
Energy-Traffic Tradeoff Cooperative Offloading for

Mobile Cloud Computing

Jian Song∗, Yong Cui∗, Minming Li†, Jiezhong Qiu∗ and Rajkumar Buyya‡

∗Tsinghua University, Beijing, China

Email: song-j12@mails.tsinghua.edu.cn, cuiyong@tsinghua.edu.cn, qjz12@mails.tsinghua.edu.cn
†Department of Computer Science, City University of Hong Kong, Hong Kong, China

Email: minmli@cs.cityu.edu.hk
‡Department of Computing and Information Systems, The University of Melbourne, Australia

Email: rbuyya@unimelb.edu.au

Abstract—This paper presents a quantitative study on the
energy-traffic tradeoff problem from the perspective of entire
Wireless Local Area Network (WLAN). We propose a novel
Energy-Efficient Cooperative Offloading Model (E2COM) for
energy-traffic tradeoff, which can ensure the fairness of energy
consumption of mobile devices and reduce the computation
repetition and eliminate the Internet data traffic redundancy
through cooperative execution and sharing computation results.
We design an Online Task Scheduling Algorithm (OTS) based on
a pricing mechanism and Lyapunov optimization to address the
problem without predicting future information on task arrivals,
transmission rates and so on. OTS can achieve a desirable trade-
off between the energy consumption and Internet data traffic by
appropriately setting the tradeoff coefficient. Simulation results
demonstrate that E2COM is more efficient than no offloading
and cloud offloading for a variety of typical mobile devices,
applications and link qualities in WLAN.

I. INTRODUCTION

Mobile devices (e.g. smart phones) have become increasing-

ly popular in our daily lives, whereas the capacity of mobile

devices is severely constrained by the restricted battery power.

An efficient way to reduce the computation overhead is to

offload computing tasks to powerful machines or to the cloud.

Mobile devices can save energy and reduce execution delay

of applications through offloading tasks to the cloud. Several

solutions have been proposed for computation offloading, such

as MAUI [1], Clonecloud [2], SmartDiet [3]. However, these

research efforts of offloading technology mainly focus on

optimizing energy consumption of a single device.

On the other hand, though the coverage ratio of 3G networks

is much higher than WiFi networks [4], there exist some

challenges for offloading tasks to remote cloud through 3G

[5]. For example, 3G provides Internet services with lower

bandwidth, higher communication latency and higher energy

consumption compared with WLAN [6]. Moreover, the growth

rate of 3G network capacity cannot catch up with the demand

of mobile Internet data traffic [7]. WLAN is considered as a

solution to ease the traffic pressure on 3G. However, many

mobile communications access the Internet through the same

Access Controller (AC) or Access Points (AP) simultane-

ously, which causes serious congestion and lower available

bandwidth in large-scale WLAN. Conserving network-wide

energy consumption and controlling the Internet data traffic

are becoming a major concern for network operators [8].

In this paper, we propose an Energy-Efficient Cooperative

Offloading Model (E2COM) in one-hop, low-latency and

large-scale WLAN, which aims to minimize the long-term

energy consumption of mobile devices with Internet data

traffic constraint from the entire WLAN perspective. E2COM

Controller is arranged on AC to schedule tasks for every

mobile user based on energy consumption and Internet data

traffic. Mobile devices can execute tasks locally, offload tasks

to other devices or to the cloud in accordance with the

decision-making of E2COM Controller. Many types of tasks

can benefit from E2COM. Examples of these tasks consist of

location information acquisition, optical character recognition

(OCR), image processing, and so on. Moreover, we can use

fingerprints proposed in [9], [10] to describe the similarity of

tasks. Mobile devices can share computation results of similar

tasks with each other to reduce the computation repetition and

eliminate the Internet data traffic redundancy.

In order to reduce the Internet data traffic, we design a

non-competitive pricing mechanism which involves a financial

deficit to record the amount of offloading services that each

device has already received. A device cannot gain more

offloading services, if its bill backlog is larger than a threshold.

On the other hand, a device can reduce its bill backlog by

providing services for others. The reduction amount of the

bill backlog depends on the data size of the tasks.

To address the task allocation and execution problem, we

design an online task scheduling algorithm based on Lyapunov

optimization [11] to minimize the network-wide long-term av-

erage energy consumption while stabilizing the deficit queues

of all devices in the WLAN. Moreover, the algorithm can

achieve the energy consumption and the Internet data traffic

tradeoff by adjusting the tradeoff coefficient V .

The rest of this paper is organized as follows. Section II

is the description for the E2COM framework and the model

of computation and transmission. In Section III, we design

OTS to solve the optimization problem. Simulation results are

presented in Section IV. Section V concludes this paper.978–1–4799-4852-9/14/$31.00 c©2014 IEEE

Fig. 1. The Scenario of E2COM

II. FRAMEWORK AND MODELING

A. System Framework
E2COM is arranged in a large-scale WLAN, as shown in

Fig. 1. In order to reduce the extra cost of equipments, E2COM

Controller is arranged on AC and records profiles of every

mobile device, e.g., CPU power, transmission rate and so on.

Because of the limited storage capacity of AC, E2COM

Controller does not store task execution results, but stores the

fingerprints [9] of tasks executed recently. When a device has a

task to execute, it makes a request to the E2COM Controller.

The E2COM Controller schedules the task based on energy

consumption and bill backlog of the device. Since the data

size of the request is very small, we can ignore the energy

consumption of sending the request to E2COM Controller.

Since the tasks generated by different mobile users may be

similar (e.g. query the same keyword through search engine

or request for the same video, location information), devices

can share computation results with each other to achieve

higher performance and lower energy consumption. If a task

generated by device A has been completed by device B,

A can directly request the result of the task from B. This

can reduce the repetition of computation and Internet data

traffic. Intuitively, when the repetition rate of tasks is high,

the proposed model can save more energy by reducing the

repetitive execution. On the other hand, if the repetition rate

is low, the proposed model can also achieve network-wide

energy efficiency by offloading the tasks to the cloud.

Assume that there are n devices in the WLAN. They have

m tasks to execute in a long time period T , denoted by set

C = {C1, C2, · · · , Cm}. Every task belongs to a device. We

use Ci
h to represent task Ch which belongs to device i, where

h = 1, 2, · · · ,m. We further represent the profile of a task

which belongs to device i as Ci
h(ID,Din

h , Dout
h), where ID,

Din
h and Dout

h denote the type of Ci
h, the data size of the input

and output respectively.

B. Energy Consumption of Computation
CPU is the dominant energy consumer on a device for

executing a task. The energy consumption is determined by

CPU workload, CPU clock frequency, device type and so

on. It is difficult to module the energy consumption of CPU.

[12] depicts the CPU energy consumption from computing

efficiency perspective, i.e., a measure for the amount of

computation that can be performed with given energy (in

cycles per joule). It shows that dynamic voltage and frequency

scaling (DVFS) does affect the energy efficiency of computing

but not radically. The number of CPU cycles depends on the

input data size and the type of the task [13].

The relationship between the input data size of the task and

the number of CPU cycles needed by the task is related to

the task type ([13], [12]). We assume that device i needs Nh

CPU cycles to execute computation task Ci
h. It can be derived

from [13] as follows,

Nh = fX(Din
h), (1)

where the function fX(·) is related to the application type X ,

which is determined by the task ID.

For some popular applications (e.g., deflate compression

algorithm, x264 video encoder and so on), the CPU cycles

needed by a computation task can be expressed as a linear

function of the input data size as Nh = X ·Din
h [12], where

the complexity coefficient X is the ratio of CPU cycles and

the input data size which is related to the application type.

When device j executes task Ci
h, the computation energy

consumption of device j can be defined formally as follows.

Definition 1. Energy Consumption of Computation is given
by [14]

Ej
C(C

i
h) = (ρj0 + ρj1f

3
j)

Nh

fj
, (2)

where ρj0, ρ
j
1 represent the static power and the dynamic

power coefficients respectively of j’s CPU, fj is the CPU clock
frequency of device j.

If device j has already executed a task and stored the

computation result, the energy consumption for executing the

same task (with the same ID) is close to 0. For example, if

device i nearby requires position information, it can request

j to complete the positioning task Ci
h instead of turning on

the GPS and computing the position by itself. If device j has

the most recent location information, it can send the position

information to i directly. Then, the energy consumption of

computation that j completes task Ci
h is 0.

C. Energy Consumption of Offloading

The WLAN can be modeled by a directed graph G = (V ,L),
where V and L are the sets of nodes and directional edges.

Each node i ∈ V corresponds to a device in the network. An

edge (i, j) ∈ L in the graph represents a wireless link from

node i to node j. Each edge (i, j) is associated with three

non-negative real number weights (ρijT , ρ
ij
R , φ

ij
T), where ρijT ,

ρijR are transmitting and receiving power of i to and from j,

and φij
T is the transmission rate on link (i, j) at the current

time. The energy consumption of transmission from i to j can

be formulated as ρijT · (Din
h /φij

T) [15]. We set ρiiT = 0 and

φii
T = ∞. We assume that the E2COM Controller can collect

and store these information in real time.

If device i requests device j to execute a task, we define i as

the client and j as the server. In order to characterize the ener-

gy consumption of each device in the task offloading process

clearly, we divide the energy consumption of offloading into

client energy consumption and server energy consumption.

Definition 2. Client Energy Consumption of Offloading is
the total energy consumption of client i when task Ci

h is
offloaded from client i to server j, including transmission
energy consumption of sending input data and receiving output
data of the task, i.e.,

E ij
L (Ci

h) = ρijT ·
Din

h

φij
T

+ ρijR ·
Dout

h

φji
T

. (3)

Note that E ii
L (C

i
h) = 0, i.e., local execution will not generate

transmission energy consumption.

Definition 3. Server Energy Consumption of Offloading is
the sum of transmission and computation energy consumption
of server j when a task Ci

h is offloaded from client i to
server j, and the transmission energy consumption includes
transmission energy consumption of receiving input data and
sending output data of the task, i.e.,

E ij
R (Ci

h) = ρjiR ·
Din

h

φij
T

+ ρjiT ·
Dout

h

φji
T

+ Ej
C(C

i
h). (4)

If a same task as Ci
h has been executed by server j,

the computation energy consumption can be defined as 0.

Moreover, when i = j, equation (4) is consistent with equation

(2), i.e., E ii
R(C

i
h) = E i

C(C
i
h).

In order to measure the network-wide energy consumption

of executing tasks, we define the energy consumption of

offloading, which includes both client and server energy con-

sumption. We consider the cloud as a special server denoted

as n+1. The energy consumption of the cloud is not included

in the network-wide energy consumption.

Definition 4. Energy Consumption of Offloading is the energy
consumption of mobile devices when task Ci

h is executed
remotely, which can be formulated as,

E ij
O (Ci

h) =

⎧⎨
⎩
E ij
L (Ci

h) + E ij
R (Ci

h), j = 1, . . . , n;

E ij
L (Ci

h), j = n+ 1.

III. TASK SCHEDULING MECHANISM

In the large-scale WLAN, the E2COM Controller needs

to find a proper task allocation scheme. The task allocation

can be formalized as an optimization problem. The network-

wide energy consumption is the optimization objective, and

the Internet data traffic is used as the constraint.

A. Traffic-aware Energy Optimization Problem Formulation
In order to achieve network-wide energy consumption and

data traffic optimization, the E2COM Controller needs to

select the appropriate server (another device, the cloud or the

device itself) for every task Ci
h, where Ci

h ∈ C.

E2COM is operated in a discrete time manner. Each time

slot matches the timescale at which the offloading decision

is made for one task. In each time slot th, E2COM makes a

decision on a vector �α(Ci
h) = (α1(C

i
h), · · · , αn+1(C

i
h)) as,

αj(C
i
h) =

{
1, j executes task Ci

h;

0, otherwise,

where j = 1, 2, · · · , n, n + 1. Especially, αn+1(C
i
h) = 1

denotes that task Ci
h will be offloaded to the cloud. The energy

consumption of executing task Ci
h can be denoted as,

E(Ci
h) =

n+1∑
j=1

αj(C
i
h) · E

ij
O (Ci

h).

If task Ci
h is offloaded to the other device or cloud, the

produced Internet data traffic can be approximately expressed

as DT (C
i
h) = Din

h +Dout
h . Since local execution and coop-

erative execution between devices will not generate Internet

data traffic, the Internet data traffic caused by the execution

of task Ci
h can be denoted as D(Ci

h) = αn+1(C
i
h) ·DT (C

i
h).

The optimization objective is to minimize the Network-Wide
Energy Consumption with the Internet data traffic constraints

(denoted by Ψ) for every device, i.e.,

min

m∑
h=1

E(Ci
h) (5)

subject to:
m∑

h=1

D(Ci
h) < Ψ i = 1, 2, · · · , n

αj(C
i
h) ∈ {0, 1}, h = 1, 2, · · · ,m

j = 1, 2, · · · , n+ 1
n+1∑
j=1

αj(C
i
h) = 1, h = 1, 2, · · · ,m.

With a bound on the Internet data traffic, the offline energy

minimization problem in (5) can be proved NP-hard by a

reduction from the knapsack problem.

B. Online Task Scheduling Algorithm
In order to solve the problem in (5) effectively, we design

the Online Task Scheduling Algorithm, which is based on

Lyapunov optimization and makes a tradeoff between the

energy consumption and Internet data traffic.

1) Service Pricing: E2COM includes a non-competitive

pricing approach to encourage cooperation between mobile

devices. If a device’s bill backlog is larger than a threshold, it

will not be allowed to receive more offloading services from

E2COM. A device can pay its bill by executing tasks for

others. To enjoy offloading services continually, devices bill

backlogs cannot increase unboundedly.

We treat cloud as a special device in the WLAN. It can

increase other devices’ bill backlogs by providing offloading

services, but cannot consume other devices’ bill backlogs.

The Internet data traffic can be reduced, if devices offloads

tasks to other devices instead of cloud. In order to achieve

network-wide (client devices and server devices) cost balance,

we design an asymmetric charging mode according to the

contributions for reducing the Internet data traffic.

Definition 5. Service Charging Function can be denoted as
follows. The bill backlog of client i will increase by bi(th) =
f(DT (C

i
h)), when client i has a task Ci

h to execute at time slot
th; if Ci

h is executed by itself, the bill backlog of i will decrease
by di(th) = f(DT (C

i
h)); if Ci

h is offloaded from i to j, the bill
backlog of server j will decrease by dj(th) = f(DT (C

i
h)).

The increased bill backlog bi(th) (i = 1, · · ·n) is to tackle

the randomness of incoming tasks. If we set f(DT (C
i
h)) =

DT (C
i
h), we can get an informative conclusion. Intuitively,

when task Ci
h is offloaded from i to j, the bill backlog of

device j decreases by dj(th) which is proportional to the

Internet data traffic saved for the network, and the bill backlog

of i increases by bi(th) which is exactly related to the data

traffic if the task is offloaded to be executed.

We denote the n devices’ total amount of bills at time slot

th as Q(th) � (Q1(th), · · · , Qn(th)), where th denotes the

time slot at which the task Ci
h is executed. For each device

i, Qi(th) represents its bill backlog at the beginning of time

slot th.

The service bills of all devices generated in every time slot

th are denoted as b(th) � (b1(th), · · · , bn(th)), which are

added in their corresponding queuesQ(th). Because of execut-

ing tasks for others, devices’ bills are paid partially, which are

denoted as d(th) � (d1(th), · · · , dn(th)). So the bill backlog

evolves as Qi(th+1) = max [Qi(th)− di(th) + bi(th), 0] with

an initially empty bill (i.e., Qi(t0) = 0).

In order to limit the bill backlog of every device, we require

all the bills to be stable in the time average sense, i.e.,

Q = lim sup
m→∞

1

m

m∑
h=1

n∑
i=1

E{|Qi(th)|} < ∞. (6)

2) Online Schedule: The network-wide average energy

consumption of executing the task set C in a long time period

T can be expressed as,

E = lim sup
m→∞

1

m

m∑
h=1

E{|E(Ci
h)|}. (7)

Then, we obtain a new optimization problem, i.e.,

min E (8)

subject to:

Q < ∞

αj(C
i
h) ∈ {0, 1}, h = 1, 2, · · · ,m

j = 1, 2, · · · , n+ 1
n+1∑
j=1

αj(C
i
h) = 1, h = 1, 2, · · · ,m

Let E∗ be the target value of the optimization problem

defined in (8). In each time slot th, E2COM makes an online

offloading decision, with the objective of minimizing the time

average energy consumption under bill backlog constraints for

all devices.

Based on Lyapunov optimization, we first present our Lya-
punov function, L(Q(th)), which is a scalar measure of the

total bill backlogs of all the devices in the WLAN, defined as,

L(Q(th)) �
1

2

n∑
i=1

Q2
i (th). (9)

A larger value of L(Q(th)) implies that at least one bill

backlog is large. In order to ensure that the bill backlog of

each device is smaller than the threshold, we need to keep

the Lyapunov function at a small value. We next introduce the

Lyapunov drift � (Q(th)) as,

� (Q(th)) � E{L(Q(th+1))− L(Q(th)) | Q(th)}, (10)

which is the expected change in the Lyapunov function over

one time slot. Following the Lyapunov optimization approach

[11], we then add the expected energy consumption over one

time slot to both sides of (10), and then lead to the definition

of drift-plus-penalty term.

Definition 6. Drift-Plus-Penalty can be calculated as follows,

DPP (th) =� (Q(th)) + V · E{E(Ci
h) | Q(th)}.

Here V is a non-negative tradeoff coefficient that is chosen

to adjust the performance tradeoff, i.e., how much we care

about the energy consumption compared to the bill backlog.

The key derivation step is to obtain an upper bound on the

drift-plus-penalty. Given any possible bill backlogs Q(th),
arrival rates bi(th) and service rates di(th) at each bill, under

any possible decision �α(th), the constraint is satisfied as

follows,

DPP (th)≤ B + V · E{E(Ci
h) | Q(th)}+

n∑
i=1

E{Qi(th)(bi(th)− di(th)) | Q(th)}. (11)

Following the design principle of Lyapunov framework, the

objective of our optimal offloading decision vector �α(Ci
h) is to

minimize the upper bound of the drift-plus-penalty term, i.e.,

we need to minimize the right hand side of (11) in every time

slot th. Since only the terms E(Ci
h) and Qi(th)(bi(th)−di(th))

depend on the decision vector �α(Ci
h), we can minimize the

bound of the right hand side of (11) by minimizing these terms.

Thus, our algorithm finally minimizes the simplified term as,

DPPbound = V · E(Ci
h) +

n∑
i=1

Qi(th)(bi(th)− di(th)). (12)

Based on (12), we design the Online Task Scheduling Algo-

rithm to allocate tasks among devices. When device i requests

the result of a task, the algorithm is triggered. The bill backlog

of i is updated in line 1. Lines 3-6 compute DPP of every

device j according to (12). Lines 7-10 record the smallest

DPPj and determine the offloading decision vector α(Ch).
According to the Lyapunov Optimization Approach, we will

allocate the task to the device with the smallest DPP value.

Lines 13-15 update the bill backlogs of corresponding devices.

Since cloud execution will do nothing to the bill backlog, the

algorithm will not do anything when cloud execution.

Online Task Scheduling Algorithm

Input: {ρTi1, · · · , ρ
T
in}, {ρRi1, · · · , ρ

R
in}, {φi1, · · · , φin},

Ci
h(D

in
h , Dout

h), {Q1(th), · · · , Qn(th)}
Output: {α1(C

i
h), · · · , αn+1(C

i
h)},

{Q1(th+1), · · · , Qn(th+1)}
1: Qi(th+1) ← Qi(th) + bi(th)
2: for j ← 1 to n+ 1 do
3: DPPj ← V · E(Ci

h)
4: for k ← 1 to n do
5: DPPj ← DPPj +Qk(th)(bk(th)− dk(th))
6: end for
7: if DPPj < DPPbound then
8: DPPbound ← DPPj

9: �α(Ci
h) ← ej //where ej denotes the vector with a 1

in the jth coordinate and 0′s elsewhere

10: end if
11: end for
12: j ← the dimension which αj(C

i
h) = 1

13: if j �= n+ 1 then
14: Qj(th+1) ← Qj(th)− dj(th)
15: end if
16: return

{α1(C
i
h), · · · , αn+1(C

i
h)}, {Q1(th+1), · · · , Qn(th+1)}

Note that there will be at most two devices related to each

task. When computing DPP of every device j in order to find

the smallest one, we only need to calculate the related DPP ,

i.e., device i and device j. In this way, the time complexity of

OTS is O(n), where n is the number of devices in the WLAN.

Substituting constants ε, E∗ into inequality (11), and cal-

culating the time average bill size for every slot th > 0, we

can obtain the performance bounds of OTS. Given a tradeoff

coefficient V , the time average energy deviates by O(1/V)
from optimality at most, while the bill backlog is bounded by

O(V). We can use an arbitrarily large V to make the time

average energy cost E close to optimum E∗.

IV. PERFORMANCE EVALUATION

We evaluate the performance of E2COM by simulations on

energy consumption and Internet data traffic. No Offload (all

the tasks are executed on the mobile devices locally), Cloud

Offload (all the tasks are executed on the cloud remotely)

and an Energy Greedy Algorithm (GA) are taken as the

performance reference for comparison on the same topology in

simulations. GA ignores the bound on the Internet data traffic

in (5), and simply selects the server with the smallest energy

consumption in each time slot.

A. Evaluation Setup and Methodologies
We consider a WLAN with 50 mobile devices and 5000

tasks which belong to these devices to be executed in a

long time period T . The CPU static power and the dynamic

power coefficients of every device are set from 0.5 to 1
randomly, and the CPU clock frequency is set from 1GHz
to 1.5GHz randomly. The transmission rate on link (i, j) is a

random value between 15Mbps and 20Mbps [6], ∀i, j ∈ V .

The transmission rate between i and the cloud via E2COM

Controller is a random value between 1Mbps and 2Mbps.

The transmission power of every device is set between 0.5W
and 1W determined by the transmission rate [6].

B. Simulation Results

1) Performance with Different V: This simulation illustrates

how the parameter V controls the energy consumption and bill

backlog tradeoff. We set X = 1000, the repetition rate of tasks

40% and V increasing from 0 to 109 in step 2.5 × 107. We

present the average energy consumption, average bill backlog

and Internet data traffic of executing 5000 tasks in Fig. 2a,

Fig. 2b and Fig. 2d respectively.

When V goes from 0 to 109, the average energy consump-

tion drops from 61J to 23J , and the average bill backlog

grows from 0.6 to 30.3 in OTS. A notable phenomenon is

that the average energy consumption falls quickly when V is

small and then decreases slowly, but the average bill backlog

grows linearly with V increasing. This result confirms the

[O(1/V), O(V)] tradeoff between energy consumption and

bill backlog. Users can select the appropriate V to achieve

the best energy-efficiency, according to their budget for the

Internet data traffic.

Moreover, from Fig. 2a and Fig. 2d, we can see that the

energy consumption and Internet data traffic of OTS get closer

to the Energy Greedy Algorithm as V increases. According

to (12), the Energy Greedy Algorithm can be understood

as a limiting case of OTS (V → ∞). Our algorithm can

minimize the energy consumption arbitrarily close to the

Energy Greedy Algorithm and control the Internet data traffic

by appropriately setting the tradeoff coefficient V . The energy

consumption changes with V increasing because the number of

tasks executed by itself, the cloud or other devices is changing

with different V , as shown in Fig. 2c.

In E2COM, a task can be executed by the device itself

(Local), the cloud (Cloud) or other devices, which may have

executed the same task before (Share), or not (Cooperation).

Fig. 2c shows the number of tasks executed by itself, the cloud

or other devices with different V . Most tasks are executed by

other devices when V = 0. In this case, as bill backlog is the

only optimization objective, OTS will select the server with

the longest bill backlog. As V increases, the number of tasks

sharing results stays around 2500. It is 50% of the total number

of tasks and slightly higher than the repetition rate (40%). This

is because some task results have been shared several times.

Because the importance of energy optimization grows as V
increases, the number of Cloud Execution increases and the

number of Local Execution decreases slowly.

2) Performance with Different Repetition Rates of Tasks:
In this part, we study the performance of OTS under different

0 2 4 6 8 10

x 10
8

20

25

30

35

40

45

50

55

60

65

Tradeoff Coefficient V

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 (
J)

OTS

No Offload

Cloud Offload

GA

(a) The Average Energy Consumption

0 2 4 6 8 10

x 10
8

0

5

10

15

20

25

30

35

Tradeoff Coefficient V

B
il

l
B

ac
k

lo
g

 (
M

b
)

(b) The Average Bill Backlog

0 2 4 6 8 10

x 10
8

0

1000

2000

3000

4000

5000

Tradeoff Coefficient V

N
u

m
b

er
 o

f
T

as
k

s

Cloud

Local

Share

Cooperation

(c) The Number of Tasks Executed
Locally or Remotely in E2COM

0 2 4 6 8 10

x 10
8

10
1

10
2

10
3

10
4

10
5

10
6

Tradeoff Coefficient V

In
te

rn
et

 T
ra

ff
ic

 (
M

b
)

OTS

Cloud Offload

GA

(d) The Internet Data Traffic

Fig. 2. The Performance of E2COM with Different V

10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

Task Repetitive Rate

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 (
J)

OTS

No Offload

Cloud Offload

(a) The Average Energy Consumption

10 20 30 40 50 60 70 80 90
0

500

1000

1500

2000

2500

3000

3500

4000

Task Repetitive Rate

N
u

m
b

er
 o

f
T

as
k

s

Cloud

Local

Share

Cooperation

(b) The Number of Tasks

Fig. 3. The Network-wide Average Energy Consumption and

Number of Tasks Executed Locally or Remotely with Different

Repetition Rates of Tasks

repetition rates of tasks as 20%, 40%, 60% and 80%. Param-

eter V is also set to 8 × 107. Fig. 3a illustrates the average

energy consumption of OTS. Fig. 3b shows the number of

tasks executed locally or remotely.

The average energy consumption of OTS is lower than the

Cloud Offload all the time when we set the appropriate value

of V . Moreover, the higher the repetition rate of tasks is, the

more energy is saved by OTS than Cloud Offload. This is

because most of the tasks are offloaded to the cloud to save

energy, when the repetition rate of tasks is low. But in order to

control the bill backlogs of devices, some tasks select Local

Execution or Collaborative Execution. This is not the most

energy efficient way, but can limit the Internet data traffic.

When the repetition rate of tasks is high, mobile users can

share more results of tasks with each other to save energy,

as the energy consumption of computation approximates 0 for

executing the same task once more.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose E2COM in large-scale WLAN to

save energy and reduce the Internet data traffic of the WLAN,

and design a non-competitive pricing mechanism to encourage

cooperation among mobile users. Based on the pricing mech-

anism and Lyapunov optimization, we design OTS, which

can minimize the network-wide long-term energy consumption

and limit the Internet data traffic by reducing the repetitive

computation. OTS does not rely on any prediction for future

information on tasks arrivals, transmission rate and so on,

which makes the solution more practical. As future work, we

will evaluate the performance of E2COM based on real traffic

traces and extend our model to consider implications of the

QoS constraints of different type applications.

ACKNOWLEDGEMENT

This work is supported by National Natural Science Foun-

dation of China (no. 61120106008, 61225012, 61161140454),

National 863 project (no. 2013AA010401), CNGI project

(CNGI-12-03-003).

REFERENCES

[1] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making smartphones last longer with
code offload,” in ACM MobiSys, 2010.

[2] B. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud: elastic
execution between mobile device and cloud,” in EuroSys, 2011.

[3] A. Saarinen, M. Siekkinen, Y. Xiao, J. Nurminen, M. Kemppainen, and
P. Hui, “Offloadable apps using smartdiet: towards an analysis toolkit
for mobile application developers,” CoRR, abs/1111.3806, 2011.

[4] A. Balasubramanian, R. Mahajan, and A. Venkataramani, “Augmenting
mobile 3g using wifi,” in ACM MobiSys, 2010.

[5] M. Sharifi, S. Kafaie, and O. Kashefi, “A survey and taxonomy of cyber
foraging of mobile devices,” IEEE Communications Surveys & Tutorials,
vol. 14, no. 4, 2012.

[6] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani, “En-
ergy consumption in mobile phones: a measurement study and implica-
tions for network applications,” in ACM SIGCOMM IMC, 2009.

[7] K. Lee, J. Lee, Y. Yi, I. Rhee, and S. Chong, “Mobile data offloading:
how much can wifi deliver?” in Proceedings of the 6th International
Conference. Co-NEXT ’10. ACM, 2010.

[8] C. Jiang, Y. Shi, Y. T. Hou, and W. Lou, “Cherish every joule: Maxi-
mizing throughput with an eye on network-wide energy consumption,”
in IEEE INFOCOM, 2012.

[9] N. T. Spring and D. Wetherall, “A protocol-independent technique for
eliminating redundant network traffic,” in ACM SIGCOMM, 2000.

[10] A. Anand, A. Gupta, A. Akella, S. Seshan, and S. Shenker, “Packet
caches on routers: the implications of universal redundant traffic elimi-
nation,” in ACM SIGCOMM, 2008.

[11] M. J. Neely, “Stochastic network optimization with application to
communication and queueing systems,” Synthesis Lectures on Commu-
nication Networks, vol. 3, no. 1, pp. 1–211, 2010.

[12] A. P. Miettinen and J. K. Nurminen, “Energy efficiency of mobile clients
in cloud computing,” in Proceedings of the 2nd USENIX Conference on
Hot Topics in Cloud Computing, 2010.

[13] Y. Wen, W. Zhang, and H. Luo, “Energy-optimal mobile application
execution: taming resource-poor mobile devices with cloud clones,” in
IEEE INFOCOM, 2012.

[14] R. Xu, D. Zhu, C. Rusu, R. Melhem, and D. Mossé, “Energy-efficient
policies for embedded clusters,” in ACM SIGPLAN Notices, vol. 40,
no. 7. ACM, 2005, pp. 1–10.

[15] K. Kumar and Y.-H. Lu, “Cloud computing for mobile users: Can
offloading computation save energy?” Computer, vol. 43, no. 4, pp. 51–
56, 2010.

