking id

commit & reservation

chack for emply slots

> handle commit reguast

process a commii reservation

return commit status

sand reservation job

handla jobs submission

schedule job

> search the bocking id

activate start time

paisamemaf

retum result

> axecute job

Figure 8. Sequence diagram

overestimate completion time so a job can finish executing
without worry running out of time and being pre-empted.
For a restartable job, underestimate completion time is al-
lowed as the scheduler will put it into a queue if there is not
enough time.

4.2 Mean Waiting Time

Figure 9 displays the impact on MWT of queued jobs
when reservations are enabled in all resources. For all the
jobs in five resources, queue wait times increase an aver-
age of 20% when 10% of the jobs are reservations and 71%
when 20% of the jobs are reservations. In [3], MWT for
10% and 20% jobs are 13% and 62% respectively. Both ex-

periments show a similar percentage increase of MWT by
+50%.

4.3 Mean Offset Time

Figure 10 displays MOT of 0%, 10% and 20% jobs us-
ing reservations for all five resources. The figure shows
that the offset is larger when there are more reservations.
0% reservations mean that they are immediate reservations
with current time as the start time. These immediate reser-
vations also have duration and number of CPUs requested.
When comparing between immediate and advanced reser-
vations, the result benefits significantly to jobs that requests
resources ahead of time. For 10% reservations, the mean

Table 1. Testbed resources simulated using GridSim.

Resource Name Simulated resource characteristics: host name A SPEC Num Time zone
in simulation vendor, type, OS and location Rating (m) CPU (P) (GMT)
RO Compagq, AlphaServer, Tru64 UNIX grendel.vpac.org 515 4 +10
VPAC, Melbourne,
Australia
R1 Intel, Pentium4 2GHz, Linux manjra.cs.mu.oz.au 684 13 +10
Melbourne Univ.,
Australia
R2 SGI, Origin 3200, IRIX onyx3.zib.de 410 16 +2*
ZIB, Berlin, Germany
R3 SGI, Origin 3200, IRIX mat.ruk.cuni.cz 410 6 +2*
Charles Univ., Prague,
Czech Republic
R4 Sun, Ultra, Solaris pitcairn.mcs.anl.gov 377 8 —5*
ANL, Chichago, USA
* denotes daylight saving time (+1 hour) occurred in this area at the time of writing this paper.
Algorithm 1 Finding an empty slot
1: if List is empty then
2: no conflict found. Hence, accepts a new reservation.
3: else
4: fori=0to List size — 1 do Mean Waiting Time
5 put ¢ into tempList if one of the following prop- 20
erties are true: 18
6: —startpew < start; && finishpeyw > finish; 16
7: —startpew < finish; 14
g — Finishnen < finish; = . @ Mon-restartable
E B Restartable
9: end for ek
10: if tempList is empty then E g1
11: no conflict found. Hence, accepts this reservation. = B 4
12: else 4 4
13: calculate C PU,¢gery if start — end time inter- 5 L
val for a reservation overlaps with others 0 :
14: if CPUTeserv + CPUnew S CPUresource then 0 10 0
15: empty CPUs found. Hence, accepts this reser- % jobs using AR
vation.
16: else
17: no empty CPUs found. Hence, rejects this reser- Figure 9. Mean Waiting Time
vation
18: end if
19: end if
20: end if

Mean Offset Time

(lower is better)

O Mon-restartable)
W restartable

] T T T

10 20
% jobs using AR

100

Figure 10. Mean Offset Time

difference from requested reservation time is 48 minutes.
For 20% reservations, the mean difference is 62 minutes.
This is an increase of 29% over the mean difference from
requested reservation time when 10% of the jobs are reser-
vations. In [3], MOT increase from 10% to 20% reserva-
tions is 32%.

Experiments conducted in [3] use workload traces taken
from supercomputers in Argonne National Laboratory
(ANL) [17], the Cornell Theory Center (CTC) [18], the San
Diego Supercomputer Center (SDSC) [19]. Both MWT and
MOT results between this experiment and in [3] are quite
similar. This proves the validity and realistically of this ex-
periment.

4.4 Resource Utilization

Figure 11 displays the utilization of resources being sim-
ulated in this experiment. When reservations are supported,
resource utilization drops to between 60% and 80%. The
result finds that utilization does not change for restartable
jobs. This is because when they are running longer, they
will be put into a queue if a slot is taken and will be pro-
cessed later. In this experiment, restartable jobs are giv-
ing an underestimate completion time. In constrast, non-
restartable jobs are giving an overestimate completion time
to prevent from being pre-empted by other reservations.
As a result, resource utilization is lower as most of non-
restartable jobs are finishing earlier.

4.5 Number of Rejections
Figure 12 displays the number of rejections for request-

ing new reservations in this experiment. It is expected that
as more reservations are requested, the number of rejections

10

Resource Utilization
100
20
80 1
e 01
& 0N O Non-restartable f
k= Overestimate
20—
= B Restartable /
_: 40— Underestimate
& 30 4+
20 +—
10 4+—
1] T T
1] 10 20
% jobs using AR
Figure 11. Number of utilization
Number of Rejection
16
14
c 12
c
s O Non-restartable /
B Owverestimate
L g
[H Restartable /
B B Underestimate
(5]
oy
2
0 T T
1] 10 20
% jobs using AR

Figure 12. Number of rejections

will be higher. Non-restartable jobs have higher rejection
rate since they request longer duration time.

4.6 Parallel Jobs

The results seemed to disadvantage a system using AR.
However, for parallel applications, as depicted in Figure 13,
AR is very beneficial. For this experiment, all the jobs are
parallel and they required 4 CPUs for executing simultane-
ously. Sending parallel jobs without reserving beforehand
have the lowest percentage of successful completion. 10%
jobs using AR perform better than 20% jobs as they have
less competition to access the same resource.

Parallel Jobs using 4 CPUs
a0

a0

70

G0

50

O Mon-restartahle
40 B Restartable

30

% Jobs Completion

20

NEm |
i}

0 10 20
% jobs using AR

Figure 13. Parallel Jobs using AR

5 Conclusion and Future Work

Advance reservation of grid resources allow users to gain
concurrent access to adequate resources for applications to
be executed in parallel. Advance reservation also guaran-
tees the availability of resources to users and applications at
the specified times in the future.

This paper introduced advance reservation mechanisms
incorporated into GridSim, a grid simulation tool. The de-
sign and implementation for supporting advance reservation
in GridSim are also discussed. Experimental results have
shown that a reservation-based system benefits advanced
reservations from immediate ones and parallel jobs signifi-
cantly, as the resources are guaranteed to be available at the
specified time.

Future work on GridSim will look into various ways to
prioritize reservations, and to evaluate the relative impor-
tance of different applications, in order to reject less impor-
tant applications for others. In addition, policies and penal-
ties for cancellation and modification of reservations need
to be introduced.

References

[1] Foster, I., Kesselman, C. (eds.): The Grid: Blueprint for
a Future Computing Infrastructure. Morgan Kaufmann
Publishers, USA, 1999.

[2] Buyya, R., Murshed, M.: GridSim: A Toolkit for
the Modeling and Simulation of Distributed Resource
Management and Scheduling for Grid Computing. The
Journal of Concurrency and Computation: Practice and
Experience, Vol. 14, Issue 13-15. Wiley Press, 2002.

11

[3] Smith, W., Foster, 1., and Taylor, V.: Scheduling with
Advanced Reservations. Proceedings of the Interna-
tional Parallel and Distributed Processing Symposium
(IPDPS) Conference, May 2000.

Buyya, R., Branson, K., Giddy, J., and Abramson, D.:
The Virtual Laboratory: Enabling Molecular Modeling
for Drug Design on the World Wide Grid. The Journal
of Concurrency and Computation: Practice and Experi-
ence (CCPE), 15(1): 1-25, Wiley Press, Jannuary 2003.

Buyya, R., Date, S., Mizuno-Matsumoto, Y., Venu-
gopal, S. and Abramson, D.: Neuroscience Instrumen-
tation and Distributed Analysis of Brain Activity Data:
A Case for eScience on Global Grids. Journal of Con-
currency and Computation: Practice and Experience,
Wiley Press, USA (accepted in Jan. 2004 and in print).

Aida, K., Takefusa, A., Nakada, H., Matsuoka, S.,
Sekiguchi, S., Nagashima, U.: Performance Evaluation
Model for Scheduling in a Global Computing System.
The International Journal of High Performance Com-
puting Applications, Vol. 14, No. 3. Sage Publications,
USA, 2000.

Song, X., Liu, X., Jakobsen, D., Bhagwan, R., Zhang,
X., Taura, K., Chien, A.: The MicroGrid: A Scientific
Tool for Modelling Computational Grids. Proceedings
of IEEE Supercomputing (SC 2000). Dallas, USA, Nov
4-10, 2000.

Casanova, H.: Simgrid: A Toolkit for the Simula-
tion of Application Scheduling. Proceedings of the First
IEEE/ACM International Symposium on Cluster Com-
puting and the Grid (CCGrid 2001). IEEE Computer
Society Press, Brisbane, Australia, May 15-18, 2001.

Bell, W. H., Cameron, D. G., Capozza, L., Millar, A. P,,
Stockinger, K. and Zini, F.: OptorSim — A Grid Simula-
tor for Studying Dynamic Data Replication Strategies.
International Journal of High Performance Computing
Applications, 17(4), 2003.

[10] Hoo, G., Jackson, K. and Johnston, W.: Design of the
STARS Network QoS Reservation System, Journal of
Communications and Networking (JCN) - special issue
on QoS in IP networks, June 2000.

[11] Foster, I., Kesselman, C., Lee, C., Lindell, R., Nahrst-
edt, K., and Roy, A.: A Distributed Resource Manage-
ment Architecture that Supports Advance Reservations
and Co-Allocation, International Workshop on Quality
of Service, 1999.

[12] Maui Scheduler.
http://www.supercluster.org/maui

[13] MacLaren, J. (ed.): Advance Reservations: State of
the Art (draft). GWD-I, Global Grid Forum (GGF),
June 2003

http://www.ggf.org

[14] Roy, A. and Sander, V.: Advance Reservation API,
GFD-E.5, Scheduling Working Group, Global Grid Fo-
rum (GGF), May 2002

[15] Standard Performance Evaluation Corporation.
http://www.spec.org

[16] SPEC. SPEC CINT2000 Results.
http://www.specbench.org/cpu2000/

[17] Argonne National Laboratory.
http://www.anl.gov

[18] Cornell Theory Center.
http://www.tc.cornell.edu

[19] San Diego Supercomputer Center.
http://www.sdsc.edu

12

