
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2002; 32:135–164 (DOI: 10.1002/spe.432)

A taxonomy and survey of grid
resource management systems
for distributed computing

Klaus Krauter1,∗,†, Rajkumar Buyya2 and Muthucumaru Maheswaran1

1Advanced Networking Research Laboratory, Department of Computer Science, University of Manitoba,
Winnipeg, Canada
2School of Computer Science and Software Engineering, Monash University, Melbourne, Australia

SUMMARY

The resource management system is the central component of distributed network computing systems.
There have been many projects focused on network computing that have designed and implemented
resource management systems with a variety of architectures and services. In this paper, an abstract
model and a comprehensive taxonomy for describing resource management architectures is developed. The
taxonomy is used to identify approaches followed in the implementation of existing resource management
systems for very large-scale network computing systems known as Grids. The taxonomy and the survey
results are used to identify architectural approaches and issues that have not been fully explored in the
research. Copyright 2001 John Wiley & Sons, Ltd.

KEY WORDS: distributed computing; grids; resource management; scheduling; taxonomies

INTRODUCTION

A distributed network computing (NC) system is a virtual computer formed by a networked set of
heterogeneous machines that agree to share their local resources with each other. A Grid [1] is a
very large scale, generalized distributed NC system that can scale to Internet-size environments with
machines distributed across multiple organizations and administrative domains. The emergence of
a variety of new applications demand that Grids support efficient data and resource management
mechanisms. Designing a Grid architecture that will meet these requirements is challenging due to
several issues [1,2]. Some of these issues are: (a) supporting adaptability, extensibility, and scalability,
(b) allowing systems with different administrative policies to inter-operate while preserving site

∗Correspondence to: Klaus Krauter, Redfern Broadband Networks, Level 1, 1 Central Avenue, Australian Technology Park,
Eveleigh NSW1430, Australia.
†E-mail: kkrauter@rbni.com

Copyright 2001 John Wiley & Sons, Ltd.
Received 6 June 2001

Revised 12 September 2001
Accepted 17 September 2001

136 K. KRAUTER, R. BUYYA AND M. MAHESWARAN

autonomy, (c) co-allocating resources, (d) supporting quality of service, and (e) meeting computational
cost constraints.

For a Grid to efficiently support a variety of applications, the resource management system (RMS)
that is central to its operation must address the above issues in addition to issues such as fault-
tolerance and stability [3]. The RMS manages the pool of resources that are available to the Grid,
i.e. the scheduling of processors, network bandwidth, and disk storage. In a Grid, the pool can include
resources from different providers thus requiring the RMS to hold the trust of all resource providers.
Maintaining the required level of trust should not hinder the efficiency of the RMS by increasing the
overhead for basic operations. The resource providers may not participate in the Grid unconditionally,
i.e. there may be different policies that govern how the resources should be used by the Grid such that
the resources could still meet the local resource demands. It is the responsibility of the RMS to ensure
that it handles the various resources while adhering to the different usage policies. Because of the
different administrative policies, resource heterogeneity, and expected proportions of the Grid it may
be necessary to employ a federation of RMSs instead of a single RMS. The RMSs in the federation
should interoperate using an agreed set of protocols to manage the resources.

Applications may either directly or indirectly request resources from the Grid. Such resource
requests are considered as jobs by the Grid. Depending on the application, the job may specify quality
of service (QoS) requirements or accept best-effort service levels. The RMS is required to perform
resource management decisions while maximizing the QoS metrics delivered to the clients when jobs
have QoS constraints [4]. In practice, a Grid RMS may be required to handle different jobs using
different policies. For example, some jobs may require QoS support while others may require best-
effort processing. In general, requiring the RMS to support multiple policies can compel the scheduling
mechanisms to solve a multi-criteria optimization problem.

The abstract model presented in this paper succinctly captures the essential components and
functions of a Grid RMS. The significance of the different components and functions of the model are
also discussed. A taxonomy is presented that classifies the approaches that form the ‘design space’ for
the various components in the abstract model. The taxonomy is illustrated by applying it to categorize
the approaches taken by a selected set of existing Grid RMSs. This application of the taxonomy also
reveals some of the areas that are yet to be researched fully.

RELATED WORK

A distributed computing scheduling taxonomy is presented in Reference [5]. This taxonomy includes
static scheduling techniques that are not addressed in our taxonomy. It also does not consider
scheduling, state estimation, and resource models separately when classifying dynamic scheduling. The
taxonomy for dynamic scheduling presented in Reference [6] only considers two aspects of resource
management, scheduling and state estimation. Our taxonomy provides classification of resource models
and examines scheduling and state estimation at a finer level. Several advances in distributed resource
management since the publication of Reference [6] have also been incorporated into our taxonomy.

A taxonomy for heterogeneous computing environments is presented in Reference [7]. The
taxonomy covers the application model, target platform model, and mapping heuristic model.
Application models are not covered in our taxonomy and there is no differentiation on the target

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:135–164

A TAXONOMY AND SURVEY OF GRID RMS 137

computational
Grid

Grid systems

collaborative

data Grid

service Grid

high throughput

on demand

multimedia

distributed supercomputing

Figure 1. A Grid systems taxonomy.

platform model because the focus is on issues relevant to the designers of RMSs rather than issues
relevant to application and toolkit designers.

Several taxonomies for characterizing a distributed system are presented in References [8] and [9].
The EM3 taxonomy in Reference [8] classifies a heterogeneous computing system based on the
number of execution modes and machine models. An extended version of the taxonomy developed
in Reference [5] is also presented in Reference [8] to characterize the scheduling algorithms in
heterogeneous computing systems. Our taxonomy is focused on RMS design issues and thus differs
from the taxonomies presented in Reference [8]. The taxonomy presented in Reference [9] provides a
broad characterization based on the external interfaces, internal system design, class of hardware and
software resource support, and resource management issues. Our taxonomy of RMS is more detailed
than the one presented in Reference [9].

GRID SYSTEM TAXONOMY

The design objectives and target applications for a Grid motivate the architecture of the RMS. This
paper groups design objectives into three themes: (a) improving application performance, (b) data
access, and (c) enhanced services. Using these themes, Grid systems are placed into the categories
shown in Figure 1.

The computational Grid category denotes systems that have higher aggregate computational
capacity available for single applications than the capacity of any constituent machine in the system.
Depending on how this capacity is utilized, these systems can be further subdivided into distributed
supercomputing and high throughput categories. A distributed supercomputing Grid executes the
application in parallel on multiple machines to reduce the completion time of a job. Typically,
applications that require distributed supercomputing are grand challenge problems such as weather
modeling and nuclear simulation. A high throughput Grid increases the completion rate of a stream
of jobs and are well suited for ‘parameter sweep’ type applications such as Monte Carlo simulations
[10,11].

The data Grid category is for systems that provide an infrastructure for synthesizing new information
from data repositories such as digital libraries or data warehouses that are distributed in a wide area
network. Computational Grids also need to provide data services but the major difference between a
data Grid and a computational Grid is the specialized infrastructure provided to applications for storage

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:135–164

138 K. KRAUTER, R. BUYYA AND M. MAHESWARAN

management and data access. In a computational Grid the applications implement their own storage
management schemes rather than use Grid provided services. Typical applications for these systems
include special purpose data mining that correlates information from multiple different data sources.
The data Grid initiatives, European DataGrid Project [12] and Globus [13], are working on developing
large-scale data organization, catalog, management, and access technologies.

The service Grid category is for systems that provide services that are not provided by any single
machine. This category is further subdivided as on-demand, collaborative, and multimedia Grid
systems. A collaborative Grid connects users and applications into collaborative workgroups. These
systems enable real time interaction between humans and applications via a virtual workspace. An
on-demand Grid category dynamically aggregates different resources to provide new services. A data
visualization workbench that allows a scientist to dynamically increase the fidelity of a simulation
by allocating more machines to a simulation would be an example of an on-demand Grid system.
A multimedia Grid provides an infrastructure for real-time multimedia applications. This requires
supporting QoS across multiple different machines whereas a multimedia application on a single
dedicated machine may be deployed without QoS [14].

Most ongoing research activities developing Grid systems fall into one of the above categories.
Development of truly general-purpose Grid systems that can support multiple or all of these categories
remains a hard problem.

RMS DEFINITIONS AND REQUIREMENTS

This section develops an abstract model for resource management systems to outline the different
architectural choices made in several existing and upcoming RMSs. To keep the abstract model
compact, only the core functions of an RMS are included. Essential definitions and key resource
management issues are presented before describing the proposed model.

In Grids, a resource is a reusable entity that is employed to fulfill a job or resource request. It could
be a machine, network, or some service that is synthesized using a combination of machines, networks,
and software. The resource provider is defined as an agent that controls the resource. For example, a
resource broker that acts as the resource provider for a resource could provide the consumers with a
‘value added’ abstract resource [15]. Similarly, a resource consumer is defined as an agent that controls
the consumer. A resource management system is defined as a service that is provided by a distributed
NC system that manages a pool of named resources that is available to the NC such that a system- or
job-centric performance metric is optimized.

Due to issues such as extensibility, adaptability, site autonomy, QoS, and co-allocation, resource
management in Grid systems is more challenging than in traditional distributed computing
environments (DCEs) [3]. In addition to the issues such as scalability, responsiveness, fault-tolerance,
and stability that are encountered by the RMSs of traditional DCEs, the Grid RMSs have to deal with
the issues that arise due to distributed ownership of the resources. Further, an issue may be addressed
differently by DCE and Grid RMSs. For example, traditional DCE RMSs may be work conserving
whereas Grid RMSs may not be work conserving. In Grids, due to resource heterogeneity and security
concerns it may be best to execute a job only on a subset of resources. Another example would be
the way QoS issue is handled. Traditional DCEs typically span a single administrative domain and are

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:135–164

A TAXONOMY AND SURVEY OF GRID RMS 139

likely to handle jobs that originate from clients that belong to the organization. Therefore, QoS could
be implemented in such systems, to a certain extent using job priorities.

However, in a Grid with jobs from different owners, providing QoS is more challenging. It is
essential for the RMS to consider the jobs’ access privileges, type of subscription, and resource
requirements while determining the level of QoS. Depending on the type of QoS assurances given,
a contract may be formed between the RMS and job. In this contract, the assurances given by the RMS
may be contingent upon the job operating within some predefined resource limits. In order to forge a
meaningful contract the expected resource usage of the job should be determined. However, accurately
predicting the resource requirements of network applications remains a hard problem. When a job
overruns its resource usage predictions, the RMS should ensure that it does not infringe on the resource
allocations of other jobs, i.e. the Grid RMSs should provide ‘isolation’ among the jobs for fair resource
management.

In general, a Grid application can have several components with the different components mapped
onto different resources. In such situations, the RMS should use a global abstraction of the application
to accredit and allocate resources [16]. The abstraction should be able to handle various application
requirements such as co-allocation, QoS, and deadlines.

RMS ABSTRACT MODEL

Experience with large scale network computing systems has shown that efficient application and system
performances are not necessarily the same [17]. More specifically, it may not be possible for the
same scheduler to optimize application and system performances. One solution is to have a multi-
layer RMS [18]. For example, to use an application scheduler such as Application Level Scheduling
(AppLeS) [19] in conjunction with a resource scheduler such as Globus [20] to form a two-layer RMS.
Further, due to the expected scale of Grid systems, a Grid RMS is most likely to be an interconnection
of various RMSs that are cooperating with one another within an accepted framework. Figure 2 shows a
block diagram for a system with multiple interconnected RMSs and each RMS having multiple levels.
User applications use the services of grid toolkits to implement their functionality. The grid toolkits
use the RMS service interfaces to present suitable application layer abstractions. In the above figure,
the same abstract model is used to represent the different instances of the RMSs and the different layers
within an instance. However, the different instances may implement the abstract model distinctly.

Figure 3 shows the abstract model for the core functions supported by an RMS. The abstract model is
intended to be generic enough to be specialized as an application-specific manager or resource-specific
manager. The model contains several functional units and four interfaces: (1) resource consumer
interface (RCI), (2) resource provider interface (RPI), (3) resource manager support interface (RMSI),
and (4) resource manager peer interface (RMPI). The resource consumers that interface via RCI can
be either actual applications or another RMS that implements a ‘higher’ layer. Similarly, the resource
provider that interfaces via the RPI can be an actual resource or another RMS that implements a
‘lower’ layer. The support functions such as naming and security that are essential for the operation of
the RMS interface via the RMSI. If needed, other support functions may also interface via RMSI.
The RMPI provides the protocols to interconnect with other RMSs. Several protocols including
resource discovery, resource dissemination, trading, resolution, and co-allocation may be supported
by the RMPI.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:135–164

140 K. KRAUTER, R. BUYYA AND M. MAHESWARAN

Resource
consumers

...

Grid toolkits

Applications

Grid toolkits

Applications

RMSRMSRMS

RMSRMSRMS

ResourcesResourcesResources

ResourcesResourcesRMS
support

ResourcesResourcesRMS
support

Grid toolkits

Applications

Figure 2. RMS system context.

Resource provider
interface

Resource consumer
interface

R
esource m

anager
support interface

R
es

ou
rc

e
m

an
ag

er
pe

er
 in

te
rf

ac
e

Resource/
Job

monitor

Scheduler
&

State estimator

Naming
proxy

Resource
reservation

agent

Security
proxy

QoS broker/
Request

interpreter

Resource
resolver/

co-allocator

Resource
discoverer/

disseminator/
trader

Job
 queue Reservations

Resource/
Job status

Resource
Info. Service

Other
proxy

Figure 3. RMS system abstract structure.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:135–164

A TAXONOMY AND SURVEY OF GRID RMS 141

The resource dissemination and discovery protocols provide a way for an RMS to determine the
state of the resources that are managed by it and other RMSs that interoperate with it. The resource
dissemination protocol provides information about the resources or a pointer to a information server.
The resource discovery protocol provides a mechanism by which resource information can be found
on demand. In some RMS architectures, no distinction is made between these two protocols. For
example, an RMS could use a replicated network directory that contains resource information. The
resource dissemination protocol could be implemented as a directory replication protocol. The resource
discovery function would then consist of searching the nearest network directory. Alternatively, a Grid
could maintain a central network directory where dissemination consists of advertising the resource
status and discovery consists of querying the central directory.

Instead of resource dissemination and discovery protocols, some RMSs use resource trading
protocols [11]. Typically, trading protocols encapsulate the resource capabilities and statuses using
price. The resource trading takes place based on price differentials. The price itself may be fixed by
auctioning mechanisms or price functions.

Other peer protocols include resource resolution and co-allocation protocols. Once an RMS becomes
aware of a ‘remote’ resource that is more suitable to service a job than any of the local resources, it
should contact the remote RMS to schedule the job at the remote resource. The resource resolution
protocol among the RMSs supports this process. The operation of this protocol depends on the
organization of the RMSs, i.e. whether the RMSs are hierarchically or flatly organized. For some jobs,
it may be necessary to simultaneously acquire multiple resources. The resource co-allocation protocol
supports this process. In some implementations, the resolution and co-allocation protocols may be
combined together.

The RMSI is an extensible interface and supports functions that are essential for the operation of the
RMS. In Figure 3, naming and security are placed as support functions with a proxy inside the RMS
for efficient operation. The naming function enforces the namespace rules for resources and maintains
a database for resource information. The structure, content, and maintenance of the resource database
are important differentiating factors. An external instead of an internal naming function facilitates
interoperability of the RMSs because the resources will have uniform naming.

The resource/QoS broker function is responsible for examining the resource requests that are
specified in some resource specification language and translating the requests into the internal resource
management protocols used within the RMS.

RMS TAXONOMY OVERVIEW

The taxonomy classifies RMSs by characterizing different attributes. The intent of the different parts
of the taxonomy is to differentiate RMS implementations with a view to impact on overall Grid system
scalability and reliability. Thus a RMS is classified according to machine organization within the Grid,
resource model, dissemination protocols, namespace organization, data store organization, resource
discovery, QoS support, scheduler organization, scheduling policy, state estimation, and rescheduling
approach.

In the following sections, resource requester identifies the machine that is requesting a resource,
resource provider identifies the machine that is providing the resource, and resource controller

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:135–164

142 K. KRAUTER, R. BUYYA AND M. MAHESWARAN

Flat

Organization Cells

Hierarchical
Hierarchical Cells

Flat Cells

Figure 4. Organization taxonomy.

identifies the machine that is responsible for allocating the resource. Current Grid systems have
machines that function in one or more of these roles.

MACHINE ORGANIZATION

The organization of the machines in the Grid affects the communication patterns of the RMS and thus
determines the scalability of the resultant architecture. Figure 4 shows the taxonomy for the machine
organization. The organization describes how the machines involved in resource management make
scheduling decisions, the communication structure between these machines, and the different roles the
machines play in the scheduling decision.

Previous taxonomies used centralized and decentralized categories. In a centralized organization
a single controller or designated set of controllers performs the scheduling for all machines. This
approach is not used in Grid systems since centralized organizations suffer from scalability issues.
In a decentralized organization the roles are distributed among machines in the Grid. Decentralized
organizations have been previously divided into sender and receiver initiated categories. This is too
simple since there is a need to distinguish how the resource requesters, resource providers, and the
resource controllers organize their dialogue.

For example, a resource requester may utilize an agent-based approach to search out resource
providers and allocate the resources on behalf of the originator. This is a sender-initiated approach.
A resource requester may consult locally or globally available resources and then makes requests to
the resource providers. This is also a sender-initiated approach with a significantly different architecture
than the agent-based approach. In this paper a different approach is used. The organization structure
and resource management implementation are characterized separately. This section describes the
organization and the next section describes the resource management implementation.

In a flat organization all machines can directly communicate with each other without going through
an intermediary. In a hierarchical organization machines in the same level can directly communicate
with the machines directly above them or below them, or peer to them in the hierarchy. The fan out
below a machine in the hierarchy is not relevant to the classification. Most current Grid systems use
this organization since it has proven scalability.

In a cell structure, the machines within the cell communicate between themselves using flat
organization. Designated machines within the cell function acts as boundary elements that are
responsible for all communication outside the cell. The internal structure of a cell is not visible from
another cell, only the boundary machines are. Cells can be further organized in flat or hierarchical

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:135–164

A TAXONOMY AND SURVEY OF GRID RMS 143

Resource
Model

Schema

Object Model

Fixed

Extensible

Fixed

Extensible

Figure 5. Resource model taxonomy.

structures. A Grid that has a flat cell structure has only one level of cells whereas a hierarchical cell
structure can have cells that contain other cells. The major difference between a cell structure and
hierarchical structure is that a cell structure has a designated boundary with a hidden internal structure
whereas in a hierarchical structure the structure of the hierarchy is visible to all elements in the Grid.

RESOURCES

The taxonomies in this section describe the different aspects of the RMS that provide the interface to
the resources managed by the Grid RMS. Arguably the interfaces to resource components are even
more important than the scheduling components because they are ultimately what the applications
or toolkits use to implement their functionality. If the resource interfaces do not provide the correct
abstractions and efficient implementations it is unlikely that a Grid will be used effectively.

Resource model

The resource model determines how applications and the RMS describe Grid resources. Figure 5 shows
the resource model taxonomy. The taxonomy is focused on how the resources and operations on the
resources are described.

In a schema based approach, the data that comprises a resource is described via a description
language along with some integrity constraints. In some systems, a query language is integrated with
the schema language. The schema languages are further characterized by the ability to extend the
schemas. In an extensible schema, new schema types for resource descriptions can be added. Predefined
attribute-value based resource models are in the fixed schema category. The Condor ClassAd approach
using semi-structured data approach is in the extensible schema category.

In an object model, the operations on the resources are defined as part of the resource model. As with
schemas the object model can be predetermined and fixed as part of the definition of the RMS. In the
object model extensible approach the resource model provides a mechanism to extend the definition
of the object model managed by the RMS. The Legion approach provides an extensible object model
oriented around resource management. It may be difficult to implement a high performance extensible
object model. The current fixed object models are basic and provide few primitive operations on
resources.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:135–164

144 K. KRAUTER, R. BUYYA AND M. MAHESWARAN

Relational

Resource
Namespace

Graph

Hierarchical
Hybrid

Figure 6. Namespace organization taxonomy.

Resource namespace organization

A Grid RMS operates on a pool of globally named resources. The organization of the namespace that
could be created and maintained by an entity external to RMS greatly influences the design of the
resource management protocols and affects the discovery methods. Figure 6 shows the taxonomy for
namespace organization.

A relational namespace divides the resources into relations and uses concepts from relational
databases to indicate relationships between tuples in different relations. A hierarchical namespace
divides the resources in the Grid into hierarchies. The hierarchies are typically organized around
the physical or logical network structures. The relational/hierarchical namespace hybrid consists of
relations where the contents of the relations are broken into a hierarchy in order to distribute them
across the machines in the Grid. Most network directory based namespaces utilize a hybrid structure.
Globus MDS is an example of a network directory that utilizes a hybrid structure.

A graph-based namespace uses nodes and pointers where the nodes may or may not be complex
entities. Namespaces that are implemented using an object-oriented paradigm typically use graph
namespaces with object as nodes and inter-object references being the pointers. 2K provides a graph
based namespace based on the CORBA object model. A given resource in a hierarchical namespace
may occur more than once in different part of the hierarchy with an embedded reference to another part
of the hierarchy. This is not considered a graph namespace since the fundamental navigation method is
to descend the hierarchy rather than to chase references as in object-oriented approaches.

QoS support

In Grid systems, QoS is not limited to network bandwidth but extends to the processing and storage
capabilities of the nodes. Thus the focus is on the degree a Grid can provide end-to-end QoS rather than
providing only QoS on the network. When a Grid job has QoS requirements, it may be necessary to
negotiate a service level agreement (SLA) to enforce the desired level of service. Resource reservation
is one of the ways of providing guaranteed QoS in a Grid with dedicated resources. Globus provides
some resource reservation capabilities. It is very inefficient to guarantee network bandwidth and not
guarantee processing cycles for the application components communicating over this link. Resource
reservation is also considered to be a fundamental QoS attribute. A Grid that provides the ability to
specify QoS at job submission time but cannot reserve resources in advance is considered to provide
only a partial solution to QoS. Most current Grid implementations can only provide partial QoS since
most processor operating systems do not provide strict performance guarantees.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:135–164

A TAXONOMY AND SURVEY OF GRID RMS 145

QoS
Support

None

Hard

Soft

Figure 7. QoS support taxonomy.

Network Directory
Resource

Information Store
Organization

Distributed Objects

X.500/LDAP

Other

Object Model Based

Language Based

Relational

Figure 8. Resource information store taxonomy.

There are two parts to QoS, admission control and policing. Admission control determines if the
requested level of service can be given and policing ensures that the job does not violate its agreed
upon level of service. Figure 7 shows the taxonomy for QoS support. A RMS that provides explicit
QoS attributes for resource requests but cannot enforce SLAs via policing provides soft QoS support.
Hard QoS support is provided when all nodes in the Grid can police the SLAs guaranteed by the
RMS. Darwin and GOPI provide hard QoS support since they are oriented towards supporting network
applications.

Resource information store organization

The resource information store organization determines the cost of implementing the resource
management protocols because resource dissemination and discovery may be provided by the data
store implementation. Figure 8 shows the taxonomy for resource information data store organizations.
Distributed object data stores utilize persistent object services that are provided by language
independent object models such as CORBA or a language based model such as that provided by
persistent Java object implementations. 2K and Javelin provide object-oriented information stores
based around their respective underlying object models.

Network directory data stores are based on a database engine and utilize a standard interface
language to operate on the schema data. Many existing network directories use X.500/LDAP interfaces
to access an underlying relational database or a specialized distributed database implementation.
Network directories may also provide access to underlying databases using query interfaces other than
X.500/LDAP. Network directories implemented using relational databases may provide access using
SQL or a restricted subset of it. The original implementation of Globus MDS was based on a standard
LDAP implementation but this was converted to a specialized implementation to increase performance.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:135–164

146 K. KRAUTER, R. BUYYA AND M. MAHESWARAN

Queries
Resource
discovery Agents

Distributed

Centralized

Figure 9. Resource discovery taxonomy.

Batch/PeriodicResource
Dissemination Online/On demand

Push

Pull

Figure 10. Resource dissemination taxonomy.

The important difference between distributed object and network directory approaches is that in
network directories the schema and operations are separated with the operations defined externally to
the data store schema. In an object-oriented approach the schema defines the data and the operations
together. Other approaches such as Sun Microsystem’s Jini provide a network information store
oriented around the underlying language facilities. Jini utilizes the features of Java such as RMI and
code mobility. Jini could be used to implement a more generalized Grid resource information store.

Resource discovery and dissemination

Resource discovery and dissemination may be viewed as providing complementary functions.
Discovery is initiated by a network application to find suitable resources within the Grid. Dissemination
is initiated by a resource trying to find a suitable application that can utilize it. Figure 9 shows the
taxonomy for resource discovery and Figure 10 shows the taxonomy for resource dissemination.

The implementation of the resource description database in current systems seems to determine
the approach to resource discovery. Network directory based systems mechanisms such as Globus
MDS use parameterized queries that are sent across the network to the nearest directory. Query based
systems are further characterized depending on whether the query is executed against a distributed
database or a centralized database. The updating of the resource description database is characterized
by the resource dissemination approaches. Agent based approaches send active code fragments across
machines in the Grid that are interpreted locally on each machine. The Bond system is based on agents
that use KQML as an agent communication language. Agents can also passively monitor and either
periodically distribute resource information or in response to another agent. Thus agents can mimic
a query based resource discovery scheme. The major difference between a query based approach and
an agent based approach is that agent based systems allow the agent to control the query process and
make resource discovery decisions based on its own internal logic rather than rely on an a fixed function
query engine.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:135–164

A TAXONOMY AND SURVEY OF GRID RMS 147

Resource dissemination is categorized by the approach taken for updating the resource information.
The mechanisms used to implement dissemination determine the amount of data that is sent between
machines in the Grid. For example, aggregate resource status may be sent using a different protocol
than detailed resource description information in order to reduce the data transferred and the latency
time.

In a batch/periodic approach, resource information is batched up on each Grid machine and then
periodically disseminated through the Grid. Information can be sent from the originating machine to
other machines in which case it is pushing the information or another machine in the Grid can request
the information from the originating machine in which case it pulls the information from the machine.
Condor and the European DataGrid are examples that utilize the batch approach. In an online or on-
demand approach information is disseminated from the originating machine immediately. In this case
the information is pushed to other machines in the Grid. The set of machines that the information is
sent to depends on the organization of the Grid and the resource database implementation. The 2K
system uses a demand based resource dissemination model.

Summary and research issues

This section presented taxonomies for describing resource models, resource namespace organization,
QoS support, resource information store organization, resource discovery and resource dissemination.
The solutions to these problems determine the functionality of the resources and the efficiency by
which they can be managed by other components of the RMS. For example, the QoS support issue
determines what kind of QoS support an application could receive from a resource. The organization of
the resource information store could determine the efficiency of the scheduling or allocation algorithms.
Following is a sampling of research issues in the area of the problems considered in this subsection
that need further examination.

This paper assumes that the RMS operates on a ‘globally’ named pool of resources. Several current
generation RMSs have naming as an internal function to the RMS. Further research is necessary to
closely examine the trade-offs of placing the naming function. One motivation for making naming a
global function is it facilitates interoperability of different RMSs which may be essential for the Grid
to scale to Internet proportions.

Resource discovery and dissemination are two key functions for a wide-area RMS. The status
information of the resources that is central to these functions change dynamically. Hence the above
schemes should consider the fact that the information will become stale after a certain time period [21].
Further, a Grid RMS is likely to handle a highly heterogeneous set of resources with some more
significant than others [22]. For dissemination schemes to reduce the message overhead and become
scalable, issues such as how to quantify significance and measure it efficiently should be addressed.

QoS support is another significant issue in Grids. There is variety of resources that are capable of
supporting QoS to varying degrees so it is essential to develop flexible QoS abstraction mechanisms.

SCHEDULING

The previous section examined several taxonomies that described the functionality of the resources
both for the management system as well as the end-user applications. This section examines

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:135–164

148 K. KRAUTER, R. BUYYA AND M. MAHESWARAN

Centralized

Scheduler
Organization

Decentralized

Hierarchical

Figure 11. Scheduler organization taxonomy.

taxonomies that describe the scheduling and resource allocation operation of the RMS and discusses
how these management schemes relate to some of the schemes examined in previous sections. In
particular, taxonomies for the organization of the scheduling components, degree of extensibility,
rescheduling approaches, and state estimation are presented.

Scheduler organization

The scheduling component of the RMS can be organized in three different ways as shown in
Figure 11. In the centralized organization, there is only one scheduling controller that is responsible
for the system-wide decision making. Such an organization has several advantages including easy
management, simple deployment, and the ability to co-allocate resources. In a Grid RMS the
disadvantages of this organization such as the lack of scalability, lack of fault-tolerance, and the
difficulty in accommodating multiple policies outweigh the advantages. Condor utilizes a centralized
scheme based around the ClassAd matchmaker.

The other two organizations, hierarchical [23] and decentralized have more suitable properties for
a Grid RMS scheduler organization. In a hierarchical organization, the scheduling controllers are
organized in a hierarchy. One obvious way of organizing the controllers would be to let the higher
level controllers manage larger sets of resources and lower level controllers manage smaller sets of
resources. Compared with the centralized scheduling this mode of hierarchical scheduling addresses the
scalability and fault-tolerance issues. It also retains some of the advantages of the centralized scheme
such as co-allocation. Many of the Grid systems such as 2K, Darwin, and Legion utilize a hierarchical
scheduler.

One of the key issues with the hierarchical scheme is that it still does not provide site autonomy
and multi-policy scheduling. This might be a severe drawback for Grids because the various resources
that participate in the Grid would want to preserve control over their usage to varying degrees. Many
Grid resources would not dedicate themselves only to the Grid applications. Therefore hierarchical
scheduling schemes should deal with dynamic resource usage policies.

The decentralized organization is another alternative. It naturally addresses several important issues
such as fault-tolerance, scalability, site-autonomy, and multi-policy scheduling. However, decentralized
organizations introduces several problems of their own some of them include management, usage
tracking, and co-allocation. This scheme is expected to scale to large network sizes but it is necessary
for the scheduling controllers to coordinate with each other via some form of resource discovery or
resource trading protocols. The overhead of operation of these protocols will be the determining factor
for the scalability of the overall system. Lack of such protocols may reduce the overhead but the

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:135–164

A TAXONOMY AND SURVEY OF GRID RMS 149

State
Estimation

Non-predictive

Predictive

Heuristics

Probability Distribution

Heuristics

Machine Learning

Pricing Models

Figure 12. State estimation taxonomy.

efficiency of scheduling may also decrease. Systems such as Bond, MOL, and Ninf utilize decentralized
scheduling approaches.

State estimation

Previous taxonomies of state estimation concentrated on the degree of information available for
estimated state and the communication organization by which this information was distributed. In Grid
systems, state estimation is always done on partial or stale information due to information propagation
delay in large distributed systems. The focus of this taxonomy is on the mechanism used to estimate
state that affects the implementation of the current and historical data stores in our abstract model.
Figure 12 shows the state estimation taxonomy.

Non-predictive state estimation uses only the current job and resource status information since
there is no need to take into account historical information. Non-predictive approaches use either
heuristics based on job and resource characteristics or a probability distribution model based on an
offline statistical analysis of expected job characteristics. A predictive approach takes current and
historical information such as previous runs of an application into account in order to estimate state.
Predictive models use either heuristic, pricing model or machine learning approaches. In a heuristic
approach, predefined rules are used to guide state estimation based on some expected behavior for
Grid applications. In a pricing model approach, resources are bought and sold using market dynamics
that take into account resource availability and resource demand [2]. In machine learning, online or
offline learning schemes are used to estimate the state using potentially unknown distributions. Note
that heuristics or statistics-based techniques can be used for both predictive and non-predictive state
estimation approaches. The Punch system uses machine learning based predictive approach and the
Ninf system uses pricing model approach for state estimation.

Rescheduling

The rescheduling characteristic of a RMS determines when the current schedule is re-examined and the
job executions reordered. The jobs can be reordered to maximize resource utilization, job throughput,
or other metrics depending on the scheduling policy. The rescheduling approach determines the
suitability of a RMS for different types of Grid systems. Figure 13 shows the rescheduling taxonomy.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:135–164

150 K. KRAUTER, R. BUYYA AND M. MAHESWARAN

Rescheduling

Periodic/Batch

Event-Driven/
Online

Figure 13. Rescheduling taxonomy.

Scheduling
Policy

Fixed

Extensible
Ad-hoc

Structured

System Oriented

Application Oriented

Figure 14. Scheduling policy taxonomy.

Periodic or batch rescheduling approaches group resource requests and system events which are then
processed at intervals. This interval may be periodic or may be triggered by certain system events. The
key point is that rescheduling is done to batches instead of individual requests or events. Event driven
online rescheduling performs rescheduling as soon the RMS receives the resource request or system
event.

Batch rescheduling allows potentially more effective utilization of the Grid resources since more
requests can be considered at one time. Predictive state estimation schemes may also work better with
periodic or batch rescheduling. Hard QoS would be difficult to provide using a batch rescheduling
approach since the violation of service level would not cause immediate rescheduling of the offending
job. Online schemes can be more reactive and show less latency for jobs. It may be quite difficult to
implement a general-purpose online RMS scheme that can address the different types of Grid systems.
It is difficult to determine the rescheduling approach of most Grid systems since it is usually not
explicitly stated. Systems such as Darwin provide online scheduling whereas some application oriented
Grids such as PUNCH seem to utilize a more batch oriented rescheduling approach.

Scheduling policy

The RMS uses the scheduling policy to determine the relative ordering of requests and jobs when
rescheduling. Figure 14 shows the scheduling policy taxonomy. This taxonomy focuses the degree
that the scheduling policy can be altered by entities outside the RMS. Large Grid systems with many
different administrative domains will most likely have different resource utilization policies. Thus it is
unlikely that an unalterable scheduling policy will suffice for the different needs.

In a fixed approach the policy implemented by the resource manager is predetermined. Fixed policies
are further subdivided into maximizing system throughput schemes or maximizing application oriented

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:135–164

A TAXONOMY AND SURVEY OF GRID RMS 151

schemes. Application oriented schemes try to optimize some specific metric such as application
completion time. Some fixed policy schemes allow fine-tuning by providing specific control parameters
to fine-tune the gross level scheduling objective such as maximizing overall resource utilization. Many
application oriented schedulers such as Netsolve and AppLeS have more fixed scheduling policies.

Extensible scheduling policy schemes allow external entities the ability to change the scheduling
policy. In the ad hoc extensible scheme the resource manager implements a fixed scheduling policy but
provides an interface whereby an external agent can change the resulting schedule. This is typically
done only for specific resources that demand special treatment. In a structured extensible scheme the
resource manager provides a model of the scheduling process with associated semantics. External
agents are allowed to override the default RMS supplied behaviors with their own thus changing the
default scheduling policy. The Legion system provides a well structured extensible scheduling scheme.
Most of the other Grid system provides some level of ad hoc scheduling extensibility.

Summary and research issues

This subsection discusses taxonomies that describe the approaches for scheduling and state estimation
in an RMS. In a wide-area RMS such as a Grid RMS, a resource discovery/dissemination protocol is
expected to work in conjunction with the state estimation. This concept is very different from previous
generation DCEs such as Utopia [24]. In such systems the state estimation algorithms maintain the
‘state’ of the system which is used by the scheduling algorithm to allocate jobs to resources. In a wide-
area RMS, the state estimation schemes may maintain distributed and independent status databases that
may interoperate using the resource discovery/dissemination protocols.

Although scheduling is an area that has been investigated for a long time in distributed
computing and other areas, the Grid computing systems present unique characteristics that demand a
reexamination. Some of the issues in the area of scheduling include: development of Grid level resource
container abstractions similar to the resource containers developed for uni-processor machines [25] and
multi-policy scheduling schemes.

GRID RESOURCE MANAGEMENT SYSTEMS SURVEY

The example system surveyed in this section is not exhaustive, but comprehensive enough to cover
many of the classes developed in our taxonomy. A summary of architectural design choices made by
the representative set of Grid systems is shown in Table I.

The table groups the choices into three groups, Grid, Resources, and Scheduling. The Grid group
classifies the system according to Grid type and the machine organization taxonomies. Some systems
support more than one Grid type. The Resource group specifies the values for the resource taxonomies
in the ‘Resources’ section. The Scheduling group specifies the values for the scheduling taxonomies
presented in the ‘Scheduling’ section. Many systems are not fully classified since some of the
information required to completely place them into taxonomies could not be determined from the
references, they operate in conjunction with other Grid RMS systems, or they do not provide all the
RMS features considered in this taxonomy.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:135–164

152 K. KRAUTER, R. BUYYA AND M. MAHESWARAN

Table I. Grid RMSs and their architecture choices.

System Grid type Resources Scheduling

2K On-demand
Hierarchical

Extensible object model, graph
namespace, soft network QoS,
object model store, agent
discovery, online dissemination

Hierarchical network resource
scheduler, decentralized scheduler
for other resources

AppLeS High-throughput Resource model provided by
Globus, Legion, or Netsolve

Hierarchical scheduler, predictive
heuristics, online rescheduling,
fixed application oriented policy

Bond On-demand
Flat

Extensible object model, graph
namespace, hard QoS, language
based object store, agent
discovery, periodic push
dissemination

Decentralized scheduler, predictive
pricing models, online
rescheduling, fixed application
oriented policy

Condor Computational
Flat

Extensible schema model, hybrid
namespace, no QoS, network
directory store, centralized queries
discovery, periodic push
dissemination

Centralized scheduler

Darwin Multimedia
Hierarchical

Fixed schema model, graph
namespace, hard QoS

Hierarchical scheduler,
non-predictive, online
rescheduling, fixed system oriented
policy

European
DataGrid

Data
Hierarchical

Extensible schema model,
hierarchical namespace, no QOS,
network directory store,
distributed queries discovery,
periodic push dissemination

Hierarchical scheduler, extensible
scheduling policy

Globus Various
Hierarchical cell

Extensible schema model,
hierarchical namespace, soft QoS,
network directory store,
distributed queries discovery,
periodic push dissemination

Decentralized scheduler
infrastructure, scheduling provided
by external schedulers (AppLeS,
Nimrod/G)

Javelin Computational
Hierarchical

Fixed object model, graph
namespace, soft QoS, other
network directory store,
distributed queries discovery,
periodic push dissemination

Decentralized scheduler, fixed
application oriented policy

GOPI Multimedia
Flat

Extensible object model, graph
namespace, hard QoS

Decentralized scheduler, ad hoc
extensible policy

Legion Computational
Hierarchical

Extensible object model, graph
namespace, soft QoS, object
model store, distributed queries
discovery, periodic pull
dissemination

Hierarchical scheduler, extensible
structured scheduling policy

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:135–164

A TAXONOMY AND SURVEY OF GRID RMS 153

Table I. Continued.

System Grid type Resources Scheduling

MOL Computational
Hierarchical cell

Extensible schema model,
hierarchical namespace, object
model store, distributed queries
discovery, periodic push
dissemination

Decentralized scheduler, extensible
ad hoc scheduling policies

NetSolve Computational
Hierarchical

Extensible schema model,
hierarchical namespace, soft QoS,
distributed queries discovery,
periodic push dissemination

Decentralized scheduler, fixed
application oriented policy

Nimrod/G High-throughput
hierarchical cell

Extensible schema model,
hierarchical namespace, relational
network directory data store, soft
QoS, distributed queries
discovery, periodic dissemination

Hierarchical decentralized
scheduler, predictive pricing
models, fixed application oriented
policy

Ninf Computational
Hierarchical

Fixed schema model, relational
namespace, no QoS, centralized
queries discovery, periodic push
dissemination

Decentralized scheduler

PUNCH Computational
Hierarchical

Extensible schema model, hybrid
namespace, soft QoS, distributed
queries discovery, periodic push
dissemination

Hierarchical decentralized
scheduler, predictive machine
learning, fixed application oriented
policy

2K: A distributed operating system

The 2K system is a distributed operating system [26,27] that provides a flexible and adaptable
architecture for providing distributed services across a wide variety of platforms ranging from personal
digital assistants (PDAs) to large scale computers. 2K is intended for development and deployment of
distributed service applications rather than high performance grand challenge applications.

The core of 2K is a dynamic reflective CORBA object request broker (ORB) called dynamicTAO
that is an extension of the TAO ORB [28]. The dynamicTAO ORB provides the ability to dynamically
create environments for applications and move them across the 2K Grid machines using mobile
reconfiguration agents. Code and service distribution is also managed using the 2K facilities.

The classification comes mainly from the use of CORBA as the underlying substrate for the system.
The 2K system can be considered to be a demand service Grid that uses a flat RMS organization. In
Reference [29], an extension of the current flat model to hierarchical model is described using CORBA
traders and name servers. The 2K system uses an extensible object model with a graph based resource
namespace and provides soft network QoS. The resource information store is object-model based using
the CORBA object model. Resource discovery is performed through agents. Locating services and

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:135–164

154 K. KRAUTER, R. BUYYA AND M. MAHESWARAN

resource is also performed using the CORBA trading services. Resource dissemination is performed
on demand by injecting mobile agents into the system.

The 2K system uses a one level hierarchical controller for scheduling network bandwidth. Other
resources are scheduled locally using the dynamic soft real time (DSRT) scheduling at each resource
provider. Thus 2K uses a decentralized controller for all other resources. There does not appear to be
any state estimation function or rescheduling approach in the 2K system other than those provided by
the underlying native operating system. The scheduling policy in the 2K system seems to be fixed.

AppLeS: A network enabled scheduler

The AppLeS [19] project primarily focuses on developing scheduling agents for individual applications
on production computational Grids. AppLeS agents use application and system information to select
a viable set of resources. AppLeS uses the services of other RMSs such as Globus, Legion, and
NetSolve to execute application tasks. Applications have embedded AppLeS agents that performing
resource scheduling on the Grid. AppLeS has been used in several applications areas including
magnetohydrodynamics [30], gene sequence comparison, satellite radar images visualization, and
tomography [31].

The AppLeS framework contains templates that can be applied to applications that are structurally
similar and have the same computational model. The templates allow the reuse of the application
specific schedulers in the AppLeS agents. Templates have been developed for parametric and master-
slave type of applications.

The focus of AppLeS is on scheduling and thus it follows the resource management model supported
by the underlying Grid middleware systems. An AppLeS scheduler is central to the application
that performs mapping of jobs to resources, but the local resource schedulers perform the actual
execution of application units. AppLeS schedulers do not offer QoS support. AppLeS can be classified
with a predictive heuristic state estimation model, online rescheduling and fixed application oriented
scheduling policy.

Bond: Java distributed agents

Bond is a Java based object-oriented middleware system for network computing [32]. Bond is based
on agents [33] that communicate using the knowledge querying and manipulation language (KQML)
for inter-object communication. KQML is used for inter agent communications rather than the lower
level Java mechanisms in order to provide a uniform base of operation semantics between agents.
Bond defines a uniform agent structure and agent extension mechanism. Agents are structured into
finite state machines and strategy objects that define behavior in different states. External events
cause state transitions that in turn trigger the strategy objects. Agents are dynamically assembled
from components using a ‘blueprint’. Agents can be checkpointed and migrated by Bond. Agents
can discover interface information via an interface discovery service that is accessed via a KQML
message. Agent extensions are done using subprotocols. Subprotocols are small closed subsets of
KQML commands and are used to dynamically extend the objects provided by the Bond library. Bond
has a two level scheduler based on a stock market or computational economy approach. The Concerto
extension of Bond [34] supports hard QoS and provides a general-purpose real time OS platform for

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:135–164

A TAXONOMY AND SURVEY OF GRID RMS 155

multi-resource reservation, scheduling and signaling. Tempo is the bandwidth manager component and
schedules network bandwidth. It is implemented as an extension of Sun Solaris.

Bond provides the infrastructure for an on-demand service Grid with a flat organization because
there is no concept of autonomous domains with a border. Other organizations can be implemented
on top of Bond but require extending the resource management function substrate provided by Bond.
The resource model is the extensible object model, with hard QoS support, and a graph namespace.
The resource information store is language-based distributed objects. Resources implement their
interfaces in Java but exchange information between themselves using KQML. Resource discovery is
agent based. Resource dissemination is accomplished through periodic push using probes. Schedulers
are decentralized and use predictive pricing models for state estimation. Rescheduling is online.
The scheduling policy seems to be fixed and application oriented.

Condor: Cycle stealing technology for high throughput computing

Condor [35,36] is a high-throughput computing environment that can manage a large collection of
diversely owned machines and networks. Although it is well known for harnessing idle computers,
it can be configured to share resources. The Condor environment follows a layered architecture
and supports sequential and parallel applications. The Condor system allocates the resources in the
Condor pool as per the usage conditions defined by resource owners. Through its remote system call
capabilities, Condor preserves the job’s originating machine environment on the execution machine,
even if the originating and execution machines do not share a common file system and/or user ID
scheme. Condor jobs with a single process are automatically checkpointed and migrated between
workstations as needed to ensure eventual completion.

Condor can have multiple Condor pools and each pool follows a flat RMS organization. The
Condor collector, which provides the resource information store, listens for advertisements of resource
availability. A Condor resource agent runs on each machine periodically advertising its services to
the collector. Customer agents advertise their requests for resources to the collector. The Condor
matchmaker queries the collector for resource discovery that it uses to determine compatible resource
requests and offers. Compatible agents contact each other directly and if they are satisfied the customer
agents initiate computation on the resources.

Resource requests and offers are described in the Condor classified advertisement (ClassAd)
language [37]. ClassAds use a semi-structured data model for resource description. The ClassAd
language includes a query language as part of the data model, allowing advertising agents to specify
their compatibility by including constraints in their resource offers and requests. Condor can be
considered a computational Grid with a flat organization. It uses an extensible schema with a hybrid
namespace. It has no QoS support and the information store is a network directory that does not use
X.500/LDAP technology. Resource discovery is centralized queries with periodic push dissemination.
The scheduler is centralized.

Darwin: Resource management for network services

Darwin is a customizable RMS [38] for creating value added network services. It is oriented
towards resource management in network based equipment, but does provide mechanisms for
scheduling computation in non-network nodes. Darwin provides a virtual network or mesh to

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:135–164

156 K. KRAUTER, R. BUYYA AND M. MAHESWARAN

distributed applications. An application provides an application input graph that describes the resource
requirement. The input graph describes a set of end nodes and the network connections between them.
The graph is annotated with QoS specifications that are used by Darwin in allocating resources. Darwin
can provide hard network QoS since Darwin components run in routers and can control bandwidth at
the network flow level using the built-in router functions.

The core component of Darwin is Xena, a request broker, which performs global allocation of
resources. Control delegates perform runtime adaptations of the initial resource assignment. Data
delegates operate on the network flows and provide services such as encryption, decryption, and
data compression. Local resource managers provide low-level resource allocation and coordinate
their activity using the Beagle signaling protocol [39]. Darwin uses a hierarchical fair service curve
scheduling (H-FSC) algorithm for higher level resource allocation. The H-FSC algorithm was designed
to efficiently support virtual networks for distributed applications.

The RMS is organized in Darwin as a one-level hierarchy because all requests are sent to a Xena
request broker that interacts with its peer request brokers. The resource model is a fixed schema with
hard QoS support and the resource namespace is a graph. Darwin does not provide a separate resource
information store, resource discovery protocol, or resource dissemination protocol. Scheduling is
hierarchical with non-predictive state estimation. Rescheduling is event driven and implemented by
the control delegates. The scheduling policy is fixed and system oriented.

European DataGrid: Global physics data storage and analysis

The European DataGrid Project [12] focuses on the development of middleware services in order to
enable distributed analysis of physics data. The core middleware system is the Globus toolkit with
hooks for data Grids. Data on the order of several petabytes will be distributed in a hierarchical
fashion to multiple sites worldwide. Global namespaces are required to handle the creation of and
access to distributed and replicated data items. Special workload distribution facilities will balance the
analysis jobs from several hundred physicists to different places in the Grid in order to have maximum
throughput for a large user community. Application monitoring as well as collecting of user access
patterns will provide information for access and data distribution optimization.

The DataGrid project has a multi-tier hierarchical RMS organization. For example, tier-0 is CERN,
which stores almost all relevant data, several tier-1 regional centers (in Italy, France, U.K., U.S.A.,
Japan) will support smaller amounts of data, and so on. It has an extensible schema-based resource
model with a hierarchical namespace organization. It does not offer any QoS and the resource
information store is expected to be based on an LDAP network directory. Resource dissemination
is batched and periodically pushed to other parts of the Grid. Resource discovery in the Data Grid
is decentralized and query based. The scheduler uses a hierarchical organization with an extensible
scheduling policy.

Globus: A toolkit for Grid computing

The Globus system enables modular deployment of Grid systems by providing the required basic
services and capabilities in the Globus Metacomputing Toolkit (GMT). The toolkit consists of a set of
components that implement basic services, such as security, resource location, resource management,
data management, resource reservation, and communications. Globus is constructed as a layered

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:135–164

A TAXONOMY AND SURVEY OF GRID RMS 157

architecture in which higher level services can be developed using the lower-level core services [40].
Its emphasis is on the hierarchical integration of Grid components and their services.

Globus offers Grid information services via an LDAP-based network directory called
Metacomputing Directory Services (MDS) [41]. MDS currently consists of two components: Grid
Index Information Service (GIIS) and Grid Resource Information Service (GRIS). GRIS provides
resources discovery services on a Globus based Grid. The directory information is provided by a Globus
component running on a resource or other external information providers. The resource information
providers use a push protocol to update GRIS periodically. GIIS provides a global view of the Grid
resources and pulls information from multiple GRIS to combine into a single coherent view of the
Grid. Globus is placed into the push resource dissemination category since the resource information
is initially periodically pushed from the resource providers. Resource discovery is performed by
querying MDS.

Globus supports soft QoS via resource reservation [42]. The predefined Globus scheduling policies
can be extended by using application level schedulers such as Nimrod/G, AppLeS, and Condor/G. The
Globus scheduler in the absence of application level scheduler has a decentralized organization with
an ad hoc extensible scheduling policy.

Javelin: Java parallel computing

Javelin [43] is a Java based infrastructure for Internet-wide parallel computing. Javelin consists of
clients that seek resources, hosts that offer resources, and brokers that coordinate the allocations.
Javelin supports piecework and branch and bound computational models. In the piecework model,
adaptively parallel computations are decomposed into a set of sub-computations. The sub-computations
are each autonomous in terms of communication, apart from scheduling work and communicating
results. This model is suitable for parameter-sweep (master-work) applications such as ray tracing
and Monte Carlo simulations. The branch-and-bound model achieves scalability and fault-tolerance by
integrating distributed deterministic work stealing with a distributed deterministic eager scheduler. An
additional fault-tolerance mechanism is implemented for replacing hosts that have failed or retreated.

The Javelin system can be considered a computational Grid for high-throughput computing. It has
a hierarchical RMS organization where each broker manages a tree of hosts. The resource model is
simple fixed objects with graph based namespace organization. The resources are simply the hosts that
are attached to a broker.

Any host that wants to be part of Javelin contacts the JavelinBNS system, a Javelin information
backbone that maintains a list of available brokers. The host communicates with brokers, chooses
a suitable broker, and then becomes part of the broker’s managed resources. Thus the information
store is a network directory implemented by JavelinBNS components. Hosts and brokers update each
other as a result of scheduling work thus Javelin uses demand-based resource dissemination. Resource
discovery uses the decentralized query based approach since queries are handled by the distributed set
of brokers. Javelin follows a decentralized approach in scheduling with a fixed application oriented
scheduling policy.

Generic Object Platform Infrastructure (GOPI)

The GOPI project developed a platform based on CORBA with RM-ODP extension that provides
an extensible architecture for adaptive multimedia applications [44,45]. GOPI provides an API and

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:135–164

158 K. KRAUTER, R. BUYYA AND M. MAHESWARAN

core services that are extended using network protocol extensions called application specific protocols.
These extensions are stacked on top of transport protocols and implement application specific
scheduling policies with the scheduling framework provided by GOPI. The resource namespace
is based on the RM-ODP computational model and is specified using CORBA IDL. Reflective
middleware and open bindings support QoS annotation on interfaces and the ability for an application
to inspect and adapt its behavior to the underlying network.

The organization is flat with an extensible object-oriented resource model since it is based on
CORBA. Thus the resource namespace is a graph. The system provides hard QoS if the underlying
operating systems and network provide support. The research has been focused on delivering
multimedia application support and thus lacks infrastructure for a resource information directory,
resource discovery protocol, and resource dissemination protocol. A scheduler framework is provided
into which application specific schedulers are loaded. The scheduler framework and scheduling
extensions operate on a per node basis thus the scheduler organization is decentralized with an ad hoc
extensible scheduling policy. State estimation and rescheduling are determined by the application
specification extensions and thus cannot be classified.

Legion: A grid operating system

Legion [46] is an object-based metasystem that provides the software infrastructure for a Grid. In a
Legion-based Grid, objects represent the different components of the Grid. The Legion objects are
defined and managed by the corresponding class or metaclass. Classes create new instances, schedule
them for execution, activate or deactivate the object, and provide state information to client objects.
Each object is an active process that responds to method invocations from other objects within the
system. Legion defines an API for object interaction, but does not specify the programming language
or communication protocol.

Although Legion appears as a complete vertically integrated system, its architecture follows the
hierarchical model. It uses an object-based information store organization through the Collection
objects. Collections periodically pull resource state information from host objects. Host objects track
load and users can call the individual host directly to get the resource information. Information about
multiple objects is aggregated into Collection objects. Users or system administrators can organize
collections into suitable arrangements.

All classes in Legion are organized hierarchically with LegionClass at the top and the host and
vault classes at the bottom. It supports a mechanism to control the load on hosts. It provides resource
reservation capability and the ability for application level schedulers to perform periodic or batch
scheduling. Legion machine architecture is hierarchical with decentralized scheduler. Legion supplies
default system oriented scheduling policies, but it allows policy extensibility via a structured scheduling
extension interface.

Metacomputing Online (MOL)

The MOL [47] system follows a toolkit approach with the MOL-kernel as the central component.
The MOL-kernel services provide resource management supporting dynamic communication, fault
management, and access provision.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:135–164

A TAXONOMY AND SURVEY OF GRID RMS 159

The MOL-kernel follows a three-tier architecture consisting of resource abstraction, management,
and access layers containing resource module (RM), center management modules (CMMs), and
access module (AM) respectively along with customizable and predefined event handlers. The RMs
encapsulate metacomputing resources or services. Different RMs in an institution are coordinated by
a CMM. The CMM is responsible for keeping the network components and resources in a consistent
state. CMM also acts as a gatekeeper to control access to the resources from external networks. Large
institutions can have multiple CMMs per institution.

If any MOL-kernel components fail, only one institute becomes inaccessible. As long as a single
CMM is available, the MOL-kernel remains operational. The MOL-kernel dynamically reconfigures
itself as the organizations come online and go offline. The MOL-kernel guarantees that the collective
CMMs maintain consistent state by using a transaction-oriented protocol on top of the virtual shared
memory objects associated with each CMM. Mirror instances of shared active objects are maintained
at each CMM in order to make the global state available at all entry points.

Higher-level functionality of the MOL-kernel is based on typed messages and event handlers. Any
module in the kernel can send messages to any other component. This is usually triggered by either
a user interacting with an AM, by another incoming message or by a changed state at one of the
available resources or services. The event management unit associated with each kernel module checks
for incoming messages and invokes appropriate event handlers.

The MOL follows a service Grid model with hierarchical cell-based machine organization. It has a
schema-based resource model with a hierarchical name space organization. The object-based resource
state information is maintained in the shared objects of each CMM. The resources and services
themselves utilize a push protocol for resource dissemination. The AMs/schedulers perform resource
discovery and scheduling by querying shared objects.

NetSolve: A network-enabled computational kernel

Netsolve [48] is a client–agent–server paradigm based network-enabled application server. It is
designed to solve computational science problems in a distributed environment. The Netsolve system
integrates network resources including hardware and computational software packages into a desktop
application. Netsolve clients can be written in C, FORTRAN, Matlab or Web pages to interact with
the server. A Netsolve server can use any scientific package to provide its computational software.
Communications between Netsolve clients, agents, and servers are performed using TCP/IP sockets.
Netsolve agents can search for resources on a network, choose the best one available, execute the client
request, and then return the answer to the user.

The Netsolve system is a computational Grid with hierarchical based machine organization. Netsolve
agents maintain information about resources available in the network. The Netsolve servers which
are the resources in a Netsolve Grid are responsible for making their existence aware to Netsolve
Agents and thus use a push protocol for resource dissemination. Netsolve Agents also perform
resource discovery and scheduling. An agent may request assistance of other Agents in identifying
the best resources and scheduling. Thus Netsolve can be considered to use a network directory
implemented by the Netsolve agents, decentralized scheduling with a fixed application oriented
scheduling policy.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:135–164

160 K. KRAUTER, R. BUYYA AND M. MAHESWARAN

Nimrod/G: Resource broker and economy grid

Nimrod/G [2,11] is a Grid resource broker for managing and steering task farming applications such as
parameter studies on computational Grids. It follows a computational market-based model for resource
management. Nimrod/G provides support for formulation of parameter studies, a single window to
manage and control experiments, resource discovery, resource trading, and scheduling. The task-
farming engine of Nimrod/G coordinates resource management and results gathering. This engine
can be used for creating user-defined scheduling policies. For example, ActiveSheets are used to
execute Microsoft Excel computations/cells on the Grid [49]. Nimrod/G is being used as a scheduling
component in a new framework called Grid Architecture for Computational Economy (GRACE) which
is based on using economic theories for a Grid resource management system.

Nimrod/G has a hierarchical machine organization and uses a computational market model for
resource management [2]. It uses the services of other systems such as Globus and Legion for
resource discovery and dissemination. State estimation is performed through heuristics using historical
pricing information. The scheduling policy is fixed-application oriented and is driven by user-defined
requirements such as deadline and budget limitations. Load balancing is performed through periodic
rescheduling.

Ninf: A network enabled server

Ninf is a client–server based network infrastructure for global computing [50]. The Ninf system
functionality is similar to NetSolve. Ninf allows access to multiple remote compute and database
servers. Ninf clients can semi-transparently access remote computational resources from languages
such as C and FORTRAN. Programmers can build a global computing application by using the Ninf
remote libraries as its components, without being aware of the complexities of the underlying system
they are programming. Procedural parameters, including arrays, are marshaled and sent to the Ninf
server on a remote host responsible for executing the requested library functions and returning the
results. The Ninf client library calls can be synchronous or asynchronous in nature.

The key components of Ninf system include Ninf client interfaces, Ninf Metaserver, and the Ninf
remote libraries. Ninf applications invoke Ninf library functions which generate requests that go to
the metaserver that maintains a directory of Ninf servers in the network. The metaserver allocates
resources for the remote library calls by routing them to appropriate servers by querying its information
store on behalf of the client request. Thus Ninf utilizes centralized query-based resource discovery.
Ninf computational resources themselves register details of available library services with the Ninf
metaserver thus using a push protocol for resource dissemination. Ninf follows a flat model in machine
organization, a fixed schema resource model, and has a relational name space organization. The Ninf
metaserver performs some level of scheduling by routing the requests but the actual scheduling of
client request is performed by the server thus resulting in a decentralized scheduler organization.

The Purdue University Network Computing Hubs (PUNCH)

PUNCH [51,52] is a middleware testbed that provides operating-system services in a network-based
computing environment. It provides transparent access to remote programs and resources, access

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:135–164

A TAXONOMY AND SURVEY OF GRID RMS 161

control and job control functionality in a multi-user, multi-process environment. PUNCH supports
a virtual Grid organization by supporting decentralized and autonomous management of resources.

The PUNCH infrastructure consists of a collection of services that allow management of
applications, data, and machines distributed across wide-area networks. User applications are accessed
via standard Web browsers. Applications do not have to be written in any particular language and
access to source or object code is not required thus allowing PUNCH to use existing applications and
Grid enabling them.

PUNCH employs a hierarchically distributed architecture with several layers. A computing portal
services layer provides Web-based access to a distributed, network-computing environment. This layer
primarily deals with content management and user-interface issues. A network OS layer provides
distributed process management and data browsing services. An application middleware layer allows
the infrastructure to interoperate with other application-level support systems such as the Message
Passing Interface [53]. A virtual file system layer consists of services that provide local access to
distributed data in an application-transparent manner. Finally, an OS middleware layer interfaces with
local OS services available on individual machines or clusters of machines. The layers interoperate
with a distributed RMS and a predictive performance modeling sub-system in order to make intelligent
decisions in terms of selecting from different application implementations, data storage sites, and
hardware resources. For example PUNCH can choose between a sequential or parallel implementation
running on a dedicated server or a Condor pool [35].

PUNCH uses a hierarchical decentralized scheduler, predictive machine learning state estimation for
matching user requests to the most appropriate Grid resources, and fixed application oriented scheduler
policy.

DISCUSSION AND CONCLUSIONS

There are many different approaches and models for developing Grid resource-management systems.
The systems surveyed have for the most part focused on either a computational Grid or a service Grid.
The only data Grid project surveyed is the European DataGrid Project which is in the initial stages of
development. The other category of system is the Grid scheduler such as Nimrod/G and AppLeS that
is integrated with another Grid RMS such as Globus or Legion. These combinations are then used to
create application oriented computational Grids that provide certain levels of QoS.

Extensibility of the resource model is a feature of all the surveyed RMS with the exception of Darwin
and Javelin. Darwin is oriented towards network services and thus does not require extensibility and
Javelin is oriented towards Internet parallel computing and thus does not require a rich resource model.
The degree of extensibility is quite different between systems. Extensible schema-based models range
from the semi-structured data models of Condor to the LDAP based structure for Globus. Object-based
model extensibility typically follows what is available in the underlying technology, which is either
CORBA or Java. The Legion system is an exception to this since it builds its object model from its
own primitives. A topic for further research is to investigate the extent to which the extensible features
of the various resource models are used by Grid applications. It is possible that the resource model
extensions are only used internally by the RMS components.

Most systems employ a periodic push approach to resource dissemination within a hierarchical
machine organization. The resource discovery approach is correlated with the resource model. Schema-

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:135–164

162 K. KRAUTER, R. BUYYA AND M. MAHESWARAN

based system use queries whereas object model sometimes uses an agent-based approach. There are
no systems that we are aware of that use a schema-based resource model with agent-based queries.
A topic of further research is to investigate the relative efficiency of different dissemination schemes
in conjunction with the machine organization and resource model.

The survey indicates that most of the different aspects of the taxonomy have been explored
in the different systems. The flat and hierarchical machine organizations are quite common. Cell-
based organizations have so far appeared in only schema-based resource models. Different resource
models have been developed but there have been no comparisons between the performances of the
schemes. The scheduling aspect of the taxonomy has not been fully explored. A decentralized, online
rescheduling system with an extensible scheduling policy has, to our knowledge, not been developed
for a Grid system.

This paper has presented a taxonomy for Grid RMSs. Requirements for RMSs have been described
and an abstract functional model has been developed. The requirements and model have been used to
develop the taxonomy. The taxonomy has focused on the type of Grid system, machine organization,
resource model characterization, and scheduling characterization. Representative Grid systems have
been surveyed and placed into their various categories. This has helped to identify some of the key Grid
resource management approaches and issues that are yet to be explored as topics of future research.

ACKNOWLEDGEMENTS

The authors would like to acknowledge all developers of the Grid systems described in the paper. In particular, we
thank Jim Basney, Henri Casanova, Geoff Coulson, Ian Foster, Colin Gan, Joern Gehring, Nirav Kapadia, John
Karpovich, Fabio Kon, Jarek Nabrzyski, Hidemoto Nakada, Michael Neary, Dan Marinescu, Andre Merzky, Omer
Rana, Heinz Stockinger, and Achim Streit for their help during the preparation of the manuscript.

REFERENCES

1. Foster I, Kesselman C (eds.). The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufmann: San Fransisco,
CA, 1999.

2. Buyya R, Giddy J, Abramson D. An evaluation of economy-based resource trading and scheduling on computational power
grids for parameter sweep applications. Proceedings of the 2nd International Workshop on Active Middleware Services
(AMS ’00), August 2000.

3. Sinha PK. Distributed Operating Systems: Concepts and Design. IEEE Press: New York, NY, 1997.
4. Maheswaran M. Quality of service driven resource management algorithms for network computing. Proceedings of the

1999 International Conference on Parallel and Distributed Processing Technologies and Applications (PDPTA ’99), June
1999; 1090–1096.

5. Casavant TL, Kuhl JG. A taxonomy of scheduling in general-purpose distributed computing systems. IEEE Transactions
on Software Engineering 1988; 14(2):141–154.

6. Rotithor HG. Taxonomy of dynamic task scheduling schemes in distributed computing systems. IEE Proceedings on
Computer and Digital Techniques 1994; 141(1):1–10.

7. Braun TD, Siegel HJ, Beck N, Boloni LL, Maheswaran M, Reuther AI, Robertson JP, Theys MD, Yao B. A taxonomy for
describing matching and scheduling heuristics for mixed-machine heterogeneous computing systems. Proceedings IEEE
Workshop on Advances in Parallel and Distributed Systems, October 1998; 330–335.

8. Ekemecic I, Tartalja I, Milutinovic V. A survey of heterogeneous computing: Concepts and systems. Proceedings of the
IEEE 1996; 84(8):1127–1144.

9. Kapadia NH. On the design of a demand-based network computing system: The Purdue Network Computing Hubs. PhD
Thesis, School of Electrical and Computer Engineering, Purdue University, 1999.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:135–164

A TAXONOMY AND SURVEY OF GRID RMS 163

10. Abramson D, Giddy J, Kotler L. High performance parametric modeling with nimrod/g: Killer application for the global
grid? Proceedings of the 14th International Parallel and Distributed Processing Symposium (IPDPS 2000), April 2000;
520–528.

11. Buyya R, Abramson D, Giddy J. Nimrod/G: An architecture for a resource management and scheduling system in a global
computational Grid. Proceedings of the International Conference on High Performance Computing in Asia–Pacific Region
(HPC Asia 2000), 2000.

12. Hoscheck W, Jaen-Martinez J, Samar A, Stockinger H, Stockinger K. Data management in an international data Grid
project. Proceedings 1st IEEE/ACM International Workshop on Grid Computing (Grid 2000), December 2000; 77–90.

13. Chervenak A, Foster I, Kesselman C, Salisbury C, Tuecke S. The data Grid: Towards an architecture for the distributed
management and analysis of large scientific datasets. Journal of Network and Computer Applications 23(3):187–200.

14. Nahrstedt K, Chu H, Narayan S. QoS-aware resource management for distributed multimedia. Journal of High-Speed
Networking (Special Issue on Multimedia Networking) December 2000; 7(3–4):227–255.

15. Buyya R, Chapin S, DiNucci D. Architectural models for resource management in the Grid. Proceedings 1st IEEE/ACM
International Workshop on Grid Computing (Grid ’00), December 2000; 18–35.

16. Vahdat A. Toward wide-area resource allocation. Proceedings of the International Conference on Parallel and Distributed
Processing Techniques and Applications, vol. 2, June 1999; 930–936.

17. Berman F. High-performance schedulers. The Grid: Blueprint for a New Computing Infrastructure, Foster I, Kesselman C
(eds.). Morgan Kaufmann: San Fransisco, CA, 1999; 279–310.

18. Livny M, Raman R. High-throughput resource management. The Grid: Blueprint for a New Computing Infrastructure,
Foster I, Kesselman C (eds.). Morgan Kaufmann: San Fransisco, CA, 1999; 311–338.

19. Berman F, Wolski . The AppLeS project: A status report. Proceedings of the 8th NEC Research Symposium, May 1997.
20. Foster I, Kesselman C. Globus: A metacomputing infrastructure toolkit. International Journal of Supercomputer

Applications and High Performance Computing 1997; 11(2):115–128.
21. Mitzenmacher M. How useful is old information. IEEE Transactions on Parallel and Distributed Systems 2000; 11(1):6–20.
22. Maheswaran M, Krauter K. A parameter-based approach to resource discovery in Grid computing systems. Proceedings

1st IEEE/ACM International Workshop on Grid Computing (Grid ’00), December 2000; 181–190.
23. Regehr J, Stankovic J, Humphrey M. The case for hierarchical schedulers with performance guarantees. Technical Report

CS-2000-07, University of Virginia, 2000.
24. Zhou S, Zheng X, Wang J, Delisle P. Utopia: A load sharing facility for large, heterogeneous distributed computing systems.

Software—Practice and Experience 1993; 23(12):1305–1336.
25. Banga G, Druschel P, Mogul J. Resource containers: A new facility for resource management in server systems.

Proceedings of the 3rd USENIX Symposium on Operating Systems Design and Implementation (OSDI ’99), February
1999.

26. Carvalho D, Kon F, Ballesteros F, Romn M, Campbell R, Mickunas D. Management of execution environments in 2K.
Proceedings of the 7th International Conference on Parallel and Distributed Systems (ICPADS ’00), July 2000; 479–485.

27. Kon F, Campbell R, Mickunas M, Nahrstedt K. 2K: A distributed operation system for dynamic heterogeneous
environments. Proceedings 9th IEEE International Symposium on High Performance Distributed Computing (HPDC ’00),
August 2000; 201–210.

28. Kon F, Romn M, Liu P, Mao J, Yamane T, Magalhes LC, Campbell RH. Monitoring, security, and dynamic configuration
with the dynamicTAO reflective ORB. Proceedings of the IFIP International Conference on Distributed Systems Platforms
and Open Distributed Processing (Middleware ’00), April 2000; 121–143.

29. Kon F, Yamane T, Hess C, Campbell R, Mickunas MD. Dynamic resource management and automatic configuration of
distributed component systems. Proceedings of the USENIX Conference on Object-Oriented Technologies and Systems
(COOTS ’01), February 2001.

30. Dail H, Obertelli G, Berman F, Wolski R, Grimshaw A. Application-aware scheduling of a magnetohydrodynamics
application in the Legion metasystem. Proceedings 9th IEEE Heterogeneous Computing Workshop (HCW ’00), May 2000.

31. Smallen S, Cirne W, Frey J, Berman F, Wolski R, Su M, Kesselman C, Young S, Ellisman M. Combining workstations and
supercomputers to support Grid applications: The parallel tomography experience. Proceedings 9th IEEE Heterogeneous
Computing Workshop (HCW ’00), May 2000.

32. Boloni L, Marinescu DC. An object-oriented framework for building collaborative network agents. Intelligent Systems and
Interfaces, Kandel A, Hoffmann K, Mlynek D, Teodorescu NH (eds.). Kluwer, 2000; 31–64.

33. Jun K, Boloni L, Palacz K, Marinescu DC. Agent-based resource discovery. Proceedings 9th IEEE Heterogeneous
Computing Workshop (HCW ’00), October 1999.

34. Yau D, Marinescu DC, Jun K. Middleware QoS agents and native kernel schedulers for adaptive multimedia services and
cluster servers. Proceedings of the Real-Time System Symposium 99, 1999.

35. Litzkow M, Livny M, Mutka MW. Condor—A hunter of idle workstations. Proceedings of the 8th International Conference
of Distributed Computing Systems, June 1988.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:135–164

164 K. KRAUTER, R. BUYYA AND M. MAHESWARAN

36. Basney J, Livny M. Deploying a high throughput computing cluster. High Performance Cluster Computing, vol. 1, Buyya R
(ed.). Prentice Hall: Upper Saddle River, NJ, 1999; 116–134.

37. Raman R, Livny M. Matchmaking: Distributed resource management for high throughput computing. Proceedings 7th
IEEE International Symposium on High Performance Distributed Computing, July 1998.

38. Chandra P, Fisher A, Kosak C, Ng TSE, Steenkiste P, Takahashi E, Zhang H. Darwin: Customizable resource management
for value-added network services. Proceedings 6th IEEE International Conference on Network Protocols, October 1998.

39. Chandra P, Fisher A, Steenkiste P. A signaling protocol for structured resource allocation. IEEE Infocomm, March 1999.
40. Czajkowski K, Foster I, Kesselman C, Karonis N, Martin S, Smith W, Tuecke S. A resource management architecture for

metacomputing systems. Proceedings of the Workshop on Job Scheduling Strategies for Parallel Processing, 1998.
41. Fitzgerald S, Foster I, Kesselman C, von Laszewski G, Smith W, Tuecke S. A directory service for configuring high-

performance distributed computations. Proceedings Sixth IEEE Symposium on High Performance Distributed Computing,
1997; 365–375.

42. Foster I, Roy A, Sander V. A quality of service architecture that combines resource reservation and application adaptation.
Proceedings of the 8th International Workshop on Quality of Service (IWQoS ’00), June 2000.

43. Neary M, Phipps A, Richman S, Cappello P. Javalin 2.0: Java-based parallel computing on the Internet. Proceedings of the
European Parallel Computing Conference (Euro-Par 2000), 2000.

44. Coulson G. A configurable multimedia middleware platform. IEEE Multimedia 1999; 6(1):62–76.
45. Coulson G, Clarke M. A distributed object platform infrastructure for multimedia applications. Computer Communications

1998; 21(9):802–818.
46. Chapin S, Karpovich J, Grimshaw A. The Legion resource management system. Proceedings of the 5th Workshop on Job

Scheduling Strategies for Parallel Processing, April 1999.
47. Gehring J, Streit A. Robust resource management for metacomputers. Proceedings 9th IEEE International Symposium on

High Performance Distributed Computing, 2000.
48. Casanova H, Dongarra J. Netsolve: A network-enabled server for solving computational science problems. International

Journal of Supercomputer Applications and High Performance Computing 1997; 11(3):212–223.
49. Kotler L, Abramson D, Roe P, Mather D. Activesheets: Super-computing with spreadsheets. Proceedings of the 2001 High

Performance Computing Symposium (HPC’01), Advanced Simulation Technologies Conference, April 2001.
50. Nakada H, Sato M, Sekiguchi S. Design and implementation of Ninf: Towards a global computing infrastructure. Future

Generation Computing Systems (Metacomputing Special Issue) October 1999; 15(5–6):649–658.
51. Kapadia N, Fortes J. PUNCH: An architecture for web-enabled wide-area network-computing. Cluster Computing:

The Journal of Networks, Software Tools and Applications; Special Issue on High Performance Distributed Computing
September 1999; 2(2):153–164.

52. Kapadia N, Figueiredo R, Fortes J. PUNCH: Web portal for running tools. IEEE Micro May–June 2000; 20(3):38–47.
53. Gropp W, Lusk E, Doss N, Skjellum A. A high performance, portable implementation of the message passing interface

(mpi) standard. Parallel Computing 1996; 22(6).

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:135–164

	INTRODUCTION
	RELATED WORK
	GRID SYSTEM TAXONOMY
	RMS DEFINITIONS AND REQUIREMENTS
	RMS ABSTRACT MODEL
	RMS TAXONOMY OVERVIEW
	MACHINE ORGANIZATION
	RESOURCES
	Resource model
	Resource namespace organization
	QoS support
	Resource information store organization
	Resource discovery and dissemination
	Summary and research issues

	SCHEDULING
	Scheduler organization
	State estimation
	Rescheduling
	Scheduling policy
	Summary and research issues

	GRID RESOURCE MANAGEMENT SYSTEMS SURVEY
	2K: A distributed operating system
	AppLeS: A network enabled scheduler
	Bond: Java distributed agents
	Condor: Cycle stealing technology for high throughput computing
	Darwin: Resource management for network services
	European DataGrid: Global physics data storage and analysis
	Globus: A toolkit for Grid computing
	Javelin: Java parallel computing
	Generic Object Platform Infrastructure (GOPI)
	Legion: A grid operating system
	Metacomputing Online (MOL)
	NetSolve: A network-enabled computational kernel
	Nimrod/G: Resource broker and economy grid
	Ninf: A network enabled server
	The Purdue University Network Computing Hubs (PUNCH)

	DISCUSSION AND CONCLUSIONS

