
Received: 26 November 2023 Revised: 5 February 2024 Accepted: 6 March 2024

DOI: 10.1002/spe.3331

R E S E A R C H A R T I C L E

iQuantum: A toolkit for modeling and simulation of
quantum computing environments

Hoa T. Nguyen1 Muhammad Usman2,3 Rajkumar Buyya1

1The Cloud Computing and Distributed
Systems (CLOUDS) Laboratory, School of
Computing and Information Systems, The
University of Melbourne, Parkville,
Victoria, Australia
2School of Physics, The University of
Melbourne, Parkville, Victoria, Australia
3Data61, CSIRO, Clayton, Victoria,
Australia

Correspondence
Hoa T. Nguyen and Rajkumar Buyya, The
Cloud Computing and Distributed
Systems (CLOUDS) Laboratory, School of
Computing and Information Systems, The
University of Melbourne, Parkville, 3052,
VIC, Australia.
Email:
thanhhoan@student.unimelb.edu.au and
rbuyya@unimelb.edu.au

Summary
Quantum computing resources are predominantly accessible through cloud ser-
vices, with a potential future shift to edge networks. This paradigm and the
increasing global interest in quantum computing have amplified the need for
efficient, adaptable resource management strategies and service models for
quantum systems. However, many limitations in the quantum resources’ quan-
tity, quality, availability, and cost pose significant challenges for conducting
research in practical environments. To address these challenges, we proposed
iQuantum, a holistic and lightweight discrete-event simulation toolkit uniquely
tailored to model hybrid quantum computing environments. We also present
a detailed system model for prototyping and problem formulation in quantum
resource management. Through rigorous empirical validation and evaluations
using large-scale quantum workload datasets, we demonstrate the flexibility and
applicability of our toolkit in various use cases. iQuantum provides a versatile
environment for designing and evaluating quantum resource management poli-
cies such as quantum task scheduling, backend selection, hybrid task offloading,
and orchestration in the quantum cloud-edge continuum. Our work endeavors
to create substantial contributions to quantum computing modeling and simu-
lation, empowering the creation of future resource management strategies and
quantum computing’s broader applications.

K E Y W O R D S

quantum cloud-edge continuum, quantum computing environments, quantum resource
management, quantum simulation, quantum system modeling, quantum task scheduling

1 INTRODUCTION

Quantum computing holds enormous promise for solving computationally intractable problems, revolutionizing var-
ious domains such as drug discovery,1 finance,2 optimization,3 and machine learning.4–6 The emergence of the
cloud-based quantum computing7,8 and quantum computing-as-a-service (QCaaS)9 models has enabled access to

Abbreviations: CLOPS, circuit operations per second; CNode, classical computation node; CTask, classical task; CSV, comma-separated values;
CPU, central processing unit; NISQ, noisy intermediate-scale quantum; QASM, quantum assembly; QCaaS, quantum computing-as-a-service;
QNode, quantum computation node; QoS, quality of service; QPU, quantum processing unit; QTask, quantum task; QV, quantum volume; VM,
virtual machine.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2024 The Authors. Software: Practice and Experience published by John Wiley & Sons Ltd.

Softw: Pract Exper. 2024;54:1141–1171. wileyonlinelibrary.com/journal/spe 1141

https://orcid.org/0000-0001-6904-6312
https://orcid.org/0000-0003-3476-2348
https://orcid.org/0000-0001-9754-6496
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/SPE
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fspe.3331&domain=pdf&date_stamp=2024-03-30

1142 NGUYEN et al.

F I G U R E 1 Overview of hybrid quantum computing paradigm envisions the seamless integration of quantum and classical
computation resources across different cloud and emerging edge layers, with edge resources being geographically closer to end-users (data
sources), albeit with computational limitations compared to their cloud counterparts.

quantum computation resources without a massive upfront investment in quantum hardware, leading to tremendous
progress in quantum software and algorithm fronts.10 Major cloud providers, such as Microsoft Azure,11 AWS,12 and
IBM,13 now offer cloud-based access to their quantum computing services. Moreover, quantum computation resources
are predicted to be extended to the edge network14,15 when quantum hardware becomes popular in the future, envision-
ing the emergence of the hybrid paradigm of quantum cloud-edge continuum,16 whose main components are illustrated
in Figure 1.

The future quantum computing paradigm is anticipated to incorporate heterogeneous quantum and classical com-
puting entities situated in different layers, including the cloud and the fog/edge layer. The main differences between
cloud-based resources and edge-based resources include the computation capacity, mobility, and geographical distance
to the data source or users.17 Each layer comprises different computation resources and intermediary components, such
as gateways and brokers for resource management and orchestration. If edge computation resources are insufficient for
executing incoming tasks, these tasks can be migrated or offloaded to the upper cloud layer with more powerful capac-
ity.18,19 It is important to highlight that this is the vision for the future expansion of quantum computing, whereas most
available quantum resources are only accessible through the cloud due to the limitation in quantity, quality, and cost of
current quantum hardware.20

 1097024x, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3331 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [07/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

NGUYEN et al. 1143

As the demand for quantum computing services continues to rise rapidly, it triggers the inevitable requirement for
efficient system design and resource management strategies to maximize the benefits of available quantum resources.21

However, there are several challenges to designing and evaluating system and resource orchestration policies in practi-
cal environments.22 First, access to physical quantum computers is limited and costly. Although vendors such as IBM
Quantum offer free access to several quantum computers to the public, these devices are on a small scale, comprising
only a few qubits. In addition, completing a cloud-based quantum task can take anywhere from seconds to hours because
of the fair-share policy that is in place for sharing limited resources among a large number of users worldwide.21 This
means that some tasks may have to wait for others to finish before they can be executed in a real quantum computer.
On the other hand, the pricing model for commercial quantum computing services is still expensive. This is because
of the limitations and operating costs associated with the current quantum hardware available. For example, the IBM
Quantum Pay-As-You-Go plan charges up to 1.6 USD for every second of quantum execution (as of August 2023). Fur-
thermore, it’s important to note that quantum hardware is still in the Noisy Intermediate-Scale Quantum (NISQ) era,20

which implies the limitation in the quality and quantity of qubits inside the quantum chips. These challenges hinder
large-scale evaluation and experimental validation of resource management strategies. As a result, it’s crucial to have a
simulation framework that can model hybrid quantum computing environments to aid in the design and evaluation of
resource orchestration policies.

Over the last decade, simulation toolkits such as CloudSim23 have gained popularity for modeling cloud environ-
ments and supporting resource management research. Moreover, several simulators have been proposed for hybrid
cloud-edge and fog/edge environments, including EdgeCloudSim,24 FogNetSim,25 iFogSim,26 EdgeSimPy.27 These sim-
ulation toolkits play a significant role in the development of enormous resource management policies for cloud and
edge computing environments. However, as far as we know, none of the existing cloud-edge simulators supports the
modeling of quantum computing systems and workloads. Meanwhile, existing quantum simulators mainly focus on
emulating quantum physical operations of quantum computers, and do not offer comprehensive support for model-
ing quantum cloud-edge computing environments. As these quantum simulators use classical resources to mimic the
actual quantum execution, they can quickly reach the limitation of classical hardware and can usually support up to
tens to hundreds of qubits.28 Besides, several quantum simulators focus on quantum communications, which support
modeling quantum network protocols.29,30 While quantum networks represent a promising direction for the future of
quantum computing,31 it is important to highlight that quantum systems can still utilize classical drivers and networks
to handle user requests and facilitate cooperation between quantum and classical computation. Ultimately, the lack of a
modeling and simulation framework for quantum computing environments poses significant challenges for research in
quantum system design and resource management, impeding researchers from effectively testing their system designs
or task scheduling algorithms for hybrid quantum computing systems. Furthermore, it also complicates reproducing
experimental results or comparing the performance of different algorithms or applications since no standard simulator
is available.

To tackle these challenges, we propose iQuantum, a versatile and lightweight simulation framework designed to
model quantum computing environments to facilitate quantum software and system research, focusing on resource
management and orchestration. The main approach of our toolkit is simplifying and modeling the environments with
resources that are quantum systems with key metrics such as number of qubits, quantum volume, quantum proces-
sor speed,32 native gate sets, and qubit topology. Similarly, we extract the features of quantum circuits to model as
workload entities in the environments. Then, we employ the discrete-event simulation method, which is a popular simu-
lation technique for operations research.33 We leverage the core engine and classical components of the latest version of
CloudSim23 to extend and adapt to the quantum computing environment, expanding from the cloud layer to edge layers
with various potential use cases. Our toolkit can pave the way for the development of a quantum environment model-
ing and simulation, which empowers researchers to prototype, design, and evaluate their system design and policies in
a simulated quantum computing environment, eliminating the need for costly access to practical quantum resources.
Moreover, it enhances research and experimentation in quantum software and systems, enabling result comparison
and experiment replication for more robust and impactful investigations aligned with the latest advances in quantum
computing.

Our earlier study14 introduced the initial ideas and proof-of-concept design for the creation of iQuantum, mainly
focusing on cloud-based quantum environments. In this paper, we thoroughly extend the architecture design, system
model, and implementation of iQuantum along with extensive empirical evaluation to demonstrate the effectiveness of
iQuantum for modeling and simulation of quantum computing environments in the cloud-edge continuum. The major
contributions of our extended study are as follows:

 1097024x, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3331 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [07/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

1144 NGUYEN et al.

1. We present a comprehensive system model for quantum computing environments using key metrics and features of
available quantum computers and quantum task execution. Besides, we also propose various models and simulation
logic for different use cases in hybrid quantum resource management and orchestration. These models serve as the-
oretical references for prototyping and problem formulation in system design and resource management for hybrid
quantum computing.

2. We design the architecture of iQuantum based on the discrete-event simulation approach of CloudSim and extensively
extend the entire implementation of iQuantum to enhance the flexibility and support all proposed resource manage-
ment use cases, including task scheduling, backend selection, hybrid task orchestration, and task offloading between
edge and cloud layer.

3. We validate and evaluate iQuantum in different scenarios using trustworthy datasets, including IBM Quantum13 cal-
ibration data for quantum systems and the MQT Bench dataset34 for the workload. Our findings demonstrate that
iQuantum is a versatile and efficient tool that holds great potential to support the development and evaluation of
policies related to various resource management issues.

4. We discuss the lesson learned throughout the development of the iQuantum simulator, which can bring valuable
insights for developing and extending quantum computing environment modeling and simulation frameworks in the
future.

Besides, as an open-source toolkit, iQuantum is designed to enhance and collaborate with other tools in the quantum
software ecosystem, specifically in the areas of quantum environment modeling and simulation. This area is inevitably
essential for the advancement of quantum resource management policies, along with the rapid maturation of quantum
hardware and software.

The rest of this paper is structured as follows: Section 2 reviews related work and identifies gaps in the literature.
Section 3 outlines the system model for the quantum computing environment. Section 4 proposes the architecture design
and implementation of iQuantum. Section 5 presents different models for various use cases of iQuantum in resource man-
agement and orchestration problems. Section 6 shows an explanatory example, sample workflow operation of iQuantum,
and performance evaluations from various scenarios and workload datasets. Section 7 discusses the lessons learned from
developing iQuantum. Finally, Section 8 concludes the study and suggests future directions.

2 RELATED WORK

Table 1 summarizes the overall comparison of iQuantum and other related work in terms of modeling and simulation
toolkit as well as quantum computing simulation.

T A B L E 1 A feature comparison overview of related works with our iQuantum simulator.

Simulation
focus

Environment
modeling Policies

modeling
Datasets
support

Event
simulation

Integration
possibility LanguageToolkits Quantum Cloud Edge

QuNetSim29 Network E × × Network
protocols

— — ✓ Python

NetSquid30 Network E × × Network
protocols

— ✓ ✓ Python

QuEST43 Circuit operation E × × — — — ✓ C++

PAS44 Circuit operation E × × — — — — —

QXTools45 Circuit operation E × × — ✓ — — Julia

iQuantum
(Our toolkit)

System &
workload

S ✓ ✓ Resources
management

✓ ✓ ✓ Java

Note: Classical cloud features derived from CloudSim.
Abbreviations: ✓, supported; ×, unsupported; —, N/A; E, emulation; S, simulation.

 1097024x, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3331 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [07/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

NGUYEN et al. 1145

In the classical computing domain, modeling and simulation tools such as CloudSim23 have become popular for their
capability to facilitate the development and evaluation of resource management policies.

In the rapidly evolving era of the Internet of Things (IoT),35 paradigms such as edge and fog computing are gain-
ing prominence.36,37 Although CloudSim, the predecessor of iQuantum, facilitates various simulation models for cloud
computing-based use cases, it cannot be directly used for modeling edge/fog environments. As a result, new simulation
toolkits are proposed to adapt to these kinds of computing paradigms. Mahmud et al.26 proposed iFogSim2, which extends
the first version of iFogSim38 to support mobility, clustering, and microservices management policies in fog and edge
computing. Similarly, Souza et al.27 propose EdgeSimPy, which employs an agent-based modeling technique to represent
each entity in the edge environment as an agent that has its own behavior, decision-making capabilities, and interac-
tions with other agents and the environment. Additionally, IoT applications in emerging domains like blockchain IoT
(B-IoT)39 and medical applications40 present a new frontier. Blockchain IoT integration offers enhanced security and effi-
ciency in IoT scenarios. This integration is particularly significant in applications where blockchain’s decentralized and
immutable nature can strengthen data integrity and trust in distributed IoT networks. Simulators such as ChainFL41 and
xFogSim,42 can be adapted to simulate such scenarios, providing valuable insights into the resource management chal-
lenges and opportunities inherent in B-IoT systems. Conversely, the key characteristic of the modeling toolkit is capturing
the behaviors of the actual entities and modeling them as an object or agents, then simulating the actual interactions
among different entities through events. However, there is no existing cloud/edge simulator support modeling quantum
computing resources and workloads.

In terms of quantum computing simulation, it is important to highlight that there are numerous quantum simulators,
but they are mostly focused on simulating the physical quantum operation, which mimics the real quantum systems
and can be categorized as “emulation”. However, none of the existing quantum simulation toolkits support modeling the
environments and resource management problems, which can be categorized as “simulation”, similar to other modeling
toolkits in the classical realm.23

Industry-standard quantum simulators, such as IBM’s quantum simulator integrated with Qiskit46 and Google’s
quantum simulator employed with Cirq,47 are renowned for their robustness in simulating quantum circuit operations.
However, iQuantum distinguishes itself from these simulators in several key aspects. First, while IBM and Google’s sim-
ulators primarily concentrate on the physical aspects of quantum computation, iQuantum mainly focuses on modeling
quantum computing environments, facilitating research in resource management problems. This approach is similar to
other well-known simulators in the classical domain, such as CloudSim,23 iFogSim,26 and EdgeSimPy.27 Second, iQuan-
tum is designed as a lightweight, discrete-event simulation framework, making it more accessible and easier to model
and simulate the large-scale environment with heterogeneous quantum (and classical) instances. This contrasts with the
more resource-intensive nature of several industry simulators, which may require more computational overhead22 when
employed to design and evaluate resource management algorithms. Additionally, iQuantum is designed with an inter-
operability approach, enabling it to leverage the modeling of circuit and quantum computation features extracted from
these established simulators. Indeed, we can extract attributes of quantum circuits from benchmark datasets (such as
MQT Bench34) using Qiskit and use IBM’s benchmark data on quantum volume and circuit layer operation per second
(CLOPS)32 of quantum systems to model quantum computing environments in iQuantum (see Section 7).

Apart from the built-in quantum simulators of common quantum SDKs such as Qiskit, Cirq, Braket, and Q#, several
works have proposed simulation frameworks for quantum operation and communications. Regarding quantum net-
works, Diadamo et al.29 proposed QuNetSim as a framework for simulating different quantum network protocols, such
as quantum key distribution and quantum routing. As QuNetSim relies on other qubit simulators (such as SimulaQron,48

ProjectQ,49 and QuTiP50), its main objective is to develop quantum network protocol simulation rather than distributed
quantum system modeling. Similarly, NetSquid30 is a discrete-event network simulator for simulating quantum network
protocols and systems. Although quantum communications is certainly an important prospect of the future implica-
tion of quantum technology, it is still in its infancy and requires more research effort to develop standard protocols and
methods. In practice, current quantum computing services can still leverage the classical driver counterpart and network
communication for quantum execution. Therefore, our focus in iQuantum is to reflect the current nature of the quantum
computing environment in consensus with classical resources.

Besides, several simulators for quantum operation have been proposed recently. Jones et al. proposed QuEST43 to
support simulating the behavior of quantum systems with high performance. Similarly, Bian et al.44 proposed PAS as a
lightweight quantum simulator, and the authors argued that PAS outperforms QuEST in terms of quantum operation
simulation. QXTools45 is another Julia-based toolkit for simulating large-scale quantum circuits using the tensor network
approach, which can be executed on a distributed computation cluster. However, as the main focus of these simulators

 1097024x, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3331 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [07/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

1146 NGUYEN et al.

is quantum operation, modeling and simulation toolkits for quantum systems and workloads are needed to facilitate the
design of resource management policies.

In terms of modeling and simulation tools for quantum computing environments, especially for facilitating the design
and evaluation of quantum resource management policies, iQuantum can be considered as one of the first-of-its-kind
toolkits. As iQuantum is built on top of CloudSim,23 which is one of the most widely-used simulators over the last decade
for cloud computing environments, our toolkit can leverage the capabilities of CloudSim to expand its support to classical
resource modeling in the cloud and extend to the edge network. Eventually, iQuantum serves as the unified toolkit for
supporting the hybrid quantum-classical computing paradigm in the edge-cloud continuum, which enhances the seam-
lessly and simplicity of employing different frameworks and paves a new way for research in system design and resource
management for various scenarios, such as quantum computing and hybrid quantum-classical computing environments.
Although simulators can have their limitations compared to practical environments (such as the QFaaS framework22 for
practical quantum environments), by capturing the timing and interactions of events, modeling and simulation toolkits
provide valuable insights into the performance resource utilization and scalability of the overall systems.

iQuantum also offers other advantages that distinguish it from existing toolkits. For instance, it provides support for
external datasets, accommodating both OpenQASM files for quantum tasks and quantum computer calibration data for
quantum systems. Our toolkit also facilitates data importing and exporting in a common CSV format, enabling further
investigation and analysis. The modular architecture of iQuantum allows for easy extension and customization to sup-
port various use cases. Furthermore, iQuantum can be seamlessly integrated with common quantum SDKs like Qiskit,46

enabling workload feature extraction and dataset generation. For users seeking more advanced resource management
techniques, iQuantum’s compatibility with Python-Java brokers, such as Py4J,* allows for straightforward integration of
machine learning-based policies. Ultimately, these features collectively position iQuantum as a powerful and flexible
toolkit for modeling and simulation in hybrid quantum computing environments.

3 SYSTEM MODEL FOR QUANTUM ENVIRONMENTS

This section outlines the system model of key entities in the quantum computing environments, including quantum
processing units (QPUs), quantum nodes, and quantum tasks. Figure 2 illustrates these entities and main attributes,
which are described in detail below.

3.1 QPUs and quantum computation nodes

3.1.1 Quantum processing units

The computational unit of a physical quantum system (or quantum node–QNode) is a quantum chip (or quantum
processing unit–QPU).

A QPU qi of QNode  can be defined as follows:

qi = {qw
, qv
, qs
, qg
, qt
, qe} (1)

where:

1. qw is the number of qubits (or width), which implies the scale of the QPU. The more number of qubits, the more
quantum information a QPU can process.

2. qv is the quantum volume (QV) of the QPU, which indicates the quality of qubits and the QPU’s capability to execute
a quantum circuit precisely. Cross et al.51 proposed the measurement of QV as follows:

qv = 2min(d,m) (2)

where d and m are the depth and width of the largest square circuit that can be faithfully executed. The higher the
value of QV, the higher the possibility of getting a precise execution result.

*https://www.py4j.org/.

 1097024x, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3331 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [07/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://www.py4j.org/

NGUYEN et al. 1147

F I G U R E 2 Overview of the system model and key attributes of entities in quantum computing environments.

3. qs is the number of circuit layers that can be processed per second (CLOPS),32 which indicates the speed of the QPU
for processing quantum circuits. CLOPS can be empirically measured by

qs = M × K × S × D
time taken

(3)

where M = 100,K = 10, S = 100,D = log2 qv, which stands for the number of evaluated templates, number of param-
eter updates, number of shots, and number of QV layers, respectively. The higher the CLOPS, the faster the QPU can
operate.

4. qg indicates a list of all supported single-qubit and multiple-qubit quantum gates of the QPU. For example, most avail-
able IBM Quantum chips from 5 to 65 qubits support five native gate sets, including CNOT, ID, RZ, SX, and X gate,
where their most recent 127-qubit and 433-qubit chips (Eagle r3 and Osprey r1) replace the support of CNOT gate with
ECR gate.

 1097024x, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3331 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [07/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

1148 NGUYEN et al.

5. qt represents the qubit topology (or connectivity) of all qubits in the QPU, which can be modeled by a graph qt = ( ,),
where  = {vi|1 ≤ i ≤ ||}, || = qw depicts the number of qubits and vi denotes the i-th qubit;  = {ci,j|vi, vj ∈  , i ≠
j} denotes the connection of two qubits, where ci,j denotes the connection between qubit vi and qubit vj.

6. qe represents a list of all error rates of the QPU, which can be defined as qe = (v, g), where v = {ei|1 ≤ i ≤ ||}
denotes the list of all qubit error, and ev

i depicts the readout assignment error of i-th qubit; g = {eg
k|1 ≤ k ≤ |qg|}

denotes the list of all quantum gate errors and eg
k depicts the readout assignment error of k-th quantum gate. The errors

of the two-qubit gate (CNOT and ECR gate) contain all errors between each pair of two qubits in the QPU. The error
rates model can be useful in assisting the development of solutions for more complex resource management problems
that take into account the quality of qubits and the quantum volume. However, it is important to note that supporting
the evaluation of the quantum errors impacts on quantum execution results is not within the scope of our study and
can be considered for future extension.

Besides, other calibration metrics of each qubit can be modeled to reflect the comprehensive properties of a QPU,
such as T1 time, T2 time, frequency, and anharmonicity. It is worth noting that although we support modeling all of these
features in the implementation of iQuantum, the complex resource management policies considering all error rates and
all calibration data of each qubit in the QPU are out of scope in this study, which inspire the further contribution of other
practitioner and researchers in the field of quantum computing systems and quantum error mitigation.

3.1.2 Quantum nodes

A quantum computation node (QNode ) can be modeled as follows:

 = [{qi|1 ≤ i ≤ n}, 𝜋s] (4)

where n is the number of QPUs and 𝜋s is the local task scheduling of the quantum node.
Presently, most available quantum computer from well-known vendors such as IBM Quantum, Rigetti, and IonQ only

has single-chip quantum nodes. However, the proposal for multi-chip quantum nodes such as IBM Quantum System
Two† are expected to be released in the near future. According to the current situation and potential development of
quantum hardware, iQuantum supports both single-QPU (n = 1) and multi-QPU (n ≥ 1) QNode models. Besides, users
can design the scheduling policy 𝜋s to determine the execution model of multiple incoming quantum tasks inside the
quantum node. More details and examples of scheduling policies can be found in Section 5.1.

3.2 Quantum datacenters and brokers

3.2.1 Quantum datacenters

A cluster or centralized hub of multiple quantum nodes at the same location can be defined as a quantum datacenter
() as follows:

 = [{i|1 ≤ i ≤ ||}, 𝜉, 𝜒] (5)

where || is the number of QNodes, 𝜉 is the cost model of using quantum computation resources, and 𝜒 is the location
of the quantum datacenter.

Different quantum cloud providers have different cost models for using their quantum computing services. For
example, IBM Quantum offers a Pay-As-You-Go plan through IBM Cloud with a fixed price of using 27- to 127-qubit
quantum computers at 1.6 USD per second of quantum runtime,‡ whereas Amazon Braket12 calculates the total cost 𝜉i of
executing i-th quantum task 𝛾i at quantum computer q by 𝜉i = 𝜉t

q + 𝛾 s
i × 𝜉

s
q, where 𝜉t

q is the cost per task, 𝜉s
q is cost per shots

†IBM Quantum System Two
‡https://www.ibm.com/quantum/access-plans.

 1097024x, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3331 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [07/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://www.ibm.com/quantum/access-plans

NGUYEN et al. 1149

of quantum node q, and 𝛾 s
i is the number of shots that quantum task 𝛾i need to be executed. Additionally, different quan-

tum computers offered by Amazon Braket have different per-task and per-shot prices. Therefore, users can customize
the pricing strategy to have an appropriate model if they consider the cost of execution in the resource management
problem.

The location 𝜒 of a quantum datacenter refers to either the cloud layer or edge layer, where the quantum datacenter is
hosted. Besides, it also indicates the linked quantum broker, which interacts with the quantum data center for selecting
and scheduling quantum tasks.

3.2.2 Quantum brokers

The intermediary component in conjunction with a quantum datacenter to manage incoming quantum tasks and coor-
dinates with the datacenter to determine the appropriate backend for task execution can be defined as a quantum broker
(QBroker)  as follows:

 = {,Γ, 𝜋b} (6)

where  is the linked quantum datacenter, Γ is a list of all incoming quantum tasks, and 𝜋b is the backend selection
policy to determine which available quantum node is suitable to place each incoming quantum task.

3.3 Quantum tasks

A quantum task (QTask) 𝛾 is a fundamental unit of a quantum computation. Conceptually, a quantum application can
include one or more quantum circuits that are being sent to be executed in a quantum node.14 We model each single
circuit as a QTask to simplify the simulation process, making it more tractable to model and analyze quantum comput-
ing environments, especially those involving complex scheduling and resource allocation scenarios. A complex quantum
application that involves more than one quantum circuit can be modeled as multiple QTasks. The key features of a
quantum task 𝛾i can be modeled as follows:

𝛾i =
{
𝛾

a
, 𝛾

g
, 𝛾

w
, 𝛾

d
, 𝛾

s
, 𝛾

e
, 𝛾

t} (7)

where:

1. 𝛾a is the arrival time of the quantum task.
2. 𝛾g is a list of all quantum gate sets used in the quantum circuit, which can contain different single- and multiple-qubit

quantum gates.
3. 𝛾w is the quantum circuit width, which is measured by the number of qubits that need to be used.
4. 𝛾d is the number of circuit layers, which can be assumed to be directly related to the depth of the circuit.
5. 𝛾 s is the number of shots (i.e., execution repetition) that circuit need to be executed.
6. 𝛾 t is the connectivity of all qubits in the circuit.

Besides, a quantum task can be associated with other metrics related to Quality-of-Service (QoS), such as the accept-
able error threshold for executing a quantum task. Quantum circuit features such as quantum gates, circuit width, circuit
depth, and qubit connectivity extracted from SDKs such as Qiskit can be mapped to QTask automatically. For example,
we extracted features of quantum circuits in QASM format from the MQT Bench dataset34 and mapped them to corre-
sponding QTasks to represent the workload needed to be processed within the quantum computing environment (see
Section 7).

A task placement configuration for task 𝛾i ∈ Γ can be represented as 𝜎i = {𝛾i, qk} ∈ Σ, where qk ∈  and 1 ≤ k ≤ ||

denotes the index of the quantum computation node. More details about quantum task scheduling and use cases for
quantum resource management strategies are discussed in Section 5.

 1097024x, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3331 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [07/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

1150 NGUYEN et al.

4 IQUANTUM ARCHITECTURE DESIGN AND IMPLEMENTATION

4.1 Architecture and main components

We developed iQuantum using the discrete-event simulation approach, leveraging the core components of the CloudSim
toolkit.23 The initial design of iQuantum, which aimed to demonstrate the possibility of modeling quantum computing
environments, was previously proposed in Reference 14. To support a hybrid quantum-classical environment and expand
to modeling the potential use cases, we propose an improved layered design for the iQuantum toolkit, as shown in Figure 3.
We have significantly enhanced the original design through extensive refactoring and adding new features to enhance
the simulation process for both quantum and hybrid quantum-classical environments.

iQuantum is designed with a modular architecture that comprises five main layers: core simulation, physical, logical,
middleware, and resource management. All elements in these layers are implemented to demonstrate the functional-
ity and usefulness of our toolkit in modeling, simulating, and evaluating resource management strategies for hybrid
quantum-classical computing in the cloud-edge continuum. Additionally, various utility toolkits have been developed to
aid in the simulation process.

The following subsections describe the key components of each layer in the iQuantum framework.

4.1.1 Core simulation layer

The Core Simulation layer in iQuantum is built on the discrete event management framework in CloudSim,23 which is
one of the most widely used simulation toolkits for classical cloud computing environments. The discrete event simula-
tion technique is highly suitable for simulating and modeling dynamic events and their interactions over time in complex
computation systems such as cloud-edge environments. This technique is commonly used in many other simulation

F I G U R E 3 Architecture design of iQuantum incorporates five main layers, dataset support, and other auxiliary components.

 1097024x, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3331 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [07/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

NGUYEN et al. 1151

toolkits, including iFogSim2,26 ns-3,52 and OMNET++.53 We enhanced the core simulation framework of CloudSim to
incorporate quantum features and improve clarity in the context of hybrid quantum-classical computing in cloud-edge
environments. In iQuantum, the whole system is represented as a set of entities that interact with each other through
events. After starting the simulation, the core simulation components initialize all entities based on the provided scenario
and register all computation resources with the central Resource Information Service (RIS). The simulation moves for-
ward by scheduling and processing all defined events in chronological order. Each event alters the state of the system and
can possibly schedule new events for the future. The simulation continues until it reaches a predetermined termination
condition, such as a specified time duration or a certain number of tasks.

4.1.2 Physical layer

The Physical Layer encompasses various components, including QDatacenter, CDatacenter, QNode, and CNode, which
collectively enable the simulation of a hybrid quantum-classical computing environment.

Processing Units in iQuantum comprise both (Classical) Central Processing Units (CPUs) and Quantum Processing
Units (QPUs). CPUs handle classical computations and support the quantum task compilation and coordination of hybrid
tasks in the system. Each CPU entity (formerly Pe in CloudSim) is modeled by Million Instructions Per Second (MIPS).23

QPUs (or quantum chips) are responsible for executing quantum tasks. We leverage common metrics and properties of
gate-based quantum devices to model a QPU in iQuantum, including the number of qubits (scale), Quantum Volume
(QV-quality), Circuit Layer Operations Per Second (CLOPS-speed), qubit connectivity topology, supported quantum gates,
qubit, and quantum gate error rates (see Figure 2). To simplify the terminologies, we used “node” to refer to the physical
computation devices, where QNodes represent the quantum computer (or quantum system) and CNodes represent the
classical server or host (formerly in CloudSim). Each node can contain one or more processing units, enabling parallel
execution of tasks. In the classical domain, a CNode can be modeled with other capacities such as RAM and storage. As
similar techniques for quantum computing have not yet been invented or are in the early stages of development, we only
consider adding QPUs for QNodes in iQuantum at this stage. However, these metrics can be modeled in the future as
the technology advances. Besides, it is important to note that current quantum computers mostly support a single quan-
tum chip (QPU). However, a multi-QPU quantum computer is expected to be invented soon with planned roadmaps
by major hardware vendors such as IBM. In addition to computing capacity, each node can be associated with differ-
ent resource management policies and pricing models. For QNodes, users can model different cost models, as different
quantum providers offer different pricing models. For instance, IBM Quantum offers a cost per second of the quantum
execution model, while Amazon Braket offers a cost-per-execution and shots (iterations) model.

The datacenters in iQuantum, namely QDatacenter and CDatacenter, serve as the infrastructure for resource coordi-
nation. In general, a data center can be seen as a collection (or cluster) of multiple computing nodes (QNodes or CNodes),
which can be coordinated to perform a common task. Each datacenter entity is associated with a corresponding class to
model a list of all belonging computation nodes and other necessary characteristics.

4.1.3 Logical layer

The Logical Layer in iQuantum consists of abstractions that represent the classical virtualized resources and computation
tasks on the system. These abstractions are designed to provide a simplified and standardized interface for both classical
and quantum counterparts. The classical part is mainly inherited from CloudSim entities, which includes resource and
application abstractions such as Virtual Machines (VMs), containers, and classical tasks (CTasks). VMs are virtualized
computing resources allocated within a CNode, while containers represent containerized computing resources allocated
within a VM. They offer an isolated and flexible environment for deploying and running classical applications. Addition-
ally, CTasks represent a classical task (formerly Cloudlet in CloudSim) that can be scheduled and executed on classical
resources. The quantum part includes the model of quantum task (QTask) as the virtualization technique for quantum
counterpart is not yet invented. A QTask represents a computation task that needs to be executed on the quantum com-
puting resources. It encapsulates the quantum algorithm or quantum circuit, along with any necessary parameters and
configurations, such as the number of qubits, number of circuit layers, quantum gates, and other execution constraints. By
utilizing the QTask abstraction, users can simulate the execution of quantum algorithms and evaluate their performance
in conjunction with the classical infrastructure.

 1097024x, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3331 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [07/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

1152 NGUYEN et al.

4.1.4 Gateway layer

The gateway layer comprises intermediary components, including gateways and brokers, which facilitate communication
and task orchestration between cloud and edge computation components. In iQuantum, a gateway (cloud or edge gate-
way) is a communication interface between data center brokers and the layer below. It receives incoming tasks, classifies
them, and dispatches them to the appropriate broker for further scheduling. The brokers, namely QCloudBroker, QEdge-
Broker, CCloudBroker, and CEdgeBroker, then perform the task scheduling based on the resource management policies
in the system.

4.1.5 Resource management layer

This layer enables users to prototype and evaluate various management policies, including task scheduling, migration,
orchestration, and resource provisioning.

1. Task scheduling (or task placement): An efficient placement technique must be designed to optimize resource utiliza-
tion, especially for limited and expensive resources such as quantum computing devices. It is also possible to consider
other objectives, such as minimizing execution time or optimizing the precision of quantum execution results by
scheduling tasks to quantum nodes with higher quantum volume.

2. Task offloading: Due to the dynamic nature of the cloud-edge environments, an adaptive task migration technique
must be designed to migrate tasks to other computation nodes or offload tasks from the edge layer to the cloud layer
when the edge resources are unavailable or insufficient to execute tasks.

3. Resource provisioning: iQuantum can prototype different resource allocation strategies, such as container or virtual
machine provisioning and multi-processing unit (CPUs and QPUs) allocation to computation nodes (CNodes and
QNodes). It is important to note that resource provisioning policies are mainly for classical resources, as quantum
resource virtualization or partitioning is not yet mature. However, it can be extended in future releases to adapt to the
current nature of quantum technology.

4.2 Implementation of quantum components

The overview of the main class diagram for the quantum entities in iQuantum is shown in Figure 4. The core classes
for discrete-event simulation are adapted from the latest version of CloudSim to support the seamless integration of
iQuantum with classical component modeling.

1. iQuantum class is the core entity, which triggers the initialization of all entities, runs a clock tick during the simulation
to record all events, manages the simulation, and triggers all entities to shut down at the end of the simulation.

2. SimEntity and SimEvent: Each core entity in the quantum environment, such as quantum data centers and brokers,
is an extension of the SimEntity class, which can generate events for interaction with other entities. Each simula-
tion event is associated with a unique ID (defined in iQuantumTags) and is represented using SimEvent class, which
includes properties such as two entities, timestamps, and all exchanging information in the event.

3. ResourceInformationService (RIS): This class handles the resource registration of QDatacenter entities when they are
initialized.

4. Gateway is the abstract class that represents the intermediary component that receives all incoming tasks from users or
below the layer, then classifies and dispatches to corresponding brokers for further scheduling. Two implementations
of this class, CloudGateway and Edgegateway, represent the gateway of cloud and edge layers, respectively.

5. QBroker class models a quantum broker that interacts with the Gateway and QDatacenter to schedule incoming QTask
to a suitable QNode in the QDatacenter. Two extended classes, namely QCloudBroker and QEdgeBroker, handle the
brokering job at the cloud layer and edge layer accordingly.

6. QDatacenter is the generalized class model of the datacenter (or a cluster) of multiple quantum nodes located in
the same areas. There are two specific classes that extend this class for modeling a cloud-based quantum datacenter
(QCloudDatacenter) and an edge-based quantum node cluster (QEdgeDatacenter). A list of all associated QNode and
other configurations of QDatacenter are defined in QDatacenterCharacteristics class.

 1097024x, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3331 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [07/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

NGUYEN et al. 1153

F I G U R E 4 Overview of class diagram for quantum components.

7. QNode class represents the gate-based quantum computer, which is used for executing QTask. Each QNode can consist
of one or more QPU, cost of execution, and a QTask scheduling policy. Each QPU can be modeled in QPU class. Each
QPU class represents different metrics, such as the number of qubits, quantum volume, CLOPS, list of all supported
gates, and qubit topology. In the QubitTopologyExtended class, we model the connectivity of all qubits along with
the error rates of each qubit and quantum gate. Users can also import calibration data from vendors, such as IBM
Quantum, to quickly model the quantum nodes.

8. QTask class represents all features of a gate-based quantum task (or quantum circuit). Users can extract the circuit
features of a quantum task (from a QASM file or CSV dataset) and import them into iQuantum automatically. The
connectivity of qubits in a QTask can also be modeled using the QubitTopology class.

9. QTaskScheduler is an abstract class to model the scheduling policy to distribute resources of each QNode among mul-
tiple incoming QTasks. We implemented the QTaskSchedulerSpaceShared by default for QNode, which is described
in detail in Section 5.1.

In the context of our simulation framework, it is important to outline the scope of iQuantum regarding quantum
physical operation. iQuantum’s design does not include the direct simulation of quantum physical phenomena such as
superposition and entanglement. This decision aligns with our framework’s objective to provide a high-level simulation
environment primarily concerned with the operational aspects of quantum computing environments. However, iQuan-
tum is capable of modeling quantum circuit features from external quantum SDKs such as Qiskit. For instance, quantum
circuit features can be obtained from these SDKs and subsequently incorporated into iQuantum’s simulations to represent
a QTask. This integration allows iQuantum to model the outcome and performance implications of quantum computa-
tions based on the empirical benchmark data, albeit at an abstract level. In this way, iQuantum can simulate the broader
operational environment of quantum computing, such as the scheduling of quantum tasks into an appropriate quantum
system to optimize resource management.

4.3 Quantum nodes and workload datasets

Initially, simulation scenarios in iQuantum can be defined manually,14 similar to CloudSim.23 This approach allows users
to customize the definition and attributes of all entities in the system. However, this task can be trivial for explanatory
or small experiments but impractical for large-scale experiments with a vast number of heterogeneous devices and tasks.

 1097024x, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3331 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [07/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

1154 NGUYEN et al.

To improve the flexibility of dataset processing in iQuantum, we support quick prototyping by using external datasets.
Datasets in iQuantum are expected to be formatted as a CSV file, which is commonly used in machine learning and
software domains.

1. Quantum nodes: iQuantum supports the use of a calibration datasheet format, adopted from IBM Quantum,13 to
model all attributes of a QNode, including detailed qubit topologies and error rates.

2. Quantum tasks: The quantum workload dataset in iQuantum can be generated by extracting all features from the
OpenQASM file to a CSV file. You can import this dataset directly into iQuantum to automatically generate QTasks for
evaluating resource management policies. We derived several sets of quantum workload datasets for iQuantum based
on QASM files from the MQT Bench.34

5 USE CASES OF IQUANTUM FOR QUANTUM RESOURCE
MANAGEMENT SIMULATION

In this section, we demonstrate the usefulness and effectiveness of iQuantum in modeling quantum computing resource
management problems, such as quantum task scheduling and hybrid quantum-classical task orchestration in the
cloud-edge continuum. In order to make our explanation accessible to a wide range of readers, we explain how iQuantum
can be used with general resource management policies and discuss the possibility of tackling more complex problems.
It is important to note that creating new resource management policies is not within the scope of this paper.

5.1 Quantum task scheduling

Effective task scheduling (or task placement) is a crucial aspect of distributed system research, which also applies to the
quantum computing domain. The goal is to enhance the management of computational resources by optimizing resource
utilization, reducing the overall time taken to complete tasks, and minimizing the cost of resource usage.

The overall simulation logic of QTask scheduling problems in iQuantum is described in Algorithm 1. We divide
the quantum task scheduling process into two main stages: quantum node selection (or backend selection) and task
allocation at QNode. After initializing the environment and the simulation clock, all tasks are submitted to the
closest gateway (Cloud Gateway or Edge Gateway). Then, the gateway classifies and dispatches quantum and classi-
cal tasks to their corresponding brokers. For quantum tasks, the key steps of each stage in the scheduling process
are as follows:

5.1.1 Backend selection

QBroker communicates with the quantum data center to gather information about the current environment, combining
with all features of the incoming tasks to determine which QNode is the most appropriate backend for executing each
QTask. This procedure comprises two main steps:

1. Pre-selection: First, QBroker performs this process to select all potential QNodes , which satisfies the strict require-
ments of executing tasks to reduce the overhead for the backend selection. Several prerequisites to place a QTask 𝛾i to
a potential QNode qj ∈  are considered, including:

a. The qubit number of a potential QNode (qw
j) must be equal to or higher than the required qubit number (or circuit

width) of QTask (𝛾w
i), denoted as qw

j ≥ 𝛾
w
i . At this stage, we assume that a quantum circuit cannot be split and

executed on different QNodes. It is important to acknowledge that techniques such as circuit cutting,54 are in the
early stages of development and can be considered in the future.

b. All quantum gates used in QTask (𝛾g
i) need to be supported by the gate sets of the QNode (qg

T), denoted as 𝛾g
i ⊆ qg

j .
Otherwise, the transpiler can be used to convert unsupported gates55 to the native gate set of QNode.

c. It is possible to find a mapping (𝜔ij) of the QTask’s qubit connectivity (𝛾 t
i) and the qubit topology of the

QNode (qt
j). iQuantum also allows users to model and evaluate their qubit mapping strategy or use the default

backtracking-based qubit mapping policy.

 1097024x, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3331 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [07/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

NGUYEN et al. 1155

Algorithm 1. QTask scheduling simulation logic

Input : All incoming QTasks: Γ = [𝛾1, 𝛾2, ..., 𝛾n]
All available QNodes:  = [q1, q2, ..., qm]
Backend Selection Policy: 𝜋b

Output: List of placements: Σ = [𝜎1, 𝜎2, ..., 𝜎n]
1 Initialize simulation clock t ← 0;
2 Σ← [];
3 for i ← 1 to n do
4 Update t & all QNodes processing time;
5 𝛾i ← Γ[i];
6 qT ← null;
7  ← null;
8 for j ← 1 to m do
9 qj ← [j];

10 if qw
j ≥ 𝛾

w
i and 𝛾g

i ⊆ qg
j then

11 𝜔ij ← qubitMapping(𝛾 t
i , q

t
j);

12 if 𝜔ij ≠ null then
13 Update QTask 𝛾i;
14 Append qj to  ;
15 end if
16 end if
17 end for
18 if  ≠ null then
19 qT ← 𝜋b( , 𝛾i);
20 end if
21 𝜎i ← {𝛾i, qT};
22 Append 𝜎i to Σ;
23 end for
24 return Σ;
25 Distribute QTasks according to Σ;
26 Perform QNode local scheduling process;

Other constraints, such as cost, quantum volume, and quality of services (QoS), can also be considered. If all
prerequisites are satisfied, the QNode will be added to the potential QNodes  for the backend selection.

2. Selection: QBroker can then apply the backend selection policy (𝜋b) to select the most suitable QNode from the
pre-selected list in the previous step. This policy is driven by different objectives and constraints defined by users.

5.1.2 Task allocation

After the backend selection procedure, QDatacenter will place each QTask to the selected QNode for execution. All arrived
tasks are place in the queue at QNode and will be executed based on the QNode’s task allocation policy. Different strategies
for task allocation can be designed to schedule multiple incoming quantum tasks in the appropriate order to minimize
the execution time or achieve other resource utilization objectives.

For the classical computing domain, there are two main policies for allocating multiple tasks for execution in classical
computation resources, including the Space-shared and Time-shared policies.23 Examples of comparable strategies for
quantum tasks are illustrated in Figure 5. We assume there is a 7-qubit QNode and 5 QTasks (arrived in order from q1
to q5) in the waiting queue. The width and height of each QTask represent its number of qubits and number of circuit
layers, respectively.

 1097024x, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3331 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [07/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

1156 NGUYEN et al.

(A)

(B)

F I G U R E 5 Example of two allocation strategies for five different quantum tasks (sequenced as q1 to q5) within a seven-qubit quantum
node. (A) The Space Shared policy dedicates separate quantum resources to each task. (B) Time Shared policy allocates tasks in even time
slots using a round-robin approach, resulting in pausing and resuming of tasks q3 and q4, rendering it impractical for quantum computing.

1. In space-shared policy, quantum resources (qubits) are allocated exclusively to each task for the entire duration of
its execution without any time-sharing. The remaining tasks must wait for available resources if other tasks occupy
current resources.

2. In the time-shared policy, the available resources can be divided into time slots and allocated to tasks or users in a
round-robin fashion. Each task is assigned resources for a fixed time interval, after which the resources are reassigned
to the next task in the queue.

It is important to highlight that the time-share approach is impractical for quantum task execution at the moment. It is
mainly because a quantum task cannot be suspended and then resume its previous quantum state to continue executing
in the future due to the no-cloning theorem of quantum computing. Therefore, the space-shared policy is suggested to be
used as default in iQuantum for task allocation at QNode. In the future, we anticipate that multiple quantum tasks can
be parallel executed in different areas of the qubit topology in a quantum computer. However, it is challenging to realize
this approach in the current NISQ era20 as it can be affected by noise and complicated qubit reset control.

5.2 Hybrid quantum task orchestration

Quantum computing is predicted to enhance classical computing rather than replace it entirely. It can handle tasks that
are best suited to its distinctive features. In this way, a hybrid quantum-classical computing system can be a potential
paradigm to maximize the capabilities of both quantum and classical systems during the NISQ era.56 This approach
utilizes the advantages of classical computing for tasks such as data pre-processing and post-processing while assigning
more computationally demanding tasks to quantum resources.57

 1097024x, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3331 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [07/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

NGUYEN et al. 1157

Algorithm 2. Hybrid task orchestration logic

Input : All incoming tasks: Λ = [𝜆1, 𝜆2,… , 𝜆n]
QNodes:  = [qc

1, q
c
2,… , qc

m, qe
1, q

e
2,… , qe

k]
CNodes:  = [cc

1, c
c
2,… , cc

p, ce
1, c

e
2,… , ce

l]
Backend Selection Policies: 𝜋, 𝜋
All VM/Container Provision Policies

Output: List of placements: Σ = [𝜎1, 𝜎2,… , 𝜎n]
1 Initialize simulation clock t ← 0;
2 e

V ,
c
V ← Apply VM/Container Provision Policies;

3 Submit all tasks to Edge gateway;
4 Σ← [];
5 for i ← 1 to n do
6 Update t & all processing time;
7 𝜆i ← Λ[i];
8 bT ← null;
9 if 𝜆i.type = QTask then

10 Send 𝜆i to QEBroker;
11 Apply QTask scheduling policy (Algo. 1)
12 bT ← 𝜋(𝜆i,

e);
13 else
14 Send 𝜆i to CEBroker;
15 Apply CTask scheduling policy;
16 bT ← 𝜋(𝜆i,

e
V);

17 end if
18 𝜎i ← {𝜆i, bT};
19 if 𝜎i ← false then
20 Offload 𝜆i to Cloud Gateway;
21 𝜎i ← Repeat 8–18 on Cloud resources;
22 end if
23 Append 𝜎i to Σ;
24 end for
25 return Σ;
26 Distribute tasks according to Σ;
27 Perform local scheduling process at nodes;

iQuantum leverages the classical entities in CloudSim to support modeling classical resources and its local resource
management policies within the classical data center. Additionally, user can design their policy for orchestrating quan-
tum and classical tasks from the Gateway to the appropriate broker. The hybrid task orchestration logic is depicted in
Algorithm 2. It is important to note that different resource provisioning can be applied to classical servers (CNodes) to
allocate logical resource units such as virtual machines (VMs) and containers. However, the equivalent technique is not
yet available for quantum resources as QTasks are executed directly in quantum nodes.

After the environment setup, all tasks can be submitted directly to the closest Edge gateway. Then, Edge Gateway
classifies and dispatches each task to Quantum Edge Broker (QEBroker) or Classical Edge Broker (CEBroker) for the
scheduling process. Users can design different scheduling policies for classical and quantum tasks to achieve their objec-
tives. For quantum tasks, the complete scheduling process can be done as described in Algorithm 1 (Section 5.1). For
classical tasks, more discussion about task scheduling and resource management policies can be found in Reference 23.

Additionally, the task offloading and migration problems can be modeled in iQuantum in case the computation
resources at the Edge layer are insufficient for executing the incoming tasks. For example, a quantum node at the Edge
layer does not have enough qubits for executing quantum tasks as edge nodes have limited capacity compared to the
cloud nodes. In this case, the corresponding broker will offload these failed tasks from the edge to the cloud gateway.

 1097024x, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3331 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [07/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

1158 NGUYEN et al.

F I G U R E 6 An example of hybrid task orchestration in the Cloud-Edge continuum. Four services incorporate different quantum and
classical tasks, varying in execution time and resource requirements. Each task can be executed on edge computing resources or offloaded to
the cloud if edge resources are insufficient for execution.

Accordingly, a similar orchestration process can be performed at the cloud layer to distribute all arrived tasks to the most
suitable computation node.

An example of hybrid task orchestration in the cloud-edge continuum is illustrated in Figure 6. We assume four
hybrid services (or applications) that need to be executed. Each service (or application) can contain multiple quantum and
classical tasks that require different computation resources. Services 1 and 4 contain only classical tasks or quantum tasks,
in which the smaller task can be sent to executed using edge resources, and the larger one can be offloaded to the cloud.
Services 2 and 3 contain both quantum and classical tasks, which can be sent to their most appropriate computation node
for execution. If the resource at the edge layer is sufficient for the incoming task, it can be used to place the task to reduce
the communication latency and overhead for the cloud. More complex scenarios can be modeled within our toolkit.
When iQuantum is used with CloudSim/iFogSim, one can model and simulate a hybrid quantum-classical computing
environment and evaluate new hybrid task orchestration algorithms.

6 EXAMPLE OF SIMULATION WORKFLOW

Figure 7 depicts an overview of the simulation workflow in iQuantum, which consists of four main stages.
First, the user needs to define the scenario manually or automatically using the dataset generator and importer. Then,

when the simulation is initialized, it will first set up the environment with all pre-defined entities. Next, it executes all
resource management policies, such as provisioning, scheduling, migration, and orchestration of all quantum and clas-
sical tasks. Finally, when the simulation stop condition is met, the simulation will be terminated, and the outcome will
be generated in CSV format for further analysis.

To demonstrate the main steps of setting up a simulation in iQuantum, we present an explanatory example as Figure 8.
This example is mainly derived from our earlier proposal14 with improvement in the declaration. A quantum datacenter
with a single 7-qubit QNode follows the configuration of ibmq_oslo node from IBM Quantum (QV 32, CLOPS 2,600). This
QNode receives two quantum tasks, QTask 1 and QTask 2, with 4 qubits and 3 qubits, respectively. Both QTasks employed
3 basic gates (CX, RZ, X), which are fully supported by the quantum node. QTask 1 comprises 100 circuit layers and will
execute 4000 shots, while the metrics for QTask 2 are 50 layers and 1000 shots.

Step 1. Initialize the iQuantum core simulation entity by using iquantum.init() method.
Step 2. Create a list of QNode instances. Users can model manually similar to Reference 14, or automatically by using

the predefined QNode and adding to qNodeList as follows (Code 1):

 1097024x, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3331 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [07/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

NGUYEN et al. 1159

QNode qNode = IBMQNode.createNode(id,"ibm_oslo",new QTaskSchedulerSpaceShared());
qNodeList = new ArrayList<QNode>();
qNodeList.add(qNodeOslo);

Code 1: Sample code for importing ibmq_oslo QNode

F I G U R E 7 Overview of the simulation workflow in iQuantum.

F I G U R E 8 Example of two QTasks (left) and possible qubit mapping into ibmq_oslo node (right).

 1097024x, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3331 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [07/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

1160 NGUYEN et al.

Step 3: Create a QCloudDatacenter. qNodeList and other information, such as cost of execution in the quantum
datacenter are modeled in a QDatacenterCharacteristics object (Code 2).

QDatacenterCharacteristics characteristics = new QDatacenterCharacteristics(qNodeList, timeZone,
costPerSec);
QCloudDatacenter qDatacenter = new QCloudDatacenter("QCDatacenter", characteristics);

Code 2: Sample code for modeling a QDatacenter

Step 4: Create a CloudGateway and a linked QCloudBroker object as follows (Code 3):

QCloudBroker qBroker = createQBroker();
CloudGateway cloudGateway = new CloudGateway("CloudGateway_0", qBroker);

Code 3: Sample code for modeling a broker and a gateway

Step 5: Create a list of quantum tasks (QTask) manually or import the QTask dataset automatically from the CSV file.
As this example only consists of two QTasks, they can be modeled manually as follows (Code 4):

List<int[]> q1Edges = new ArrayList<>();
q1Edges.add(new int[]{0, 1});
q1Edges.add(new int[]{1, 2});
... [truncated]
QubitTopology q2Tpl = new QubitTopology(3, q2Edges);
ArrayList<String> qg = new ArrayList<>(Arrays.asList("CX", "RZ", "X"));
QTask qtask1 = new QTask(0, 5, 100, 4000, qg, q1Tpl);
QTask qtask2 = new QTask(1, 3, 50, 1000, qg, q2Tpl);

Code 4: Sample code for modeling two QTasks

Step 6: Design and implement the resource management policies. For demonstration, we implemented a simple
QTaskSchedulerSpaceShare policy by extending the QTaskScheduler class. We estimate the approximate completion time
(tq) of a quantum task inside a quantum node by using the following equation:

tq = 𝛾

d

qs × 𝛾
s (8)

where 𝛾d is the number of circuit layers in the quantum task, qs is the CLOPS of the quantum node, and 𝛾 s is the number
of shots that quantum task need to be executed. It is important to note that other factors, such as transmission time and
classical runtime, may be considered to estimate the total completion time. More details about quantum task scheduling
are discussed in Section 5.1.

Step 5: Submit all quantum tasks to CloudGateway and start the simulation. Once all the simulation tasks are complete,
stop the simulation and print out the final outcome (Code 5).

 1097024x, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3331 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [07/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

NGUYEN et al. 1161

cloudGateway.submitQTasks(qTaskList);
iQuantum.startSimulation();
iquantum.stopSimulation();
List<QTask> rs = qBroker.getQTaskReceivedList();
QTaskExporter.printQTaskList(rs);

Code 5: Sample code for starting the simulation and print out the result

The simulator shows all events (with timestamps) happening during the simulation period (Code 6).

0.0: CloudGateway : Dispatching 0 CTasks and 1 QTasks from Cloud Gateway to Brokers for processing
0.0: QCBroker: Cloud Resource List received with 1 resource(s)
0.01: QCBroker: Started scheduling all QTasks to QDatacenter
0.01: QBroker: Checking if QNode #0 has enough qubits/gates to execute QTask0
....
153.86: QBroker: QTask 0 result received
173.09: QBroker: QTask 1 result received
173.09: QBroker: All QTasks executed. Finishing...
173.09: Simulation: No more future events

Code 6: Sample events in the simulation

The simulation results show that two quantum tasks are submitted to the QNode at timestamp t = 0.01 s (minimum
interval between two different events). The execution times of QTask 1 and QTask 2 in the QNode are 153.85 and 19.23
s, respectively. According to the Space-shared scheduling policy, QTask 2 can only be executed after QTask 1 finishes its
execution. The total execution time of all quantum tasks is 173.08 s. As noted above, these results are the same as when we
manually calculated using Equation (8). More large-scale simulation scenarios and evaluation of iQuantum are discussed
in the following section.

7 VERIFICATION AND PERFORMANCE EVALUATION

In this section, we conduct a comprehensive verification and evaluation of iQuantum in different scenarios by using a
well-known benchmarking quantum workload dataset to verify the accuracy of the conceptual model’s implementation
and its performance with the proposed use cases discussed in Section 5. The primary findings of the empirical experiments
are discussed in this section.

7.1 iQuantum simulation verification

Simulation is a cost-effective and less complex alternative to empirical experimentation for understanding real-world
systems.58 However, due to the high complexity of real-world systems, simulators often employ assumptions and abstrac-
tions, which can introduce certain inaccuracies while simplifying the model. Therefore, a key aspect of simulation studies
is ensuring that these models maintain acceptable accuracy levels, considering their assumptions and abstractions. This
involves two critical processes: validation, which assesses if the conceptual model is a true representation of the real
world, and verification, which ensures the correct implementation of the model.27

For the system model validation, the conceptual model and metrics in quantum are devised based on well-known
studies on quantum benchmarking32,51,59,60 without further modification. Besides, the validation and verification of clas-
sical components had been studied in CloudSim.23 Thus, the quantum system model validation and classical system
models are out of the scope of this study. The rest of this section demonstrates a verification to ensure the correctness

 1097024x, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3331 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [07/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

1162 NGUYEN et al.

F I G U R E 9 Overview of the infrastructure considered in iQuantum’s verification and performance evaluation.

of iQuantum implementation for quantum-based features before conducting a large-scale evaluation, following the
verification approach of other modeling and simulation studies, such as References 27,58.

7.1.1 Scenario description

We use the quantum cloud-edge infrastructure as depicted in Figure 9 to comprehend the proposed use cases along
with the correctness verification of iQuantum’s implementation. Detailed attributes of heterogeneous QNodes, which are
adopted from IBM Quantum,13 are depicted in Table 2. The edge layer consists of a cluster of five quantum nodes, modeled
according to information of different 27-qubit IBM Quantum Systems, including ibm_hanoi, ibm_auckland, ibm_cairo,
ibmq_mumbai, and ibmq_kolkata. The cloud layer has a datacenter of 6 QNodes, following the 127-qubit topology of the
ibm_washington system with different metrics for QV and CLOPS to demonstrate the heterogeneity of the quantum cloud
environment.

To facilitate the verification, we use four QTasks that represent different quantum applications extracted from the
MQT Bench dataset,34 in which the circuit attributes are shown in Table 3. All QTasks are initially submitted to the edge
gateway for processing. Following the proposed system model and use cases (Section 5), QTask 𝛾2 (55 qubits) is expected
to be offloaded to the quantum cloud layer while the remaining QTasks can be executed at the quantum edge layers. The
offloading time between two layers is set to 0.01 s. We also assume that 𝛾3 and 𝛾4 are to be scheduled to the same QNode
(QE1) to verify the correctness of the proposed space-share task allocation within a QNode of iQuantum.

7.1.2 Verification discussion

The dynamics of all events that occurred in the simulation of our verification are illustrated in Figure 10 and Table 4,
following the similar verification approach of the EdgeSimPy simulator study.27 At time step T1 = 0.01 s, all QTasks are

 1097024x, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3331 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [07/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

NGUYEN et al. 1163

T A B L E 2 QNodes characteristics for the hybrid quantum environments.

Layer ID Qubit model Qubits QV CLOPS

Edge QE1 ibm_hanoi 27 64 2300

QE2 ibm_auckland 27 64 2400

QE3 ibm_cairo 27 32 2400

QE4 ibmq_mumbai 27 128 1800

QE5 ibmq_kolkata 27 128 2000

Cloud QC1-3 ibm_washington 127 64 904

QC4-6 ibm_washington 127 128 850

T A B L E 3 Attributes of QTasks in the iQuantum verification derived from the MQT bench dataset.34

QTask Circuit depth Initial qubits Mapped qubits Application name

𝛾1 326 7 27 pricingput

𝛾2 74 55 127 graphstate

𝛾3 339 8 27 portfoliovqe

𝛾4 576 14 27 groundstate

scheduled at the quantum edge layer for execution. However, as all QNodes at the edge layer can only process QTasks up
to 27 qubits, QTask 𝛾2 (55 qubits) needs to be offloaded to the cloud with more powerful QNodes for processing. Besides,
𝛾1 and 𝛾3 start the processing at QE5 and QE1, respectively, while 𝛾4 need to wait at QE1 to be executed after 𝛾3 completion
(following the Space-shared scheduling). At time step T2 = 0.02 s, 𝛾2 arrived at the cloud layer and is scheduled to QNode
QC1 for execution for 8.72 s, then finished at time step T3 = 8.74 s. After the completion of 𝛾3 for 14.74 s, 𝛾4 starts its
execution at QNode QE1 at time step T4 = 14.75 s. The remaining QTasks, 𝛾1, and 𝛾4, continue their execution and finish
at time step T5 = 16.32 s and T6 = 39.8 s, respectively. It is obvious that all discrete events that occurred during the
verification are correct and meet the initial expectation with the given input.

7.2 Performance evaluation

To validate the effectiveness of iQuantum with the proposed use cases (discussed in Section 5), we further evaluate its
performance and correctness of the implementation in different large-scale scenarios.

7.2.1 Environment setup

For the quantum cloud-edge system, we set up a similar infrastructure as the previous verification setting (see Figure 9
and Table 2) to further investigate the quantum cloud-edge architecture with large-scale scenarios and use cases. For
modeling large-scale quantum task workloads, we used MQT Bench34 and extracted features of quantum circuits for
28 different quantum algorithms into four sets as shown in Table 5. The original quantum circuits are mapped to IBM
Quantum systems (27 qubits and 127 qubits). To simplify the circuit layer extraction, we assume that the number of circuit
layers is equivalent to the circuit depth of each QTask. We employed the Lottery-based61 Backend Selection algorithm for
the quantum node selection and the Space-shared policy for QNode scheduling. In the backend selection policy, we use
quantum volume (QV) and CLOPS with the same weight (0.5) to determine the number of tickets for each QNode (i.e.,
a QNode has a higher QV and CLOPS will have a higher chance to be selected). All workload data of each set are sent
to the edge gateway for the orchestration. The experiments are conducted on a Ubuntu 22.04 virtual machine hosted by
Melbourne Research Cloud with an 8-vCore CPU and 32 GB of RAM. Each evaluation is repeated 1000 times, with the
results discussed in the following part.

 1097024x, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3331 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [07/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

1164 NGUYEN et al.

(A) (B) (C)

(D) (E) (F)

F I G U R E 10 Dynamics of each time step involved in the verification process of iQuantum. The cloud layer in time steps T4, T5, and T6

are truncated for simplicity as there are no new events after T3.

7.2.2 Discussion

Figure 11 illustrates the peak memory (RAM) usage and average simulation time (wall-lock time) of all scenarios on
different workload datasets measured by using time command in Ubuntu. As iQuantum is an event-based simulation
toolkit, its resource usage is relatively low without simulating the quantum operation. For Sets 1 and 2 cases, all tasks are
executed at the quantum edge layer as all quantum edge nodes have sufficient qubits for the execution. Each simulation
only takes around 0.5 to 1 s and requires from 117.8 MB (Set1) to 241.6 MB (Set2) of RAM for processing. As all tasks in Set
3 and the majority of tasks in Set 4 (5569 tasks) require 127 qubits, they are offloaded from the edge layer to the cloud layer
for execution during the simulation. The qubit mapping for 127-qubit tasks requires more memory, peaks at 910.95 MB of
RAM, and takes about 8 s to process 7000 QTasks in the hybrid scenario (Set 4). Nevertheless, the average simulation time
and resource consumption of iQuantum are lightweight to model and evaluate different resource management policies
for quantum computing environments.

 1097024x, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3331 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [07/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

NGUYEN et al. 1165

T A B L E 4 Events and QNodes state during iQuantum’s verification simulation.

Time step QNode ID

QTask status

Waiting Executing Done

T1 QE1 𝛾4 𝛾3 —

QE5 — 𝛾1 —

QC1 — — —

T2 QE1 𝛾4 𝛾3 —

QE5 — 𝛾1 —

QC1 — 𝛾2 —

T3 QE1 𝛾4 𝛾3 —

QE5 — 𝛾1 —

QC1 — — 𝛾2

T4 QE1 — 𝛾4 𝛾3

QE5 — 𝛾1 —

QC1 — — 𝛾2

T5 QE1 — 𝛾4 𝛾3

QE5 — — 𝛾1

QC1 — — 𝛾2

T6 QE1 — — 𝛾3, 𝛾4

QE5 — — 𝛾1

QC1 — — 𝛾2

T A B L E 5 Quantum task workload features, extracted from MQT bench dataset34 (Qiskit SDK).

Set QTask count Circuit depth Initial qubits Mapped qubits Algorithms types

1 300 13–7682 10–27 27 25

2 1000 13–58,861 10–27 27 21

3 3500 10–87,833 7–127 127 28

4 7000 10–161,588 7–127 27–127 28

Figure 12 illustrates the heatmap distribution of all QTask execution on different QNodes. As we employed the
lottery-based backend selection policy, which prioritizes the selection of QNode with a higher quantum volume and
CLOPS, this heatmap reinforces the correctness of our implementation. In order to use quantum resources more effec-
tively, it is important to develop an advanced resource management strategy. Users can use iQuantum to design and
evaluate more advanced backend selection and task scheduling to optimize the resource management strategy.

Additionally, to draw insight into the simulation results to highlight the necessity of the iQuantum toolkit, we illus-
trate the average results of all QTasks completion time in Figure 13. QTasks completion time indicates the time elapsed
for all QNodes to finish executing all QTasks, where different QNodes can execute different tasks at the same time. We
also measure the sum of the total execution time from all quantum nodes in each scenario. As the space-shared schedul-
ing policy limits a QNode can execute only one task at a time, and each QTask in our test has a large number of circuit
layers, the total completion time, as well as the sum of QPU times, are quite considerable, especially for completing Sets
3 and 4. It requires around 1 h of execution in practical environments for completing all incoming tasks where the actual
QPU times are 4.2 h (Set 3) up to 7 h (Set 4). If we consider the cost model of quantum computing providers, such as IBM
Quantum, which charges each second of quantum execution at $1.6, the total cost for each set in the actual environment
is enormous. Therefore, a simulated environment for the design and evaluation of quantum resource management poli-
cies is crucial. Since implementing quantum computing in practical settings can be costly, iQuantum offers a simplified

 1097024x, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3331 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [07/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

1166 NGUYEN et al.

F I G U R E 11 Average RAM usage (bar chart) and total simulation time (line chart) of iQuantum on four workload datasets (varying
from 300 to 7000 QTasks) over 1000 iterations.

F I G U R E 12 Distribution of the average number of QTasks execution per QNode in all scenarios. QC, quantum nodes at the cloud
layer; QE, quantum nodes at the edge layer.

 1097024x, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3331 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [07/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

NGUYEN et al. 1167

F I G U R E 13 Total QTasks completion time (wall-lock time) and cumulative QPU times of all QNodes in minutes required for each
workload set’s completion. These figures are average values of 1000 iterations.

toolkit for modeling, designing, and assessing resource management policies without incurring massive waiting time or
expenses.

8 LESSON LEARNED AND DISCUSSION

Through the development and empirical evaluation of different use cases of iQuantum, we identify several insights
that can be useful for research in quantum resource management and developing modeling and simulation toolk-
its for quantum computing environments. Performing experiments in practical environments for quantum computing
is difficult and time-consuming, mainly due to the limited and costly quantum resources. The use of modeling tools
like iQuantum is critical to accelerate research in system design and resource management. Furthermore, iQuan-
tum can be used for educational purposes to help practitioners better understand the quantum system operation and
performance.

In order to keep up with the latest advancements in quantum hardware and software, the modeling and simulation
toolkit must be easily expandable and support new metrics. Quantum computing is constantly evolving, with new stan-
dards and metrics emerging during its development. Recently, metrics like quantum volume and CLOPS have gained
popularity, and more may be added in the future. The simulator should be able to support modeling new metrics to reflect
the comprehensive environment for testing more advanced resource management strategies. iQuantum allows users to
customize and add more features as needed to fulfill their requirements. Users can advance resource management to
adapt to current NISQ devices with more comprehensive aspects, such as error rates and connectivity of qubits in QNode.
A quantum node in iQuantum can be modeled with detailed information on error rates in each qubit and their connec-
tions, which can serve these studies. Besides, different features of quantum circuits can be extracted from QASM files or
using other quantum SDKs such as Qiskit46 and Cirq47 to the customized format in iQuantum.

Currently, the vision of quantum computing at the edge layer15,16 is just a theoretical concept, but it may become a
reality in the near future as quantum devices become more popular. Nevertheless, our paper also illustrated a simple
hybrid model of quantum cloud-edge computing, where resources for quantum computing at the edge are more limited
compared to cloud-based quantum computers. Future research should consider various aspects of this hybrid model,
such as user mobility, service migration, and network communication. Additionally, we suggest expanding iQuantum to
include further aspects and features, such as energy consumption management, network communication, and parallel
processing of quantum tasks in multi-QPU quantum computers. It is worth noting that quantum nodes do not currently
use virtualization or containerization techniques, unlike classical computing. Instead, they directly execute quantum
tasks with the support of classical drivers for circuit compilation and transpilation. As a result, there is no equivalent

 1097024x, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3331 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [07/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

1168 NGUYEN et al.

conceptual model for virtual machines (VMs) or containers in the quantum computing field at present. Besides, quantum
datacenters can contain nodes that are either homogeneous or heterogeneous, depending on their physical properties
and underlying technology. While quantum cloud providers offer access to their quantum simulators, these resources are
only useful for testing during the NISQ era and not for long-term production phases. Consequently, we do not take these
simulators into account for modeling purposes.

It is also important to mention that iQuantum also supports the model of different error rates of quantum nodes,
which helps to understand quantum errors in a simulated environment and design more complex resource management
strategies. However, the scope of our study does not include a comprehensive benchmarking analysis of the impact on dif-
ferent error rates. Users can consider these error rates and holistic quality metrics of a quantum system, such as quantum
volume,51,60 when designing task scheduling or resource management policies. Quantum error modeling and analysis,
which delves into the specific impacts of varying error rates on quantum computation, represents a significant and com-
plex undertaking that is actively developed in the domain of quantum hardware benchmarking,59,62 and quantum error
correction.63

In the current landscape of quantum computing, the development of large-scale quantum systems, exemplified by
endeavors such as the IBM System Two with more than 1000 qubit quantum chips,64 represents a significant step forward.
Future work with iQuantum will focus on extending its capabilities to model and simulate such large-scale quantum
systems. This undertaking will involve enhancing the framework’s scalability and computational efficiency to represent
and manage the complexities inherent in systems of this magnitude.

It would be beneficial to explore an improved method for measuring the number of circuit layers in quantum tasks. In
our evaluation, we assumed that the circuit depth extracted from the original QASM files represented the circuit layers.
However, it is important to note that circuit depth is only an approximate metric, and we recommend using a more
precise method to extract the number of circuit layers in quantum tasks to adapt to the measurement of the CLOPS
metric for quantum nodes. In the study on CLOPS metric benchmarking, a circuit layer was defined as one layer of
permutation among qubits and one layer of pair-wise random SU(4) 2-qubit unitary gates. However, this circuit was
designed specifically for CLOPS benchmarking, and a technique for estimating the number of circuit layers in a general
circuit is still necessary. It is important to note that our work primarily pertains to the features of the circuit dataset used for
the simulation, and the circuit layer measurement technique does not impact the core simulation logic of iQuantum. We
emphasize the need for a standardized and large-scale quantum workload dataset to investigate further the development
of advanced quantum resource management policies in the future. For example, the depth-1 circuit per second32 metric,
which is linearly scaling to CLOPS, can be considered in the future.

9 CONCLUSIONS AND FUTURE WORK

Our paper introduces iQuantum, a lightweight and versatile toolkit for modeling and simulation of hybrid quantum com-
puting environments. This toolkit focuses on creating and evaluating quantum resource management policies within the
cloud-edge continuum. We have extensively developed iQuantum from an initial case proposal to a holistic toolkit that
is flexible and adaptable for various use cases in quantum systems research. In addition to the iQuantum toolkit, we also
propose a comprehensive system model for quantum computing environments, which serves as a baseline model for
quantum entities in the hybrid cloud-edge paradigm. We demonstrate various use cases for iQuantum, including facilitat-
ing the design and evaluation of different scenarios in resource orchestration problems such as task scheduling, backend
selection, and hybrid task orchestration. Moreover, we also validate and evaluate the performance to highlight the effec-
tiveness of iQuantum using reliable datasets from MQT Bench34 and IBM Quantum. The targeted users of iQuantum
will be students, educators, researchers, and practitioners who want to comprehensively evaluate resourced manage-
ment algorithms in simulated environments. Such proven algorithms can then be deployed in real quantum computing
environments.

Our future work in iQuantum involves ensuring that we can adapt to new advances and standards in quantum hard-
ware and software design. We aim to support the model of large-scale quantum chips with more than 1000 qubits and
extend our modeling to analyze the impact of various quantum error rates. We are also considering extending iQuantum’s
capabilities to model the characteristics of various quantum hardware and quantum networks. We will also consider
the modeling of forthcoming techniques, such as circuit-cutting, to allow the allocation of tasks to multiple quantum
resources in the future.

 1097024x, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3331 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [07/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

NGUYEN et al. 1169

AUTHOR CONTRIBUTIONS
Hoa T. Nguyen: Conceptualization, Methodology, Software, Validation, Investigation, Data Curation, Writing – Original
Draft, Review & Editing, Visualization; Muhammad Usman: Supervision, Validation, Writing – Review & Editing;
Rajkumar Buyya: Conceptualization, Methodology, Supervision, Validation, Writing – Review & Editing.

ACKNOWLEDGMENTS
This work is the substantial extended work of our 10-page conference paper,14 which was presented at the 2023 IEEE Inter-
national Conference on Quantum Software (QSW 2023), held in Chicago, USA. Hoa Nguyen acknowledges the support
from the Science and Technology Scholarship Program for Overseas Study for Master’s and Doctoral Degrees, Vingroup,
Vietnam. Open access publishing facilitated by The University of Melbourne, as part of the Wiley - The University of
Melbourne agreement via the Council of Australian University Librarians.

FUNDING INFORMATION
No funding was received for this manuscript

CONFLICT OF INTEREST STATEMENT
The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are openly available in CLOUDS Lab’s Github at https://github.com
/Cloudslab/iQuantum. The iQuantum toolkit with the source code and examples of all proposed use cases can be accessed
on our website (clouds.cis.unimelb.edu.au/iquantum) and Github (github.com/Cloudslab/iQuantum) as an open-source
tool under the GPL-3.0 license.

ORCID
Hoa T. Nguyen https://orcid.org/0000-0001-6904-6312
Muhammad Usman https://orcid.org/0000-0003-3476-2348
Rajkumar Buyya https://orcid.org/0000-0001-9754-6496

REFERENCES
1. Zinner M, Dahlhausen F, Boehme P, Ehlers J, Bieske L, Fehring L. Quantum computing’s potential for drug discovery: early stage industry

dynamics. Drug Discov Today. 2021;26(7):1680-1688.
2. Griffin P, Sampat R. Quantum computing for supply chain finance. Proceedings of the 2021 IEEE International Conference on Services

Computing (SCC), pages 456-459, Chicago, IL, USA. 2021.
3. Moll N, Barkoutsos P, Bishop LS, et al. Quantum optimization using variational algorithms on near-term quantum devices. Quantum Sci

Technol. 2018;3(3):030503.
4. Debenedictis EP. A future with quantum machine learning. Computer. 2018;51(2):68-71.
5. West MT, Erfani SM, Leckie C, Sevior M, Hollenberg LCL, Usman M. Benchmarking adversarially robust quantum machine learning at

scale. Phys Rev Res. 2023;5(2):023186.
6. West MT, Tsang S-L, Low JS, et al. Towards quantum enhanced adversarial robustness in machine learning. Nat Mach Intell.

2023;5(6):581-589.
7. Kaiiali M, Sezer S, Khalid A. Cloud computing in the quantum era. Paper presented at: 2019 IEEE Conference on Communications and

Network Security (CNS), volume 2019, pages 1-4. IEEE. 2019.
8. Leymann F, Barzen J, Falkenthal M, Vietz D, Weder B, Wild K. Quantum in the cloud: application potentials and research opportuni-

ties. Proceedings of the 10th International Conference on Cloud Computing and Services Science, pages 9-24. SCITEPRESS-Science and
Technology Publications. 2020.

9. Rahaman M, Islam M. A review on Progress and problems of quantum computing as a service (QCaaS) in the perspective of cloud
computing. Global J Comput Sci Technol: B Cloud Distrib. 2015;15(4):23-26.

10. Gill SS, Kumar A, Singh H, et al. Quantum computing: a taxonomy, systematic review and future directions. Softw Pract Exper.
2022;52(1):66-114.

11. Microsoft. Azure Quantum. 2023.
12. Gonzalez C. Cloud based QC with Amazon Braket. Digitale Welt. 2021;5(2):14-17.
13. IBM. IBM Quantum Computing Services. 2023.

 1097024x, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3331 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [07/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://github.com/Cloudslab/iQuantum
https://github.com/Cloudslab/iQuantum
http://clouds.cis.unimelb.edu.au/iquantum
https://github.com/Cloudslab/iQuantum
https://orcid.org/0000-0001-6904-6312
https://orcid.org/0000-0001-6904-6312
https://orcid.org/0000-0003-3476-2348
https://orcid.org/0000-0003-3476-2348
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496

1170 NGUYEN et al.

14. Nguyen HT, Usman M, Buyya R. iQuantum: a case for Modeling and simulation of quantum computing environments. Proceedings of
the 2023 IEEE International Conference on Quantum Software (QSW), pages 21-30, Chicago, IL, USA, IEEE. 2023.

15. Ma L, Ding L. Hybrid quantum edge computing network. Quantum Communications and Quantum Imaging XX . SPIE; 2022:29.
16. Furutanpey A, Vienna T, Barzen J. Architectural vision for quantum computing in the edge-cloud continuum. Proceedings of the 2nd

IEEE International Conference on Quantum Software (QSW), pages 88-103, Chicago, IL, USA, IEEE.
17. Wang H, Liu T, Kim B, et al. Architectural design alternatives based on cloud/edge/fog computing for connected vehicles. IEEE Commun

Surv Tutor. 2020;22(4):2349-2377.
18. Shi W, Cao J, Zhang Q, Li Y, Xu L. Edge computing: vision and challenges. IEEE Internet Things J. 2016;3(5):637-646.
19. Qiu X, Zhang W, Chen W, Zheng Z. Distributed and collective deep reinforcement learning for computation offloading: a practical

perspective. IEEE Trans Parallel Distrib Syst. 2021;32(5):1085-1101.
20. Preskill J. Quantum computing in the NISQ era and beyond. Quantum. 2018;2:79.
21. Ravi GS, Smith KN, Gokhale P, Chong FT. Quantum computing in the cloud: analyzing job and machine characteristics. Proceedings of

the 2021 IEEE International Symposium on Workload Characterization (IISWC), pages 39-50, Storrs, CT, USA. 2021.
22. Nguyen HT, Usman M, Buyya R. QFaaS: a serverless function-as-a-service framework for quantum computing. Future Gener Comput Syst.

2024;154:281-300.
23. Calheiros RN, Ranjan R, Beloglazov A, De Rose CAF, Buyya R. CloudSim: a toolkit for modeling and simulation of cloud computing

environments and evaluation of resource provisioning algorithms. Softw Pract Exp. 2011;41(1):23-50.
24. Sonmez C, Ozgovde A, Ersoy C. EdgeCloudSim: an environment for performance evaluation of edge computing systems: EdgeCloudSim:

an environment for performance evaluation of edge computing systems. Trans Emerg Telecommun Technol. 2018;29(11):e3493.
25. Qayyum T, Malik AW, Khan Khattak MA, Khalid O, Khan SU. FogNetSim++: a toolkit for modeling and simulation of distributed fog

environment. IEEE Access. 2018;6:63570-63583.
26. Mahmud R, Pallewatta S, Goudarzi M, Buyya R. iFogSim2: an extended iFogSim simulator for mobility, clustering, and microservice

management in edge and fog computing environments. J Syst Softw. 2022;190(111351):1-17.
27. Souza PS, Ferreto T, Calheiros RN. EdgeSimPy: python-based modeling and simulation of edge computing resource management policies.

Future Gener Comput Syst. 2023;148:446-459.
28. Altman E, Brown KR, Carleo G, et al. Quantum simulators: architectures and opportunities. PRX Quantum. 2021;2(1):017003.
29. Diadamo S, Notzel J, Zanger B, Bese MM. QuNetSim: a software framework for quantum networks. IEEE Trans Quantum Eng. 2021;2:1-12.
30. Coopmans T, Knegjens R, Dahlberg A, et al. NetSquid, a NETwork simulator for QUantum information using discrete events. Commun

Phys. 2021;4(1):164.
31. Wehner S, Elkouss D, Hanson R. Quantum internet: a vision for the road ahead. Science. 2018;362(6412):p.eaam9288.
32. Wack A, Paik H, Javadi-Abhari A, et al. Quality, Speed, and Scale: three key attributes to measure the performance of near-term quantum

computers. 2021 arXiv:2110.14108.
33. Dagkakis G, Heavey C. A review of open source discrete event simulation software for operations research. J Simul. 2016;10(3):193-206.
34. Quetschlich N, Burgholzer L, Wille R. MQT bench: benchmarking software and design automation tools for quantum computing.

Quantum. 2023;7:1062.
35. Gubbi J, Buyya R, Marusic S, Palaniswami M. Internet of things (IoT): a vision, architectural elements, and future directions. Future Gener

Comput Syst. 2013;29(7):1645-1660.
36. Puliafito C, Mingozzi E, Longo F, Puliafito A, Rana O. Fog computing for the internet of things: a survey. ACM Trans Internet Technol.

2019;19(2):1-41.
37. Laroui M, Nour B, Moungla H, Cherif MA, Afifi H, Guizani M. Edge and fog computing for iot: a survey on current research activities and

future directions. Comput Commun. 2021;180:210-231.
38. Gupta H, Vahid Dastjerdi A, Ghosh SK, Buyya R. iFogSim: a toolkit for modeling and simulation of resource management techniques in

the internet of things, edge and fog computing environments. Softw Pract Exp. 2017;47(9):1275-1296.
39. Huang J, Kong L, Chen G, Cheng L, Wu K, Liu X. B-iot: Blockchain driven internet of things with credit-based consensus mechanism.

Paper presented at: 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS). 2019 1348-1357.
40. Sun L, Jiang X, Ren H, Guo Y. Edge-cloud computing and artificial intelligence in internet of medical things: architecture, technology and

application. IEEE Access. 2020;8:101079-101092.
41. Qu G, Cui N, Wu H, Li R, Ding Y. Chainfl: a simulation platform for joint federated learning and blockchain in edge/cloud computing

environments. IEEE Trans Industr Inform. 2022;18(5):3572-3581.
42. Malik AW, Qayyum T, Rahman AU, Khan MA, Khalid O, Khan SU. Xfogsim: a distributed fog resource management framework for

sustainable iot services. IEEE Trans Sustain Comput. 2021;6(4):691-702.
43. Jones T, Brown A, Bush I, Benjamin SC. QuEST and high performance simulation of quantum computers. Sci Rep. 2019;9(1):10736.
44. Bian H, Huang J, Tang J, Dong R, Wu L, Wang X. PAS: a new powerful and simple quantum computing simulator. Softw Pract Exp.

2023;53(1):142-159.
45. Brennan J, O’Riordan L, Hanley K, et al. QXTools: a Julia framework for distributed quantum circuit simulation. J Open Source Softw.

2022;7(70):3711.
46. Aleksandrowicz G, Alexander T, Barkoutsos P, et al. Qiskit: An Open-Source Framework for Quantum Computing. 2019.
47. Cirq Developers. Cirq Framework. 2023.
48. Dahlberg A, Wehner S. SimulaQron-a simulator for developing quantum internet software. Quantum Sci Technol. 2019;4(1):15.
49. Steiger DS, Häner T, Troyer M. ProjectQ: an open source software framework for quantum computing. Quantum. 2018;2:49.

 1097024x, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3331 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [07/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

NGUYEN et al. 1171

50. Johansson J, Nation P, Nori F. QuTiP: an open-source python framework for the dynamics of open quantum systems. Comput Phys
Commun. 2012;183(8):1760-1772.

51. Cross AW, Bishop LS, Sheldon S, Nation PD, Gambetta JM. Validating quantum computers using randomized model circuits. Phys Rev A.
2019;100(3):032328.

52. Riley GF, Henderson TR. The ns-3 network simulator. In: Wehrle K, Güneş M, Gross J, eds. Modeling and Tools for Network Simulation.
Springer; 2010:15-34.

53. Varga A. OMNeT++. In: Wehrle K, Güneş M, Gross J, eds. Modeling and Tools for Network Simulation. Springer; 2010:35-59.
54. Tang W, Tomesh T, Suchara M, Larson J, Martonosi M. CutQC: using small quantum computers for large quantum circuit evaluations.

Proceedings of the 26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems,
pages 473-486, Virtual USA. 2021.

55. Aravanis C, Korpas G, Marecek J. Transpiling quantum circuits using the pentagon equation. 2022 arXiv:2209.14356 [quant-ph].
56. Serrano MA, Cruz-Lemus JA, Pérez-Castillo R, Piattini M. Quantum software components and platforms: overview and quality assess-

ment. ACM Comput Surv. 2022;55(8):1-31.
57. Weder B, Barzen J, Leymann F, Vietz D. Quantum software development lifecycle. In: Serrano MA, Pérez-Castillo R, Piattini M, eds.

Quantum Software Engineering. Springer International Publishing; 2022:61-83.
58. Xiang X, Kennedy R, Madey G, Cabaniss S. Verification and validation of agent-based scientific simulation models. Paper presented at:

Agent-Directed Simulation Conference, volume 47, page 55. The Society for Modeling and Simulation International San Diego, CA, USA.
2005.

59. Mills D, Sivarajah S, Scholten TL, Duncan R. Application-motivated, holistic benchmarking of a full quantum computing stack. Quantum.
2021;5:415.

60. Pelofske E, Bärtschi A, Eidenbenz S. Quantum volume in practice: what users can expect from NISQ devices. IEEE Trans Quantum Eng.
2022;3:1-19.

61. Waldspurger CA, Weihl WE. Lottery scheduling: flexible proportional-share resource management. Proceedings of the 1st USENIX
Conference on Operating Systems Design and Implementation, pages 1-es.

62. Resch S, Karpuzcu UR. Benchmarking quantum computers and the impact of quantum noise. ACM Comput Surv. 2022;54(7):1-35.
63. Kim Y, Wood CJ, Yoder TJ, et al. Scalable error mitigation for noisy quantum circuits produces competitive expectation values. Nat Phys.

2023;19:752-759.
64. Castelvecchi D. Ibm releases first-ever 1000-qubit quantum chip. Nature. 2023;624(7991):238.

SUPPORTING INFORMATION
Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Nguyen HT, Usman M, Buyya R. iQuantum: A toolkit for modeling and simulation of
quantum computing environments. Softw: Pract Exper. 2024;54(6):1141-1171. doi: 10.1002/spe.3331

 1097024x, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3331 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [07/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

	iQuantum: A toolkit for modeling and simulation of quantum computing environments
	1 INTRODUCTION
	2 RELATED WORK
	3 SYSTEM MODEL FOR QUANTUM ENVIRONMENTS
	3.1 QPUs and quantum computation nodes
	3.1.1 Quantum processing units
	3.1.2 Quantum nodes

	3.2 Quantum datacenters and brokers
	3.2.1 Quantum datacenters
	3.2.2 Quantum brokers

	3.3 Quantum tasks

	4 IQUANTUM ARCHITECTURE DESIGN AND IMPLEMENTATION
	4.1 Architecture and main components
	4.1.1 Core simulation layer
	4.1.2 Physical layer
	4.1.3 Logical layer
	4.1.4 Gateway layer
	4.1.5 Resource management layer

	4.2 Implementation of quantum components
	4.3 Quantum nodes and workload datasets

	5 USE CASES OF IQUANTUM FOR QUANTUM RESOURCE MANAGEMENT SIMULATION
	5.1 Quantum task scheduling
	5.1.1 Backend selection
	5.1.2 Task allocation

	5.2 Hybrid quantum task orchestration

	6 EXAMPLE OF SIMULATION WORKFLOW
	7 VERIFICATION AND PERFORMANCE EVALUATION
	7.1 iQuantum simulation verification
	7.1.1 Scenario description
	7.1.2 Verification discussion

	7.2 Performance evaluation
	7.2.1 Environment setup
	7.2.2 Discussion

	8 LESSON LEARNED AND DISCUSSION
	9 CONCLUSIONS AND FUTURE WORK

	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	FUNDING INFORMATION
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES
	Supporting Information

