a2 United States Patent

Buyya et al.

US008230070B2

US 8,230,070 B2
Jul. 24,2012

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

@
(22)

(86)

87

(65)

(30)

Nov. 9, 2007

(1)

(52)
(58)

SYSTEM AND METHOD FOR GRID AND
CLOUD COMPUTING

Inventors: Rajkumar Buyya, Clarinda (AU);
Srikumar Venugopal, North Melbourne
(AU); Xingchen Chu, Point Cook (AU);
Krishna Nadiminti, Armadale (AU)

Assignee: Manjrasoft Pty. Ltd., Melbourne,

Victoria (AU)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 153 days.

Appl. No.: 12/742,035

PCT Filed: Nov. 7, 2008

PCT No.:

§371 (),
(2), (4) Date:

PCT/AU2008/001659

May 7, 2010

PCT Pub. No.: 'W02009/059377
PCT Pub. Date: May 14, 2009

Prior Publication Data

US 2010/0281166 Al Nov. 4, 2010
Foreign Application Priority Data

(AU) 2007906168

Int. CL.

GO6F 15/173 (2006.01)

US.CL e 709/226; 709/201

Field of Classification Search 709/201,
709/226

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

Bl 7/2002 Xu

B2* 10/2011 Mooreccooveunn. 709/226
Al* 6/2005 Kumaretal. 709/226
Al* 2/2006 Balletteetal. 709/226
Al 7/2006 Rathod et al.

Al* 4/2007 Inampudietal. ... 709/226
Al* 52007 Greene 705/1
Al 8/2007 Ryan et al.

2007/0277152 Al 11/2007 Srinivasan

2008/0216064 Al 9/2008 Braswell

FOREIGN PATENT DOCUMENTS

W02006059343 A2 6/2006
WO W02007040510 A2 4/2007
WO W02007078300 A2 7/2007

* cited by examiner

6,418,462

8,032,635
2005/0138175
2006/0031509
2006/0165040
2007/0088828
2007/0112574
2007/0180451

WO

Primary Examiner — Brian P Whipple
(74) Attorney, Agent, or Firm — Rahman LL.C

(57) ABSTRACT

A system and method for providing grid computing on a
network of computing nodes, which includes a configurable
service container executable at the nodes, including message
dispatching, communication, network membership and per-
sistence modules, and adapted to host pluggable service mod-
ules. When executed at the nodes, at least one instance of the
container includes a membership service module for main-
taining network connectivity between the nodes, at least one
instance of the container includes a scheduler service module
configured to receive one or more tasks from a client and
schedule the tasks on at least one of'the nodes, and at least one
instance of the container includes an executor service module
for receiving one or more tasks from the scheduler service
module, executing the tasks so received and returning at least
one result to the scheduler service module.

32 Claims, 17 Drawing Sheets

1 1 !
11 Query 10 4
1 Jje

P t--- —2-“1 - MessageDispatcher i

' 14 (

H Services: —" 1

. I

12 1: . _{)_ L MembershipCatalog MessageDispatcher !

) V|| T Avaiiabie —— ' 18
Client V|| Scheduers | Services: i M
Computer =] 77777 ExecutionService)

T Query | {7 Avaitable i
: ! Message | 1 Executors 1 .
= 00 il [iptbivinunhd)
! " Submt —J MessageDispatcher 1
'] Message | 20
I o55age & : Services: T
: 2 MessageDispatcher ExecutionService :
1
i & Services: '
[SchedulingService MessageDispatcher || |
1t Results ! Y
y T J f Services: \’i/
H 16 1 Task submission/ 1 ExecutionService !
\ \ Result collection | i
1 1

US 8,230,070 B2

Sheet 1 of 17

Jul. 24, 2012

U.S. Patent

e EE mm e Em A A me e e R e M e M B e SR ST M Em e M P e M R e am e mm R e . s e e e = e e e . e am mm e = - —

90IAIBGUOIN0BXT

L @Inbi4

:s90INBS] f-

| 1ayojedsiqabessapy |

S0JAI9GUORNOBX

:saoInIeg| |«

| Joyojedsigebessapy |

20INBSUONOBXT
:s99INBS| |«

| Joyojedsigabessapy |

pemspamen.

y

| synsey 1
~ | so10188BUINPaYDS LI
. :S8INI8S .w
—~ [J1avopedsigebessapy | | N
1 m. lmewmm?n "
 jugng |
R et BN D D E
I SI0JN29X3 " abessapy |
L SlgeueAy 1| | mienp
| o
| BlqeEAY_
Bojelendiystaquisiy w
] 'sooIneg | o
| 1oyojedsigabessapy | _——— .N _—
" obessapy 1
y Awenp !

Jandwon
usiD

dlN_\

US 8,230,070 B2

Sheet 2 of 17

Jul. 24, 2012

U.S. Patent

1
1
L

- — =
f

suonorio)Ui

llllmll_

vz 8inbi4

oG 14°]
| |
\ sougjsisied |- 0/
\
JoIno8eXg
peays [TT V¥
SIERTNES IEER 10N08X5] e
b9 Bupjueg ol moereq |7
¢ 1BYo abe.o}s omasxgy L o
o |||l Bumpny] W
a2 la|npayog uoiNoax3g
NHIE Z29 ¢S —~|Buiddeyy yse | il
S|ig K enbojelen
2|2 __[einpayos 4419
m o | |{uonedusyIny 0% IdN =Ea ¢
©
anbojele
m m oww 87— e woneayday |11~ %€
O
TINS5 enbojelen |11}
| uonezuoyny || | | 97 —~ ﬂ_,mw _u Fm diysisquiay ve
Buiinpayog Buixspu] % "ojuj
Anosg FERILVER
ﬂ \ / Jaurejuo)
89- 99~ g5’ U
(A
*—0¢

US 8,230,070 B2

Sheet 3 0f 17

Jul. 24, 2012

U.S. Patent

gz @In

b1

oG 12
L L
“ F soualsisiad | - 0/
[‘7
J0)Noaxg
peayy [TH 77
—{ SOIAIBG YELRER Jonoexg 7P
e Bupjueg a4 mopereq |11
A. JBy10 obelo)g omooxg Loy
llllll m_|Vu: a _ @C_H—_U—J(_ 20npeYy QN—\/_
i suopoesdyul || | & S ___|_feinpauyos uonnoaxgy
L gowey 1| ||| & Nwm €S~ |puiddeyy ysel
|..|;A<... - S||5 anbojeje)
% 18|npayds A
m mu uonesiuayINYy 08 ~— aonpeay depy eled 8¢
; S8
g T ToInpaypg anbojejen |
E m me 8Y — MONEIE] uopeolddy 9¢
&)
_ uonezioyiny _ o —— memww“__ww Qﬂ:wmm%ww%_\,_ - Ve
Buinpayog Buixspu] 9 o)
Anosg SOOINDS
| / / Jauejuon
89799~ gg—’ U
(AN
/JOM

U.S. Patent Jul. 24, 2012 Sheet 4 of 17 US 8,230,070 B2

Membership
index only
Node

Storage
Node

Execution
Node

Execution
Node

Scheduler
Node

Scheduler
Node

e e v e v T Em e M W e Em v TR G M M G R M M e M M WA BN R WS e M e M e b e R e M we e mm e R e b R e e

Figure 3
16 L lll—l]" 1 1 'llllll
Stateful —&—
147 stateless —az—
12
10}
9
] 8 i
6 .
‘& 7
1 10 100 1000

No. of Services

Figure 4

U.S. Patent Jul. 24, 2012 Sheet 5 of 17 US 8,230,070 B2

2500

N
o
(=]
o

Data Size ——

—
(0)]
o
o

Message Number —a— 16

Message Handling Rate (Hz)
Data Process Rate (Mb/s)

0.1 1 10 100 1000 10000
Message Size (kb)

Figure 5

50 e
45
40 I
35 |
30 f
25 |
20 |
15 |
10 |

t: (ms)

0 o000 N T
1 10 10 1000
No. of Clients

Figure 6

U.S. Patent Jul. 24, 2012 Sheet 6 of 17 US 8,230,070 B2

600
- Performance Scalability of

500 | Protein Analysis |

N
o
(@]
[1
I

200

Running Time (min)
W
3

100

.

0 H O s R I

12 4 8 12 16 20 24 28 32
No. of Workers

Figure 7
—A 0.14
28 H -e-- Speedup T
~ - - - Ideal Speedup i 0801042
24 Iz Network Overhead """""" ey '/""E]“" = -
I i ,,’I 4 0.1 8
% 29 // -EEJ
© 7 0.08 >
Q16 st g e oty ®)
S & d o Joos 5
w A Y SIS U ©)]
12 _:: /, "{’ e © ;
.‘: /, - -7 5
: rd £>
R 41004 Z
8 - St
,",O’
4L 0 Performance Speedup of 4 0.02
i Matrix Multiplication
13" i 1 1 1 O
1 4 8 12 16 20 24 28 30

No. of Workers

Figure 8

U.S. Patent

Proposer

Jul. 24, 2012 Sheet 7 of 17

initiate

NegotiationID

submit(proposal)

US 8,230,070 B2
Responder
o]
|
I
.
Evaluate

_Teply(ACCEPT/REJECT/COUNTER)| | Proposal

loop

whilg reply!=(ACCEPT||REJECT)

reply(ACCEPT/REJECT/COUNTER) .

Evaluate Evaluate
proposal proposal
4_reply(ACCEPT/REJECT/COUNTER)

1
| |
I 8
I
alt 1
reqlly==ACCEPT {
confirm
P
confirm-acceptance
I
et et Rt ey ---
re’p:Iy==REJECT :
| |

X

Figure 9

US 8,230,070 B2

Sheet 8 of 17

U.S. Patent Jul. 24, 2012

Confirmed
| confirm()

Accepted I

Rejected

Reject

tCountered

Counter Counter
(new proposal) | (new proposal)

Submitted
| Submit (proposal)
Initiated
initiate()

Figure 10

Negotiation Task
Service Submission
A

b

Platform
container

Scheduler

i v

Reservation Manager
—X

1 \ <
<
i ~
-~
/ \ ~
4 1 ~
4 ~
P 1 S,

~ <

{ ~
Platform co{n:témer Platfq{m comainer Platform container
/ ~
~ Executor \ "l Executor

Executor
Allocation manager

Allocation manager

Allocation manager

Figure 11

US 8,230,070 B2

Sheet 9 of 17

Jul. 24, 2012

U.S. Patent

aseyd uonnoexg

]

21 2inbi

aseyd
UOlJeAISSY WILUOY) askeyd uojjeAlasay }sanbay

SSpON
uonnoexg

pay20]

S0INIG
uonnoax

dwiy [olaEIeAY

uoedo||y

/ \

_____________h__

yojedsig

SPON

I
,
]
I
I
]
| eolnes
1
1
]
[]
I
(o)l

SLITVETS

Buijnps

I 9JIAIeS

Uos JuoljeAIasaYy

1
I
I
I
!
1
I
I
]
!
]
I
!
1
T
I
1
]
¥
s

™~
—

A \

layoig -
f1esn

Huang

U.S. Patent Jul. 24, 2012 Sheet 10 of 17 US 8,230,070 B2

4l T | T A T :
coepis KXXR
M A Yy
a5 | e Rejects B6EGR
8] e Seen
e P
.“‘?’03",\ x‘?{}“'a
B
w 30 oL (B3]
43 3T nn
@ SIS o,
Q ok e
25 - ol TG N
o 0‘(.”353 0‘}’,&0
q) x@Q@’ 9{39\5\\
o 2SS 570
w 20k s e, -
5} s o)
S 5‘*?*‘3; 5 “y{‘\"v{'y
2 g R S‘sf&’?
15 o bt .
E v ".ﬁg". ’.‘1‘6:5‘
> o o s
= e e Kol
1U ™ *;ei’rx:(? x'?gs&'g *0“%"9’1]
p N, ®
) oL 50
W AT X 0K
5 - e s e o -
% s Eaa] I
O‘tﬂi@ (}d;xid Q.'S',““'O xi{;gaﬁ
Rl G ot 5%
E:gg e X5 -
0 R NS [OF <j. “i“’;ﬁ
<0.25 0.25-0.5 0.5-0.75 >0.75
Ratio of deadline to maximum execution time (r)
Figure 13
120 T 1 T T T
Accepts(%) KXXH
Rejects(%) Eommps
100 39 .
RS RS
s e
o o
& : I
(2] (% e
o TS s
o phets s
= [sk
8 60 e 40X .
8 el =
‘:«4’0"» '}a&‘
o P"i‘xi;j p:;@ﬂ
40 s s .
oA oo
L33 e
«%‘0’» '\?*Q’y
“}fn@d ’S’xwz'é
20 |- o o .
o R
o f}‘fﬁ‘
B s
e e e
0 6% L B | e

<20% 20-40% 40-60% 60-80% >80%

Slack as a percentage of time available

Figure 14

U.S. Patent Jul. 24, 2012 Sheet 11 of 17 US 8,230,070 B2

] T T T ™
Accepts
Rejects ERE=N
n ~ T, v X =
g’ 53 e
[sl Loy o ‘,,Q‘ [e "9) ‘,‘x&O
= e R K
S i i
x e] e”;{o i
N x“d;x: GHAIOH *,.}gfgﬂ:
(@] 9335’ e s
: o)] A
k) L) o [
i S e e
> 2T S 2R R o
o :,"?i;, o:zuid' ej‘{o O&xfp
— {e30) G £ 0‘9\”1 s"xﬁ“r'f‘
¢ 2o% 208 pa
< 1k o B pe]]
el e e S
R Rt 2o e
[0 e k! el
O] e s
n“hcf’; x"‘“(} ur £ "5)‘1‘: 0 ’yg)
S resesr e o
0 L x‘e}.':)&’xl i ﬂ[x‘* af'o?x b '&o‘:ﬁ‘
< 0.25 0.25-0.5 0.5-0.75 >0.75
Ratio of deadline to maximum execution time (r)
Application Application 0000 Application
Machine Learning Bioinformatics Web Search
MapReduce .NET
WinDFS (Distributed Store System) CIFS/NTFS
Basic Distributed Services of Aneka
Membership Failure Detector Configuration Deployment
Windows Windows Windows 000 Windows
Machine Machine Machine Machine

Figure 16

U.S. Patent Jul. 24, 2012

Sheet 12 of 17 US 8,230,070 B2

Input

Key/Value
Pairs

\

Map
Sort
Partition
Merge
Reduce l Redﬁcerl Reducer | Reducerl
Result esene
Figure 17
i Container | 7T Container N
: P !
; 4 Palicy N - . i
a 1 Pl E
: ; i i
i || MapReduce .NET Scheduler 13 : MapReduce .NET Executor i
: ; i ~— - i
: 1 ! ! X i
:) : i i
i _ Monitor E _\\ | WinDFS l //_l
Master Machine Worker Machine
Figure 18

Map/Reduce Invocation

User Application

A

3

Buffer |Partition/Sorting Memory
i :
Key,ValueiKey,Value! ===xx=iKey,Value Disk

Figure 19

~ T =0
— S mmMa
[

: 2N
= MEN

L — 1

Z =

Figure 20A

+ N ~ @ @ ¥ o O

000000

Figure 20B

s mw

S w\

- [
O

+
O
m.m .

00 .U 0 o o o o] [
00000000
54 2 _U R © -+ o™

—

Figure 21A

\

(‘088) oL UOINoSXT

Figure 21B

~—

\'-_n’

U.S. Patent Jul. 24, 2012 Sheet 16 of 17 US 8,230,070 B2

Scalablllty of Word Account

4000
E:\MapPhase
3500 I Roduce Phase 1
—
83000-
43
S
a 2500 .
£
I~ 2000} -
S
2 1500} .
3
QL 1000F
<
1N
500+
0
4 8 12 16 20 24 28 32
No. of Workers
Figure 23A
Qverhead Decouple
1 : S
-r-_'ji o ;, | P o .
S L N T T
A T A
T L T TR
N I: P T R .
[} P : Loy _._IMap Execution |;
e N T !Reduce Execution || A
e T T R R R E N iNetwork Traffic ||
o 50 K ol || I~ T T .
O o i g]
g Lobon o g
o S A
S I T T T T A T T
o0 0o
wof 1o |: O N
e R R A
0 1 } I | i id il 1 |

4 8§ 12 16 20 24 28 32
No. of Workers

Figure 23B

U.S. Patent Jul. 24, 2012 Sheet 17 of 17 US 8,230,070 B2

Scalability of Distributed Sort

3500 | [___IMap Phase
I Reduce Phase

ha [N

a o

O O

o [

T T
1

2000+ .

1500 F

e,

4 8 12 16 20
No. of Workers

Figure 24A

Execution Time {5ec.)

1

Overhead Decou ple
14 : . . :

l_._ IMap Executlon
I R educe Execution | |

ORI Network Traffic

1.2

ot
o0
T

Percentage
o

o
KLY
T

o
ha

i
| l
l l
I I
I l
i [

| II
o
o
| 11
l 1

"8 12 16 20 24 28 a2
No. of ¥Workers

Figure 24B

US 8,230,070 B2

1
SYSTEM AND METHOD FOR GRID AND
CLOUD COMPUTING

RELATED APPLICATION

This application is based on and claims the benefit of the
filing date of PCT Application No. PCT/AU2008/001659
filed Nov. 7, 2008, which claims priority to Australian (AU)
application no. 2007906168 filed 9 Nov. 2007, the contents of
which as filed are incorporated herein by reference in their
entireties.

FIELD OF THE INVENTION

The present invention relates to a software platform and
system for grid computing (such as at the enterprise level), of
particular but by no means exclusive application in business
and science.

BACKGROUND OF THE INVENTION

Within this application several publications are referenced
by Arabic numerals within brackets. Full citations for these,
and other, publications may be found at the end of the speci-
fication immediately preceding the claims. The disclosures of
all these publications in their entireties are hereby expressly
incorporated by reference into the present application for the
purposes of further description of the embodiments herein
including the background.

Grid computing systems harness distributed resources
such as computers, storage devices, databases and sensors
connected over a network (such as the Internet) to accelerate
application performance. Within an enterprise, grids allow an
organisation to improve the utilization of its IT resources, by
allowing the use of otherwise unused capacity of IT systems
includes personal computers (PCs) for computational tasks
without affecting productivity of their normal users. There
are, however, a number of difficulties in realising such sys-
tems, including resource management, failure management,
reliability, application programming and composition, sched-
uling and security [1].

A number of systems of this kind have been proposed,
including the @Home projects (SETI@Home [2] and
Folding@Home [3]), Condor [4], Entropia [1], XtremeWeb
[5], Alchemi [6] and SZTAKI Desktop Grid [7] (trade marks).
The approach adopted by SETI@Home and like systems is to
dispatch workloads—comprising data requiring analysis—
from a central server to many, and potentially millions, of
clients running on PCs around the world, specifically—in the
case of SETI@Home—for processing astronomical data.
These and similar projects are considered the “first genera-
tion” of desktop grids [9]. The infrastructure underlying
SET@Home was generalized to create the Berkeley Open
Infrastructure for Internet Computing (BOINC) [8]. BOINC
allows desktop clients to select the project to which they wish
to donate idle computing power, and is used by scientific
distributed computing projects, such as climateprediction.net
[14] and SZTAKI Desktop Grid [7].

Entropia [1] and United Devices [10] create a Windows
(trade mark) desktop grid environment in which a central job
manager is responsible for decomposing jobs and distributing
them to the desktop clients. XtremWeb [5] also provides a
centralized architecture, consisting of three entities (viz.
coordinator, worker and clients) to create a XtremWeb net-
work. Clients submit tasks to the coordinator, along with
binaries and optional parameter files, and retrieve the results
for the end user. The workers are the software components

20

25

30

35

40

45

50

55

60

65

2

that actually execute and compute the tasks. Alchemi [6]
comprises a framework based on Microsoft NET (trade
mark), and also follows a master-slave architecture consisting
of managers and executors; the managers can either connect
to the executors or other managers to create a hierarchical
network structure. The executors can run in either a dedicated
or a non-dedicated mode. Alchemi provides an object-ori-
ented threading API and file-based grid job model to create
grid applications over various desktop PCs. However,
Alchemi is limited to a master-slave architecture, and lacked
the flexibility for efficiently implementing other parallel pro-
gramming models, such as message-passing and dataflow.

Entropia [1], United Devices [10], XtremWeb [5] and
Alchemi [6] can be categorized as second generation desktop
grids. They are built with a rigid architecture with little or no
modularity and extensibility. Their components, such as job
scheduler, data management and communication protocols,
are built for a specific distributed programming model. These
generally follow a master-slave model wherein the “slaves”
(the execution nodes) communicate with a central master
node. The major problems with this approach are latency and
performance bottlenecks, a single point of vulnerability in the
system, and high cost of the centralised server. In addition,
this approach lacks the capabilities required for advanced
applications that involve complex dependencies between par-
allel execution units, and the flexibility required for imple-
menting various types of widely-employed parallel and dis-
tributed computing models such as message-passing and
dataflow.

More recently, the Web Services Resource Framework
(WSRF) [15] has been adopted by some as a standard. In
WSREF, the different functionalities offered by a grid resource
are made available through loosely-coupled, stateful service
instances hosted in a Web-enabled container that provides a
basic infrastructure.

SUMMARY OF THE INVENTION

In a first broad aspect, the invention provides a software
platform for providing grid computing on a network of com-
puting nodes in mutual data communication, comprising:

a configurable service container executable at the nodes,
the container comprising message dispatching, commu-
nication, network membership and persistence modules,
and being adapted to host pluggable service modules;

wherein when executed at the nodes at least one instance of
the container includes a membership service module for
maintaining network connectivity between the nodes, at
least one instance of the container includes a scheduler
service module configured to receive one or more tasks
(directly or indirectly) from a client and schedule the
tasks on at least one of the nodes, and at least one
instance of the container includes an executor service
module for receiving one or more tasks from the sched-
uler service module, executing the tasks so received and
returning at least one result to the scheduler service
module.

In some embodiments, the service modules are adapted to
support a selected parallel programming model (such as a
message-passing or a dataflow model) or a selected distrib-
uted programming model (such as a master-slave model), or
a programming model that can provide both parallel and
distributed processing.

Indeed, in some embodiments, the service modules are
adapted to support a plurality of programming models,
whether parallel, distributed, both parallel and distributed, or
a mixture of two or more of these.

US 8,230,070 B2

3

Thus, the container allows the realisation of a variety of
parallel and distributed programming models using the same
infrastructure on the same network of nodes by the use of
pluggable service modules tailored to specific models.

In certain embodiments, the container includes security
and logging modules.

In one embodiment, at least one instance of the container
includes more than one of the membership service module,
the scheduler module and the executor module.

In certain embodiments, when executed at the nodes a
plurality of instances of the container include an executor
module for executing tasks.

Each node generally comprises a computing device, such
as a personal computer, but a single computing device may
comprise multiple nodes, such as where the computing device
has multiple processors or multiple processor cores. Thus, in
one embodiment, a plurality of the computing nodes are
executed on respective processor cores of a single processor.

In one embodiment, services provided by the modules and
the container are mutually independent.

Thus, the capabilities required for different services are
separated from the message dispatching module, so that the
platform is able to support different configurations as
required.

In a second broad aspect, the invention provides a grid of
computing nodes in mutual data communication, each of the
nodes comprising:

a configurable service container executed at the respective
node, including message dispatching, communication,
network membership and persistence modules, and
adapted to host pluggable service modules;

wherein at least one of the containers includes a member-
ship service module for maintaining network connectiv-
ity between the nodes, at least one of the containers
includes a scheduler service module configured to
receive one or more tasks from a client and schedule the
tasks on at least one of the nodes, and at least one of the
containers includes an executor service module for
receiving one or more tasks from the scheduler service
module, executing the tasks so received and returning at
least one result to the scheduler service module.

Each node generally comprises a computing device, such
as a personal computer, but a single computing device may
comprise multiple nodes, such as where the computing device
has multiple processors or multiple processor cores.

In some embodiments, the method includes adapting the
service modules to support a selected programming model
(which may be parallel, distributed or both), and executing
the selected programming model. In other embodiments, the
method includes adapting the service modules to support a
plurality of programming models and executing the program-
ming models.

In a third broad aspect, the invention provides a grid com-
puting method for providing grid computing on a network of
computing nodes in mutual data communication, comprising:

executing a configurable service container at the nodes, the
container comprising message dispatching, communi-
cation, network membership and persistence modules,
and being adapted to host pluggable service modules;

maintaining network connectivity between the nodes with
a membership service module of at least one instance of
the container;

receiving one or more tasks from a client and scheduling
the tasks on at least one of the nodes with a scheduler
service module of at least one instance of the container;
and

20

25

30

35

40

45

50

55

60

65

4

receiving one or more tasks from the scheduler service
module, executing the tasks so received and returning at
least one result to the scheduler service module with an
executor service module of at least one instance of the
container.

The method may include adapting the service modules to
support a selected programming model, and executing the
selected programming model.

The method may include adapting the service modules to
support a plurality of programming models and executing the
programming models.

The method may include adapting the service modules to
support at least one parallel programming model and at least
one distributed programming model.

In one embodiment, a plurality of the computing nodes
comprise respective processor cores of a single processor.

The method may comprise checking availability of'a com-
putation resource on the nodes with an allocation manager
service in response to a negotiation (conducted, for example,
via a negotiation web service) for the computation resource
and reserving the computation resource with the allocation
manager service if the negotiation succeeds.

The method may comprise providing a MapReduce pro-
gramming model, such as adapted for a NET platform.

In a fourth broad aspect, the invention provides a grid
computing method for performing grid computing on a net-
work of computing nodes in mutual data communication,
comprising:

executing on each of the nodes a configurable service con-

tainer executed at the respective node, including mes-
sage dispatching, communication, network membership
and persistence modules, and adapted to host pluggable
service modules;

wherein at least one of the containers includes a member-

ship service module for maintaining network connectiv-
ity between the nodes, at least one of the containers
includes a scheduler service module configured to
receive one or more tasks from a client and schedule the
tasks on at least one of the nodes, and at least one of the
containers includes an executor service module for
receiving one or more tasks from the scheduler service
module, executing the tasks so received and returning at
least one result to the scheduler service module.

In another broad aspect, the invention provides a runtime

MapReduce system deployed in an enterprise grid environ-

ment with the software platform described above.

In another broad aspect, the invention provides a parameter
sweep programming model supported by the software plat-
form described above.

In another broad aspect, the invention provides a design
explorer operable to design an application, create an applica-
tion template corresponding to the application, and submit the
application to the software platform described above,
wherein the template is adapted to be parsable by a client
manager of the platform and to prompt the client manager to
generate one or more grid tasks for execution within the
software platform.

BRIEF DESCRIPTION OF THE DRAWING

Inorderthat the invention may be more clearly ascertained,
embodiments will now be described, by way of example, with
reference to the accompanying drawing, in which:

FIG. 1 is a schematic view of a lightweight, service-ori-
ented, enterprise grid computing platform executed in a net-
work, shown with a client computer;

US 8,230,070 B2

5

FIG. 2A is a more detailed schematic view of an instance of
the configurable container of the grid computing platform of
FIG. 1,

FIG. 2B is a schematic view comparable to FIG. 2A, show-
ing a variant of the instance of the configurable container
shown in FIG. 2A;

FIG. 3 is a schematic view of a network according to
another embodiment of the present invention in which difter-
ent types of nodes are configured to create a network in which
each node works as a peer;

FIG. 4 presents linear-log plots of the results of measure-
ments of the effect of number of services on startup time
according to an embodiment of the present invention;

FIG. 5 presents plots of the results of measurements of the
effect of message size on throughput according to an embodi-
ment of the present invention;

FIG. 6 presents plots of the results of measurements of the
effect of number of clients on response time according to an
embodiment of the present invention;

FIG. 7 presents plots of the results of measurements of
execution time as a function of the number of nodes in protein
sequence analysis according to an embodiment of the present
invention;

FIG. 8 presents plots of the results of measurements of
speedup factor and network overhead as functions of number
of workers in matrix multiplication according to an embodi-
ment of the present invention;

FIG. 9 illustrates schematically the alternating offers-
based method for Service Level Agreement (SLA) negotia-
tion according to a further embodiment of the present inven-
tion;

FIG. 10 is a schematic view of a negotiation state machine
according to another embodiment of the present invention;

FIG. 11 is a schematic view of the architecture for resource
reservation in the enterprise grid computing platform of FIG.
1

FIG. 12 is a schematic view of control flow for a successtul
resource reservation in the embodiment of FIG. 9;

FIG. 13 is a plot of the distribution of accepted and rejected
requests against deadline urgency from an experimental
evaluation of the embodiment of FIG. 9 that involved 138
advance reservation requests arriving at the Reservation Man-
ager of the platform of FIG. 1 in the space of 4 hours;

FIG. 14 is a plot of the distribution of accept and reject
decisions according to delay in reservation start time from the
experimental evaluation of the embodiment of FIG. 9;

FIG. 15 shows the average number of negotiation rounds
taken to obtain a result for requests with different deadlines
from the experimental evaluation of the embodiment of FIG.
9;

FIG. 16 is a schematic illustration of the architecture of an
implementation of MapReduce for the .NET platform,
referred to herein as MapReduce.NET, according to an
embodiment of the present invention;

FIG. 17 is a schematic illustration of overall flow of execu-
tion of MapReduce computation in .NET environments
according to the embodiment of FIG. 16;

FIG. 18 is a schematic illustration of a normal configura-
tion of MapReduce.NET of FIG. 16 with the platform of F1G.
1

FIG. 19 is a schematic illustration of memory management
in MapReduce.NET of FIG. 16;

FIGS. 20A and 20B illustrate experimentally obtained
overhead decouple from executing Sort and Word Count
applications respectively with MapReduce NET of FIG. 16;

20

25

30

35

40

45

50

55

60

65

6

FIGS. 21A and 21B illustrate experimentally obtained
cache impacts of MapReduce.NET of FI1G. 16 from executing
Sort and Word Count applications respectively;

FIGS. 22 A and 22B illustrate the results of the experimen-
tal overhead comparison of Hadoop and MapReduce.NET of
FIG. 16;

FIGS. 23A and 23B illustrate the results of a scalable
experiment of Word Count with MapReduce.NET of FIG. 16;
and

FIGS. 24A and 24B illustrate the results of a scalable
experiment of Distributed Sort with MapReduce. NET of
FIG. 16.

DETAILED DESCRIPTION

Referring to FIG. 1, according to an embodiment of the
present invention, there is provided a lightweight, service-
oriented, enterprise grid computing platform executed in a
network 10, shown in FIG. 1 with—and in data communica-
tion with—a client computer 12. In general terms, network 10
comprises one or more (in the illustrated example, five)
nodes, each executing a configurable container that includes
message dispatching, communication, network membership,
security, logging and persistence modules (for providing the
corresponding services) and that hosts a number of pluggable
services. The message dispatching module is, in this embodi-
ment, termed ‘MessageDispatcher’. Network 10 allows a
user to implement various parallel and distributed program-
ming models, as is discussed below.

In the example of FIG. 1, network 10 includes an index
node 14, a scheduler node 16, and three executor nodes 18, 20,
22, at which respective instances of the container are
executed. Each node corresponds to a computing device, such
as a personal computer, though—as will be appreciated by
those in the art—a single computing device may correspond
to more than one node if it has more than one processor or a
processor with more than one core. However, each node cor-
responds to one instance of the container.

Each container enables pluggable services, persistence
solutions, security implementations, and communication
protocols, so the platform implemented by network 10 pro-
vides a decentralized architecture peering individual nodes.
The platform supports various programming models includ-
ing object-oriented grid threading programming model (fine-
grained abstraction), file-based grid task model (coarse-
grained abstraction) for grid-enabling legacy applications,
and dataflow model for coarse-grained data intensive appli-
cations. It supports a variety of authentication/authorisation
mechanisms (such as role-based security, X.509 certificates/
GSI proxy and Windows domain-based authentication) and
of persistence options (such as RDBMS, ODBMS and XML
or flat files). The platform also supports a web services inter-
face supporting the task model for interoperability with cus-
tom grid middleware (e.g. for creating a global, cross-plat-
form grid environment via a resource broker) and non-.NET
programming languages.

FIG. 1 also illustrates the basic sequence of interactions
between the instances of the container at the various nodes of
network 10. Firstly, a client program running on client com-
puter 12, having a set of computing tasks to be performed,
searches for available nodes where the appropriate schedul-
ing service is deployed, with a Membership Catalogue hosted
by the container at index node 14. It does this by sending a
Query Message to index node 14 and, in due course, receives
a response indicating the available schedulers. The client
program submits its tasks—in a Submit Message—to any of
the discovered schedulers, in this example to a scheduling

US 8,230,070 B2

7

service hosted by the container at scheduler node 16, along
with its credentials. The scheduling service authenticates the
client’s request, and discovers appropriate executors (i.e. the
execution services at one or more of executor nodes 18, 20,
22) for executing the client’s program, by sending an appro-
priate Query Message to using index node 14 and receiving a
response indicating the available, appropriate executors.

The scheduling service then dispatches the tasks to the
available, appropriate executor nodes 18, 20, 22 where they
are executed, which execute the tasks and return the results to
scheduler node 16. A service on the scheduler node 16 moni-
tors the executions, collects the results and sends them to
client computer 12 once the executions are completed. The
messages exchanged between client computer 12, scheduler
node(s) 16 and executor node(s) 18, 20, 22 contain informa-
tion about the security token, source and destination URLs,
the name of'the service that actually handles the message, and
any required application data. The services neither commu-
nicate with each other nor exchange the messages between
themselves directly; rather, all messages are dispatched and
handled through the MessageDispatcher deployed in each
container.

The grid computing platform of this embodiment provides
a highly modular architecture, as shown in FIG. 2A, a more
detailed schematic view of an instance 30 of the configurable
container, as deployed—for example—at a node of network
10. Container 30 is shown with various services (termed
‘compulsory’) that are provided by the modules discussed
above and in this embodiment are always invoked, and vari-
ous optional services that it can host, though in practice few if
any container instances would host all these services at once.

The services that are always invoked and that provide, as
mentioned above, functions such as security, persistence and
communication protocols, are termed the base infrastructure.
The optional services include specific executors for different
types of programming models and/or associated schedulers.

Thus, container 30 includes optional services 32 including
the information and indexing services: Membership Cata-
logue 34, Application Catalogue 36 and Data Catalogue 38,
execution services including MPI (Message Passing Inter-
face) Executor 40, Dataflow Executor 42 and Thread Execu-
tor 44, scheduling services including Thread Scheduler 46,
Dataflow Scheduler 48, MPI Scheduler 50 and Task Mapping
Scheduler 52, storage services including File Server 54 and
other services, typically tailored to the discipline in which
network 10 is deployed, such as Banking Service 56.

In one variant of this embodiment (shown schematically at
30'in FIG. 2B), the execution services include a Map Reduce
Executor 40" instead of MPI Executor 40 and the scheduling
services a Map Reduce Scheduler 50" instead of MPI Sched-
uler 50. In still another variant (not illustrated), the execution
services include both MPI Executor 40 and Map Reduce
Executor 40', and the scheduling services include both MPI
Scheduler 50 and Map Reduce Scheduler 50'.

‘Compulsory’ services comprise those provided by secu-
rity module 58 (including Authorization service 60, Authen-
tication service 62 and Auditing service 64), those provided
by MessageDispatcher 66 (including message handling and
dispatching), Communication Layer module 68 (for handling
remote interactions), and persistence module 70.

Container 30 is a runtime host and coordinator for other
components. Container 30 uses Inverse of Control (IoC) [13]
to inject dependencies at runtime. Details of compulsory and
optional services, security, persistence, and associated com-
munication protocols are specified in an XML configuration
file that is stored on the corresponding node and read by
container 30 when it is initialized. The principal function of

20

25

30

35

40

45

50

55

60

65

8

container 30 is to initialize the services and present itself as a
single point for communication to the rest of network 10.
However, to improve the reliability and flexibility of network
10, neither container 30 nor the hosted services are dependent
on each other. This is so that a malfunctioning service will not
affect the others services or the container. Also, this enables
the administrator of network 10 to readily configure and
manage existing services or introduce new ones into a con-
tainer.

The base infrastructure for the runtime framework pro-
vides message dispatching, security, communication, log-
ging, network membership, and persistence functions that are
then used by the hosted services. However, it is possible to
substitute different implementations of these functions
according to the requirements of the services. For example,
users can choose either a light-weight security mechanism,
such as role-based or a certificate-based security (such as on
X.509 certificates) by modifying the configuration file, and
the runtime system will automatically inject them on-demand
by the services. In a similar manner, network 10 can support
different persistence mechanisms, such as memory, file or
database backends. The MessageDispatchers 66—acting as
front controllers—enable node to node service communica-
tion. Every request from client computer 12 or other nodes to
the container is treated as a message, and is identified and
dispatched through the instant container’s MessageDis-
patcher 66. The communication mechanism used by the Mes-
sageDispatcher 66 can also be configured to use socket, NET
remoting or web services.

The services provide the core functionality of network 10,
while the infrastructural concerns are handled by the runtime
framework. This model is similar to a web-server or applica-
tion-server, where the user hosts custom services/modules
that run in a managed container. For enabling a distributed
computing environment on top of the container, various ser-
vices—such as resource information indexes, execution ser-
vices, scheduling and resource allocation, and storage ser-
vices—would be necessary. The only service that at least one
container must host is the Membership Catalogue, which
maintains network connectivity between the nodes. The ser-
vices themselves are independent of each other in a container
and only interact with other services on the network, or the
local node through known interfaces.

The architecture of network 10 is dependent on the inter-
actions among the services, as each container can directly
communicate with any other container reachable on network
10. Each node in network 10 takes on a role depending on the
services deployed within its container. For example, a node
can be a pure indexing server if only the indexing services
(viz. Membership Catalogue 34) are installed in the con-
tainer; nodes with scheduler services (viz. Thread Scheduler
46, Dataflow Scheduler 48) can be pure scheduler nodes that
clients submit their tasks to; nodes with execution services
(viz. Dataflow Executor 42, Thread Executor 44) can be
solely concerned with completing the required computation.
A node can also host multiple services, and be both a sched-
uler and executor at the same time. This is illustrated in FIG.
3, which is a schematic view of a network 50 according to an
embodiment of the present invention where different types of
nodes are configured to create a network in which each node
works as a peer, so arequest from the end user can potentially
spread to every node with the appropriate functions. In this
example, the nodes are, in sequence, an omni-node 52 (i.e.
hosting all services, as in container 30 of FIG. 2A), a sched-
uler node 54, an execution node 56, a mixed node 58, a storage
node 60, a membership index only node 62, another mixed
node 64, another membership index only node 66, another

US 8,230,070 B2

9

execution node 68 and another scheduler node 70. As there is
no central manager to manage other executors, requests are
filtered by each node, which decide whether to handle or to
ignore each request.

The grid computing platform runtime is implemented on
network 10 by leveraging the Microsoft brand .NET platform
and using the IoC implementation in the Spring NET frame-
work [11]. This embodiment employs Microsoft NET owing
to its ubiquity on Windows desktop computers and the poten-
tial of running the platform of network 10 on Unix-class
operating systems through the .NET-compliant Mono plat-
form [12]. The multiple application models are implemented
as extended services on top of the runtime framework. Below
is explained the implementation of two known distributed
programming models on top of the platform, and also how the
users configure and deploy a node of network 10.

A task is a single unit of work processed in a node. It is
independent from other tasks that may be executed on the
same or any other node at the same time. It has only two
possible outcomes: it either executes successfully or fails to
produce any meaningful result.

The task model involves the following components: the
client, the scheduler and the executor. The task object is
serialised and submitted by the client (in the embodiment of
FIG. 1, on client computer 12) to the scheduler (cf. scheduler
node 16). The task scheduler is implemented as a service
hosted in an instance of container 30, and continuously listens
for messages for requests such as task submission, query, and
abort. Once a task submission is received, it is queued in its
database. The scheduler thread picks up queued tasks and
maps them to available resources (cf. executor nodes 18, 20,
22) based on various parameters including priorities, user
quality of service (QoS) requirements, load and so on. These
parameters and scheduling policies are pluggable and can be
replaced with custom policies. The task scheduler keeps track
of'the queued and running tasks, and of information about the
performance of the task executor nodes it is able to find in the
network, by communicating with the membership service.

The task executor is also implemented as a service hosted
in a container, and its main role is to listen for task assign-
ments from the scheduler. When the executor receives a task,
it unpacks the task object and its dependencies, creates a
separate security context for the task to run, and launches the
task. This allows the task to run in an application domain
separate from the main domain in which the container runs.

The executor supports multi-core and multi-CPU scenarios
by accepting as many tasks to run in parallel as there are free
CPUs or cores.

Once a task is complete, the respective executor notifies the
scheduler and sends the results back to the scheduler. The
executor can accept tasks from any scheduler in the network.

In order to enable the interoperability with custom grid
middleware and the creation of a global, cross-platform grid
environment, network 10 implements a web services inter-
face that provides the task management and monitoring func-
tionalities on top of the task model.

The dataflow programming model abstracts the process of
computation as a dataflow graph consisting of vertices and
directed edges. The vertex embodies two entities: the data
created during the computation or the initial input data if it is
the first vertex, and the execution module to generate the
corresponding vertex data. The directed edge connects verti-
ces, which indicates the dependency relationship between
vertices.

The dataflow programming model consists of two princi-
pal components, the scheduler and the worker. The scheduler
is responsible for monitoring the status of each worker, dis-

20

25

30

35

40

45

50

55

60

65

10

patching ready tasks to suitable workers (cf. executors) and
tracking the progress of each task according to the data depen-
dency graph. The scheduler is implemented as a set of three
key services:

1. A registry service, which maintains the location infor-
mation for available vertex data and in particular main-
tains a list of indices for each available vertex data;

2. A dataflow graph service, which maintains the data
dependency graph for each task, keeps track ofthe avail-
ability of vertices and explores ready tasks; when it finds
ready tasks, it notifies the scheduler; and

3. A scheduling service, which dispatches ready tasks to
suitable workers for executing; for each task, it notifies
workers of inputs, and initiates the associated execution
module to generate the output data.

The worker works in a peer to peer fashion. To cooperate
with the scheduler (which acts as the master), each worker has
two functions: executing upon requests from master and stor-
ing the vertex data. Therefore, the worker is implemented as
two services:

1. An executor service, which receives execution requests
from the scheduler, fetches input from the storage ser-
vice (see below), stores output to the storage service and
notifies the scheduler about the availability of the output
data for a vertex.

2. A storage service, which is responsible for managing and
holding data generated by executors and providing it
upon requests; to handle failures, the storage service can
keep data persistently locally or replicate some vertices
on remote side to improve the reliability and availability.

To improve the scalability of the system, workers transfer
vertex data in a P2P manner between themselves. Whenever
the executor service receives an executing request from the
master node, it sends a fetch request to the local storage
service. If there is one local copy for the requested data, the
storage service will fetch the data from a remote worker
according to the location specified in the executing request.
When all the input data is available on the worker node, the
executor service creates an instance for the execution module
based on the serialized object from the scheduler, initialises it
with the input vertices and starts the execution. After the
computation finishes, the executor service saves the result
vertex into local storage and notify the registry service. The
storage service keeps hot vertex data in memory while hold-
ing cold data on the disk. The vertex data is dumped to disk
asynchronously to reduce memory space if necessary. The
worker schedules the executing and network traffic of mul-
tiple tasks as a pipeline to optimize the performance.

Container 30 of the grid computing platform of this
embodiment provides a unified environment for configura-
tion and deployment of services. All services are able to use
the configuration APIs, which store per-user, per-host settings
in a simple XML file for each service. Hence, the settings and
preferences for each service are separated from each other,
and also allow for customised settings for each user. The
deployment of services is a simple operation involving modi-
fying the application configuration file, and adding entries for
the new service to be included in the container’s service
dictionary.

EXAMPLES

Two sets of experiments have been performed: the first
examined the performance of a single container, and the
second evaluated the task farming capacity of network 10 and
dataflow programming models to execute over a distributed
system.

US 8,230,070 B2

11

1. Performance Results of Single Container

As discussed above, container 30 is the interface to the rest
of network 10. That is, container 30 sends and receives all
messages on behalf of the services hosted within it. In the
following experiments, whether this aspect of network 10
affects the performance and scalability of network 10 was
evaluated. In particular, the affect of the number of services,
the number of connected clients, and the size and volume of
messages on the performance of the container was measured.

The experiments were performed using a single container
30 running on a PC with an Intel Pentium4 3 GHz CPU, 1 GB
of RAM and a Windows XP operating system. In the first
experiment, the variation in startup time of a container with
respect to the number of services that are hosted inside it was
measured. This was evaluated with two types of services, that
is, stateless and stateful. A stateless service is similar to a Web
server where the service does not track the state of the client,
whereas a stateful service tracks requests and connects to the
database to store the state of the request. A stateful service
also runs in a separate thread. The experiment was performed
by starting between 1 and 1 000 services of each type, state-
less and stateful, and measuring the time required to initialise
container 30.

FIG. 4 presents linear-log plots of the results of these
experiments, as initialisation time t(s) versus the number of
services. Stateless services do not request any resources, so
the measured time is that required for starting up the container
30 alone. This initialisation time, as is evident from FIG. 4, is
constant for any number of stateless services. However, ini-
tialisation time increases exponentially if the services are
stateful, which can be attributed to the more resource-inten-
sive nature of these services. The curve for stateful services is
uniformly exponential in this experiment, as the same service
was started multiple times. However, this will not be gener-
ally so, as different stateful services are likely to affect the
startup times in different ways by requiring different amounts
of resources. It can also be seen that, in this case, the effects of
stateful services become significant only when their number
exceeds 300.

As discussed above, container 30 is designed as a light-
weight hosting mechanism that provides the bare minimum
functionality to the hosted services to create a enterprise grid.
FIG. 3 shows an expected deployment where a node offers
specific functionality enabled by a small number of special-
ized services that are likely to be stateful. The results of FIG.
4 show that container 30 does not affect start-up performance
in such cases.

In the second experiment, the effect of the size and number
of' messages on the throughput of container 30 was measured.
Container 30 was initialized with an echo service with a
constant time for processing a single message. Next, 10 000
messages were sent to container 30, the messages having
sizes of between 0.1 and 100 000 kb. The aggregate response
time was then measured. The results are plotted in FIG. 5 as
message handling rate (Hz) and data process rate (Mb/s) as
functions of message size (kb). The results are as expected,
with the message handling rate decreasing uniformly as the
size of the message increases. However, the amount of data
processed becomes almost constant above a message size of
~100 kb. This is because of the configuration of the underly-
ing 100 Mbps network to container 30 and is not due to the
container itself.

It can be inferred from the results that network 10 is suit-
able for highly parallel applications such as those following
the master-worker model of computation where the commu-
nication occurs only at the end of task execution, and for
message-passing applications where the message size is less

20

25

30

35

40

45

50

55

60

65

12

than 100 kb. However, it may not be suitable for Data Grid
applications that require constant access to large amounts of
data.

The last experiment determined the response time of the
container with respect to number of clients connecting to it.
This experiment was performed by keeping the total number
of received messages constant (at 10 000), while increasing
the number of threads sending the messages, thereby emulat-
ing simultaneous connections from multiple clients. The
results are plotted in FIG. 6 as average response time per
message (t,(ms)) against No. of Clients.

It can be seen from FIG. 6 that the average response time
per message increases steeply when the number of clients
exceed 400. Even so, the response time per message is less
than 20 ms for up to 1 000 concurrent clients. In the test
regime, every message is synchronised, so it is a blocking call
on container 30, and hence performance for large numbers of
clients is adversely affected.

2. Case Studies

The versatility of the grid computing platform of this
embodiment was demonstrated with case studies involving
two distributed applications that were implemented using two
different programming models on top of the same infrastruc-
ture. The first application predicted the secondary structure of
aprotein given its sequence, using Support Vector Machines-
based classification algorithms [16] and BLAST [17], a pro-
gram for locating regions of similarity between DNA or the
like sequences. This was implemented using the independent
task programming model. The second application performed
matrix multiplication and was implemented using the data-
flow programming model presented in the previous section.
These applications were evaluated on a testbed consisting of
32 computers in a single laboratory, each of which was similar
to the PC on which container 30 was tested (see above),
connected by a 100 Mbps network.

The structure prediction application was executed as a
master-worker application across the testbed. Each executor
(or worker) node ran an instance of BLAST [17] for each
protein sequence, the results of which are then input to a set of
classifiers that attempts to predict the secondary structure.
The result of this process is returned to the master process.
Each instance of the application accessed a 2.8 GB-sized
database which, in this case, was replicated across all the
nodes. The evaluation was carried out using 64 protein
sequences at a time, with varying number of worker nodes.
The results of the experiment are plotted in FIG. 7 as running
time (min) versus No. of Workers (cf. executors). The execu-
tion time decreases logarithmically until the number of nodes
reaches 16 after which there is little if any performance gain
with increased parallelization.

The block-based square matrix multiplication experiment
was evaluated with two 8000x8000 matrices over a varying
number of nodes up to a maximum of 30 nodes. The matrix
was partitioned into 256 square blocks where each block was
around 977 kb. On the whole, the experiment involved 488
Mb of input data and generated a result of 244 Mb. The results
of'the experiment are plotted in FIG. 8 as Speedup factor and
Network Overhead (taken to be the ratio of the time taken for
communication to the time taken for computation) as func-
tions of No. of Workers. There are two main factors that
determine the execution time of the matrix multiplication: the
distribution of blocks between the workers (viz. executors)
and the overhead introduced by the transmission of interme-
diate results between the executors.

As can be seen from FIG. 8, for a large number of execu-
tors, while the speedup improves, network overhead is also
substantially increased. Speedup begins to diverge signifi-

US 8,230,070 B2

13

cantly from the ideal when the network overhead increases to
more than 10% of the execution time.

3. Other Applications

i) Service Level Agreement Negotiation and Reservation

According to another embodiment of the present invention
there is provided an offer protocol in which a user can nego-
tiate with the enterprise grid computing platform of the above
embodiment via a broker to reserve a specific computation
node based on the time. According to this embodiment, the
platform provides a negotiation web service that defines the
methods that a broker needs to invoke. Internally, the platform
provides an allocation manager service which is responsible
for checking the availability of the computation resource on
the nodes and making reservation if the negotiation succeeds.
The reservation mechanism guarantees to the enterprise users
the use of the computation resources exclusively during a
certain period of time. The platform of FIG. 1 with these
extended capabilities allow it to support other emerging dis-
tributed computing systems and applications, such as cloud
computing [66].

In this embodiment, a method is provided for negotiating
Service Level Agreements (SLAs) based on Rubinstein’s
Alternating Offers protocol [29] for bargaining between
agents. This method allows either party to modify the pro-
posal or to provide counter proposals so that both can arrive at
a mutually-acceptable agreement. Its use is described below
as implemented for enabling a resource consumer to reserve
nodes on a shared computing resource in advance. The con-
sumer side of the method is implemented in the Gridbus
broker [30] and the provider side of the method is imple-
mented within the .NET-based enterprise grid platform
described above. The method of this embodiment was evalu-
ated using reservation requests with a range of strict to
relaxed requirements.

The method of this embodiment is able to conduct bilateral
negotiations in order to gain guaranteed reservations of
resources in advance. The resource management system of
this embodiment can generate alternative offers to consumers
in case their original request cannot be fulfilled. The broker,
acting as the resource consumer, has the ability to generate its
own counter proposals as well.

The Negotiation Method

FIG. 9 illustrates schematically the alternating offers-
based method for SLLA negotiation of this embodiment. The
method is a bilateral protocol between the proposer who
initiates the process and the responder who replies to the
proposal. The proposer starts the negotiation process by send-
ing an INITIATE message, to which the responder replies
with a unique negotiation identifier (negotiationID). The ini-
tiate call may be accompanied by an exchange of credentials
so that both parties are able to verify each other’s identity. The
proposer then presents a proposal using the submitProposal
message. The responder can accept or reject the offer in its
entirety by sending an ACCEPT or a REJECT message as a
reply. The responder can also reply with a counter-offer by
using the COUNTER reply accompanied by the counter pro-
posal. In this case, the proposer has the same options and
therefore can reply with a counter proposal of its own. If
either party is satisfied with the current iteration of the pro-
posal, that party can send an ACCEPT message to the other
party. Either party can signal its dissatisfaction and abort the
negotiation session by sending a REJECT message. To seal
the agreement, the other party has to send a CONFIRM mes-
sage and receive a CONFIRM-ACCEPTANCE message in
reply.

The method, as presented here, has general application and
is isolated from the proposal which enumerates the require-

20

25

30

35

40

45

50

55

60

65

14

ments of the proposer. There are no time limits imposed on the
negotiation process as such constraints can provide undue
advantage to one of the parties [39]. There is no central
co-ordinator to manage the negotiations, and either of the
parties can leave the process at any time. Therefore, the
method satisfies the desired attributes of simplicity, distribu-
tion and symmetry, for a negotiation mechanism [40].

Negotiation and Advance Reservation

An advance reservation is a commitment made by a
resource provider to provide a guaranteed share of a comput-
ing resource to a resource consumer at a definite time in the
future [36]. An advance reservation mechanism therefore,
allows a consumer to provision enough resources to meet
requirements such as deadlines, in environments such as grids
where availability of shared resources varies from time to
time. Since an advance reservation is also a commitment by
the provider, it may be made in lieu of a reward or payment to
the provider. Failure to meet this commitment may result in
the provider having to pay a penalty. Therefore, a reservation
represents an instantiation of an SLLA. A provider with a profit
motive would aim to maximise his revenue while minimising
the risk of penalties [41]. Similarly, a consumer would like to
gain the maximum guarantee for meeting his QoS require-
ments but at the lowest possible cost. A number of strategies
can be adopted by both the provider and the consumer
depending on their individual needs and situations. As a
result, a consumer’s plan for resource usage may not be
favoured by a provider. However, the provider can indicate its
expectations by changing the relevant parts of the proposal
and returning it to the consumer. In this manner, proposals can
be exchanged back and forth until both parties reach an agree-
ment or decide to part ways.

Negotiation for advance reservation of resources was
implemented according to the this embodiment using the
above-described .NET-based resource management platform
(comprising computers running Microsoft Windows operat-
ing system) and the Gridbus (trade mark) Grid resource bro-
ker. The above-described platform acts as the resource pro-
vider in this implementation. For a given user application, the
Gridbus broker discovers appropriate resources for executing
the application, schedules user jobs on the resources, moni-
tors their execution and retrieves results once the jobs are
completed. Negotiation for advance reservations is, there-
fore, performed by the Gridbus broker as a resource consumer
on behalf of the user.

a) Gridbus Broker

The Gridbus broker has been used to realise economy-
based scheduling of computational and data-intensive appli-
cations on grid resources [42]. Advance reservations enable
the broker to provide guarantees for meeting the user’s QoS
requirements for the execution, such as deadline and budget.
The required abilities for negotiation within the broker are
brought about by a negotiation-aware scheduler and a nego-
tiation client.

The negotiation client is the interface to the corresponding
service on the remote side. It is not specific to the platform of
the above embodiment, however, and can support any other
middleware that implements the protocol. The scheduler is
aware of the negotiation client only as a medium for submit-
ting proposals and receiving feedback from the remote side.
However, separate schedulers may be required for different
SLA negotiation protocols, as certain features (e.g., presence
or absence of a counter-proposal method) may affect nego-
tiation and scheduling strategies.

A broker is associated with a single distributed bag-of-
tasks application. The deadline and budget is provided for
each application as a whole by the user. The deadline value is

US 8,230,070 B2

15

used by the broker to determine the number of nodes to be
reserved, and the budget value puts a ceiling on the maximum
expense for the execution. The broker’s negotiation strategy
for negotiating with the provider is as follows:

1. Get user’s QoS and application requirements

2. SEsi()

Nod _
odes < fx(deadline — start_time)

3. Create proposal for Nodes

4. Choose a provider based on attributes such as cost
5. repeat
6
7
8

Submit proposal to the provider
repeat
if (state is COUNTERED) then
9. if (counter proposal is within deadline) then
10. send (ACCEPT)

else if (f < 1) then

Increase f
13. Recalculate Nodes
14. Create new proposal for Nodes
15. send (COUNTER, proposal)
16. else
17. send (REJECT)
18. end
19. if (state is ACCEPTED) then
20. send (CONFIRM)
21. end
22 until (a final state is reached)

//Final state is REJECTED or CONFIRMED or FAILED

23 if (previous state was REJECTED or FAILED)
then
24. Find another provider to repeat the process
25. until (enough nodes are obtained OR there are no more providers)
26. if Reservation was successful then
27. ‘Wait until reservation start time
28. else
29. Inform the user and exit the application

The expression in Line 2 (above) calculates the number of
nodes that are required for executing the distributed applica-
tion within the deadline. The estimated time for completing a
job is provided by the user. The broker adds to this an addi-
tional estimate for staging the jobs on to the remote machine,
invoking it and collecting the results for the job. The total
estimated time for each job is summed to obtain the maximum
time required to execute the application (i.e. its sequential
execution time on a single remote processor). This is the
numerator in the expression in Line 2.

The denominator is the wallclock time available to execute
the application, that is, the time difference between the dead-
line and the starting time for the reservation. The starting time
is estimated as the time when the negotiations would have
likely concluded and the job scheduling can commence. As
the broker’s utility lies in executing the users’ job as quickly
as possible, the time available is further reduced by multiply-
ing against an aggression factor, denoted by f, where 0<f=1.
However, the smaller the time available, the larger is the
number of nodes required.

The broker creates a proposal and chooses one out of a list
of resource providers—based on factors such as resource
price or capability—to initiate a negotiation session and sub-
mit the proposal. If the proposal is accepted straightaway,
then a confirmation message is returned to the provider. If a
counter proposal is received, then it is evaluated to see
whether the counter reservation is still within the deadline. If
s0, then it is accepted by the broker. If not, then the aggression
factor is increased to reduce the number of nodes required.
This is done on the assumption that requests for smaller

20

25

30

35

45

50

55

60

65

16

number of nodes have better chances to be accepted or found
more acceptable (earlier) counter time slots. This continues
until the aggression factor is increased up to 1 which is the
maximum latitude available to broker. If the counter proposal
from the resource provider does not satisfy the deadline
requirements, the proposal is rejected and the session closed.

The broker keeps track of the negotiation process through
a state machine illustrated schematically in FIG. 10 and
implemented using the State software design pattern. The
actions are encoded in the State objects which prevents the
broker from performing invalid actions in certain states, such
as by replying to a REJECT message with a CONFIRM
message. The transition between the states is guided by the
broker’s strategy and the responses from the provider.

b) The Platform of the Above Embodiment

In the enterprise grid computing platform of the above
embodiment, the capabilities of each node are determined by
the functionality offered by the services hosted in a service
container that provides common security, message handling
and communication functions. For example, hosting a task
executor service in the container enables a node to execute
independent tasks. Any number of such services may be
hosted thereby, potentially allowing the same node to execute
applications implemented using different programming mod-
els. A node functions as a scheduler for an application if it
hosts the scheduler service corresponding to the application’s
programming model (e.g. task scheduler for the task farming
model). Executors in this platform’s grid register with or are
discovered by a specific scheduler service which then allo-
cates work units across them.

FIG. 11 is a schematic view of the architecture for resource
reservation in the platform of the above embodiment. The
advance reservation capability in the platform of the above
embodiment is enabled by two components, the Allocation
Manager at the executor end and the Reservation Manager at
the scheduler end. The Allocation Manager underlies all the
executor services on anode. It determines which of the execu-
tors are allowed to run, and the share of the node that is
allowed for each. The Allocation Manager therefore takes
care of allocating and enforcing reservations on a single node.
The Allocation Manager is associated with a policy object
that encodes the utility function of the node. For example, this
may specity a maximum duration that can be specified for a
reservation request at the node level.

The Reservation Manager is co-located with a scheduler
and is able to perform reservations across the nodes whose
executors are registered with the scheduler. The Reservation
Manager determines which of the reservation requests com-
ing from users are to be accepted based on factors such as
feasibility, profitability or improvement in utilisation. For this
reason, it is associated with a QoS Policy object that repre-
sents the reservation policy at the level of the entire system.
For example, this object may specify a minimum reward for
considering a reservation request. External applications inter-
face with the platform’s resource reservation system through
Negotiation Service, hosted as a web service. The latter
implements the negotiation method described above and
illustrated in FIG. 9, and interfaces with the Reservation
Manager for forwarding reservation requests that arrive from
external entities. The web service implementation enables
non- NET programs, such as the Gridbus broker, to interface
with the platform of the above embodiment system.

The algorithm for handling resource reservation requests
in the Reservation Manager of the platform is as follows:

At the Reservation Manager:

US 8,230,070 B2

18

-continued

17
1. for each incoming reservation request do
2. if (QoS Policy is violated) then
3. send (REJECT)
4. Get available nodes from Information Service
5. Filter the nodes as per requirements
6. if (available nodes < requested nodes) then
7. send (REJECT)
8. Broadcast requested timeslot to all available
nodes
9. Wait for response
10. if (agreed nodes = required nodes) then
11. send (ACCEPT)
12. else
13. Search for a timeslot which is commonly free for
at least required number of nodes
14. if (timeslot is found) then
15. send (COUNTER, new__timeslot)
16. else
17. send (REJECT)
18. end
19. end

At the Allocation Manager:

20. for each incoming request do

21. if (reservation policy is violated) then
22. send (REJECT)

23. else

24, if (timeslot is available) then

25. send (ACCEPT)

26. else

27. send (COUNTER, new__timeslot)
28. end

A timeslot is the period for which the reservation is
required. Lines 2-3 (above) control the admission of requests
as per the policy specified in the QoS Policy object. Once the
request is approved, the request is broadcast to all the avail-
able nodes in the grid. At the node, the Allocation Manager
checks if its reservation policy is violated. If not, and the node
is free for the requested timeslot, then the Allocation Manager
indicates it is available. If the node is not free, then an alter-
nate time slot is provided to the Reservation Manager (Lines
20-25). The Reservation Manager checks if the required num-
ber ofnodes have indicated that they are their available during
the requested timeslot. If so, an ACCEPT reply is sent. If not,
the Reservation Manager uses the alternate timeslots pro-
vided by the nodes to find a common alternative timeslot for
the same duration as requested, when the required number of
nodes are available. This timeslot is then sent as a counter
proposal to the consumer. If such a timeslot cannot be found,
then a REJECT reply is sent (Lines 10-18).

¢) Control Flow during Negotiation

As per the negotiation method described above by refer-
enceto FIG. 9, when the broker sends an initiate message, the
above platform’s Negotiation Service returns a 16 byte glo-
bally unique identifier (GUID) for the session. The GUID is
generated according to the proposed IETF Universally
Unique Identifier standard [24]. The broker then submits a
proposal to the Negotiation Service in the XML format as
follows:

<xml-fragment
xmlns:ws="http://www.gridbus.org/negotiation/”>
<ws:Reward>1000.0</ws:Reward>
<ws:Penalty>0.0</ws:Penalty>

20

25

30

35

40

45

50

55

60

65

<ws:Requirements>
<ws:ReservationRecord Type>
<ws:ReservationStart Time>
2008-04-01T18:22:00.437+11:00
</ws:ReservationStartTime>
<ws:Duration>750000.0</ws:Duration>
<ws:NodeRequirement>
<ws:Count>4</ws:Count>
</ws:NodeRequirement>
<ws:CpuRequirement>
<ws:Measure>Ghz</ws:Measure>
<ws:Speed>2.5</ws:Speed>
</ws:CpuRequirement>
</ws:ReservationRecordType>
</ws:Requirements>
</xml-fragment>

The ws:Reward field in the proposal above indicates the
provider’s gain if the proposal were accepted and the require-
ments met. The ws:Penalty field denotes the penalty to be
paid if the provider accepted the proposal but did not supply
the required resources. The ws:Requirements section consists
of one or more reservation records (ws:ReservationRecord-
Type) that detail the resource configuration required in terms
of number of nodes, their capability (e.g. CPU speed) and the
time period for which they are required. For example, the
proposal (above) asks for 4 nodes with a minimum CPU
speed of 2.5 GHz each for duration of 750 seconds starting
from 6:22 p.m. on 1st of April 2008 with a reward of 200
currency units and penalty of 50 currency units. The proposal
is parsed and converted to a reservation requirement object
that is sent to the Reservation Manager.

When a proposal is finally accepted, the Reservation Man-
ager executes a two phase commit to finalise the reservation.
In the initial phase, it requests the respective Allocation Man-
agers to “soft” lock the time slot for that particular request. A
soft lock in this case is an entry for the time-slot in the
Allocation Manager database which is removed if a confir-
mation is not received within a certain time-interval. Once all
the nodes successfully acknowledge that this operation has
been performed, the reservation manager then sends an
ACCEPT message to the broker. If the broker then sends a
CONFIRM message, the Reservation Manager asks the
respective Allocation Managers to commit the reservation.
On receiving their acknowledgement, a CONFIRM ACCEP-
TANCE message is returned to the broker. The negotiation
session identifier is then used as a reference for the resource
reservation (reservation ID) by subsequent tasks. This pro-
cess is illustrated schematically in FIG. 12.

The task submission is also mediated by the resource res-
ervation architecture. If a task arrives with a reservation 1D,
the Reservation Manager first checks if the 1D is valid, and
then locates the nodes that are associated with that ID. The
task is then dispatched to one of these nodes, in a round robin
fashion.

This negotiation architecture was evaluated using a grid
test-bed constructed by installing the platform of the above
embodiment on 13 desktop computers running Microsoft
Windows XP in a local area network. One instance of Reser-
vation Manager service was installed on the node acting as the
scheduler and the others ran the Allocation Manager service.
This meant that up to 12 nodes could be reserved by brokers
by interacting with the sole Reservation Manager using the
negotiation protocol described above.

In order to emulate multiple clients with different applica-
tions that have different deadlines, a set of brokers was cre-
ated with different deadlines generated using a uniform ran-

US 8,230,070 B2

19

dom distribution. The deadlines were chosen so as to reflect
different levels of urgency-from a strict deadline for a high-
urgency application to a relaxed deadline for a low-urgency
application. The urgency was calculated from the following
ratio time estimated for executing the complete application.
In this evaluation, the sequential execution time is considered
as the maximum execution time for the application. The dead-
line is considered very strict when r<0:25, moderately strict
when 0:25<r<0:5, relaxed when 0:5<r<0:75, and very relaxed
when r>0:75.

The maximum execution time was the same for all the
applications in this evaluation. According to the protocol for
handling resource reservation of this embodiment (see
above), when the broker makes a request and the platform of
the above embodiment is not able to provide the required
number of nodes at the requested start time, the latter finds an
alternative start time when the nodes can be provided. The
difference between the alternative start time and the one
requested originally is termed as the slack. The slack allowed
for reservation start time is a function of the urgency of the
deadline, and indicates the relaxation allowed in the broker’s
requirements.

The brokers were launched at closely-spaced intervals
from two computers that were part of the same local area
network but separate from the grid nodes. This created the
effect of different requests with different deadlines arriving
simultaneously at the Reservation Manager. The objectives of
this experiment was to measure the impact of deadlines on the
responses adopted by both the broker and the Reservation
Manager.

FIGS. 13 to 15 show the results of an evaluation that
involved 138 advance reservation requests arriving at the
above platform’s Reservation Manager in the space of 4
hours. Nearly 17% of the total requests were decided in the
first round itself (i.e., a straightaway accept or reject decision
from the above platform) while the rest were decided after
multiple rounds of negotiation between the broker and the
Manager. In all, 35% of the requests were accepted while 65%
of the requests were rejected. Since the evaluation covered a
scenario where the demand for computing nodes would
exceed their supply, it is only to be expected that a majority of
the requests will be rejected. However, the system was still
able to generate alternatives for 83% of the requests.

FIG. 13 plots the distribution of the accepted and rejected
requests against the urgency of application deadlines. It can
be seen that the proportion of accepted requests increases
when the deadlines progress from very strict to very relaxed.
When normalised against the number of requests for each
data point, the percentage of accepted requests increases from
8% for strict deadlines to 74% in the case of very relaxed
deadlines. This is because the broker is more willing to accept
a delayed reservation when the deadlines allow more slack.
Also, owing to the negotiation strategy adopted by the broker
(see above), applications with urgent deadlines require more
nodes for a shorter duration than those with relaxed deadlines.
The platform of the above embodiment was therefore able to
generate better counter offers for requests involving lesser
number of nodes, even if their duration is longer.

This inference is supported by the graphs in FIG. 14, which
plots the percentage of accept and reject decisions according
to the slack allowed in the reservation start time. The slack is
indicated as a percentage of the time available (i.e. deadline
minus original start time) for the broker to execute the appli-
cation. It can be seen here that the broker is willing to accept
counter-offers with up to 60% slack in reservation start time.
Indeed, 90% of the counter-offers with up to 40% slack are
accepted by the broker. However, counter-offers with more

20

25

30

35

40

45

50

55

60

65

20

than 60% slack are unacceptable. A significant amount of
proposals are rejected by the Reservation Manager without
counter-offers (zero slack time) as they require more nodes
than what is available. These are included in the data point
corresponding to offers with <20% slack at the far left of FIG.
14.

A request-response pair between the broker and the above
platform’s Reservation Manager is termed as a round of nego-
tiation. FIG. 15 shows the average number of negotiation
rounds taken to obtain a result for requests with different
deadlines. For this evaluation, the aggression factor was set to
0.5 and then increased by 0.25 for every round. Therefore,
including the submission request, a maximum of 4 rounds (3
offers each and a final decision) was possible for this evalu-
ation. For very strict deadlines, many of the offers were
rejected or accepted in the first round itself. Therefore, the
average number of rounds is the least in this case. For more
relaxed deadlines, the broker is willing to negotiate for the
maximum number of rounds before the request is rejected.

Notably, the broker was able to fulfil its QoS requirement
without having to reveal its deadline preference to the pro-
vider by choosing an acceptable counter proposal whenever
possible. Thus, by modifying the proposal suitably, both par-
ties were able to convey feedback without revealing their
preferences. This prevents providers from taking undue
advantage or playing consumers against each other in sce-
narios where different brokers may be competing for access
to the same set of resources.

ii) Map Reduce Programming Model

The map reduce programming model proposed by Google,
Inc. has also been implemented within the platform of the
above embodiment. Developers can use two functions
(“map” and “reduce”) to parallelize their applications within
the platform. The implementation provides three major com-
ponents: the map reduce scheduling service, the map reduce
execution service and the map reduce client manager.

.NET is the standard platform of Windows applications and
it has been extended to support parallel computing applica-
tions. For example, the parallel extension of .NET 4.0 sup-
ports the Task Parallel Library and Parallel LINQ, while
MPLNET [53] implements a high performance library for the
message passing interface, so it is expected that .NET will be
present as a component for Windows-based data centres.
According to the present invention, there is provided an
implementation of MapReduce for the .NET platform,
referred to herein as MapReduce NET, according to the
present invention. The following embodiments are described
below:

MapReduce. NET: a MapReduce programming model
designed for the NET platform with the C# program-
ming language.

A runtime system of MapReduce. NET deployed in an
Enterprise Grid environment by the assistance of the
enterprise grid computing platform described above.

A distribute storage system, referred to as WinDFS, which
can support a distributed storage service required by
MapReduce NET.

MapReduce is triggered by “map” and “reduce” operations
in functional languages, such as Lisp. This model abstracts
computation problems through two functions: map and
reduce. All problems formulated in this way can be parallel-
ized automatically. MapReduce allows users to write Map/
Reduce components with functional-style code. These com-
ponents are then composed as a dataflow graph with fixed
dependency relationship to explicitly specify its parallelism.
Finally, the MapReduce runtime system can transparently

US 8,230,070 B2

21

explore the parallelism and schedule these components to
distributed resources for execution.

All data processed by MapReduce are in the form of key/
value pairs. The execution happens in two phases. In the first
phase, a map function is invoked once for each input key/
value pair and it can generate output key/value pairs as inter-
mediate results. In the second phase, all the intermediate
results are merged and grouped by keys. The reduce function
is called once for each key with associated values and pro-
duces output values as final results.

The Mapreduce Model

A map function takes a key/value pair as input and pro-
duces a list of key/value pairs as output. The type of output
key and value can be different from input key and value:
map::(key,,value,)=list(key,, value,)

A reduce function takes a key and associated value list as
input and generates a list of new values as output:
reduce::(key,,list(value,))=list(value;)

MapReduce Execution

A MapReduce application is executed in a parallel manner
through two phases. In the first phase, all map operations can
be executed independently with each other. In the second
phase, each reduce operation may depend on the outputs
generated by any number of map operations. However, simi-
lar to map operations, all reduce operations can be executed
independently.

From the perspective of dataflow, MapReduce execution
consists of m independent map tasks and r independent
reduce tasks, each of which may be dependent on m map
tasks. Generally the intermediate results are partitioned into r
pieces for r reduce tasks.

The MapReduce runtime system schedules map and
reduce tasks to distributed resources. It handles many tough
problems: parallelization, concurrency control, network
communication, and fault tolerance. Furthermore, it performs
several optimizations to decrease overhead involved in sched-
uling, network communication and intermediate grouping of
results.

The Enterprise Grid Software Platform

The platform of the above embodiment is used to deploy
MapReduce NET in distributed environments. Each node of
that platform consists of a configurable container, hosting
mandatory and optional services. The mandatory services
provide the basic capabilities required in a distributed system,
such as communications between Aneka nodes, security, and
membership. Optional services can be installed to support the
implementation of different programming models in Grid
environments. MapReduce NET is implemented as optional
services of this platform.

There are several MapReduce implementations, respec-
tively for data centres [48][56], shared memory multi-proces-
sor [51] and the Cell architecture [59]. The design of MapRe-
duce.NET aims to reuse as many existing Windows
components as possible. FIG. 16 is a schematic illustration of
the architecture of MapReduce NET; this implementation is
assisted by several distributed component services from the
platform of the embodiment of FIG. 1.

WinDFS supports MapReduce.NET with a distributed
storage service over the NET platform. WinDFS organizes
the disk spaces on all the available resources as a virtual
storage pool and provides an object based interface with a flat
name space, which is used to manage data stored in it. To
process local files, MapReduce. NET can also directly talk
with CIFS or NTFS.

20

25

30

35

40

45

50

55

60

65

22
The implementation of MapReduce.NET exposes similar
APIs as Google MapReduce. The API for Map Function and
the API for Reduce Function as presented to users in C#

language are as follows:
API for Map Function:

abstract class Mapper

abstract void Map(object key, object
value)

}

API for Reduce Function:

abstract class Reducer

{

abstract void Reduce(IEnumerator
values)
¥

To define Map/Reduce functions, users need to inherit
from Mapper or Reducer class and override corresponding
abstract functions. To execute the MapReduce application,
the user first needs to create a MapReduceApp class (illus-
trated below), and set it with corresponding Mapper and
Reducer classes. The execution API for applications is as
follows:

class MapReduce App

void RegisterMapper (Type mapper)
void RegisterReducer(Type reducer)
void SetInputFiles(list input)

list GetOutputFiles()

bool Execute()

Then, input files should be configured before starting the
execution, as illustrated above (see the API for Reduce Func-
tion). The input files can be local files or files in the distributed
store.

The input data type to the Map function is the object, which
is the root type of all types in C#. For Reduce function, the
input is organized as a collection and the data type is (Enu-
merator, which is an interface of supporting an iteration
operation on the collection. The data type of each value in the
collection is also object.

With object, any type of data, including user defined or
system build-in type, can be accepted as input. However, for
user defined types, users need to provide methods to extract
their data from a stream, which may locate in memory or disk.

The execution of a MapReduce computation in .NET envi-
ronments according to this embodiment consists of five major
phases: Map, Partition, Sort, Merge and Reduce. The overall
flow of execution is illustrated in FIG. 17. The execution starts
with the Map phase. It iterates the input key/value pairs and
invokes the map function defined by users on each key/value
pair. The results generated by the Map phase are passed to the
Partition, Sort and Merge phases, which perform sorting and
merging operations to group the values with identical keys.
The result is an array, each element of which is a group of
values for each key. Finally, the Reduce phase takes the array
as input and invokes the reduce function defined by users on
each element of the array.

US 8,230,070 B2

23

The execution of MapReduce NET is orchestrated by a
scheduler. The scheduler is implemented as a MapRe-
duce.NET Scheduler service in Aneka, while all the major
five phases are implemented as a MapReduce NET Executor
service. With the platform of FIG. 1, the MapReduce. NET
system can be deployed in cluster or data centre environ-
ments. Typically, the runtime system consists of one master
machine for a scheduler service and multiple worker
machines for executor services. FIG. 18 is a schematic illus-
tration of a normal configuration of MapReduce.NET with
the platform of FIG. 1, in which each worker machine is
configured with one instance of executor and the master
machine is configured with the scheduler instance.

After users submit MapReduce.NET applications to the
scheduler, it deploys the scheduling policy from configura-
tion to map sub tasks to different resources. During the execu-
tion, it monitors the progress of each task and takes corre-
sponding task migration operation in case some nodes are
much slower than others due to heterogeneity or interference
of dominated users.

The details of each major phase on the executor of MapRe-
duce.NET are as follows.

Map Phase: The executor extracts each input key/value pair
from the input file. For each key/value pair, it invokes the map
function defined by users. The result generated by the map
function is first buffered in the memory. The memory buffer
consists of many buckets and each one is for different parti-
tion. When the size of all results buffered in the memory
reaches a predefined maximal threshold, they are sent to the
sort phase and written to the disk to save space for holding
intermediate results of next round of map invocations.

Partition Phase: Partition of the results generated by map
functions is achieved in two places: inmemory and on disk. In
the Map phase, the results generated by map function are first
buffered in memory, where there is one bucket for each par-
tition. The generated result determines its partition through a
hash function, which may be defined by users. Then the result
is appended to the tail of bucket of'its partition. When the size
of buffered results exceeds the maximal threshold, each
bucket is written to disk as an intermediate file. After one map
task finishes, all the intermediate files for each partition are
merged into one partition.

Sort Phase: Before the buffered results are written to disk,
elements in each bucket are sorted in memory. They are
written to disk by the sorted order, maybe ascending or
descending. The sort algorithm we adopt is quick sort [63].
On average, the complexity of this algorithm is O(n-log(n)),
chosen because it is always reported faster than other sort
algorithms.

Merge Phase: To prepare inputs for the Reduce phase, we
need to merge all the intermediate files for each partition.
Firstly, the executor fetches intermediate files, which are gen-
erated in the Map phase, from neighbour machines. Then,
they are merged to group values with same key and at the
same time, sort keys by a predefined order. Since all the
key/value pairs in the intermediate files are already in a sorted
order, we deploy a heap sort to achieve the group operation.
Each node in the heap corresponds to one intermediate file.
Repeatedly, the key/value pair is picked on the top node, and
then the shape ofthe heap is adjusted to sift the heap node with
the biggest key up to the top position. At the same time, the
values associated with same key are grouped.

Reduce Phase: In this embodiment, the Reduce phase is
combined with the Merge phase. During the process of heap
sort, we combine all the values associated with same key and
then invoke the reduce function defined by users to perform

5

20

25

30

35

40

45

50

55

60

65

24

reduction operation on these values. All the results generated
by reduce function are written to disk according the order by
which they are generated.

Memory Management

On each executor, the memory consumed by MapRe-
duce.NET mainly includes memory buffers for intermediate
results, memory space for quick sort and buffers for input and
output files.

In configuration, the administrator can specify a maximal
value for the size of memory used by MapReduce.NET. This
size is normally determined by the physical configuration of
machines and the memory requirement of applications. The
memory management is illustrated schematically in FIG. 19.

The memory buffer used by intermediate results and input/
output files are set according to this maximal memory con-
figuration, with a default buffer size of input/output files of 16
MB. The input and output files are from a local disk, so
FileStream in .NET is used to control the access to local files,
including configuration of the size of file buffer.

The memory bufter for intermediate results is implemented
by MemoryStream of .NET, which is actually a stream in
memory. All the results generated by map function are trans-
lated into byte array and append to the tail of the stream in
memory. An array of indices is used to facilitate accessing
each element in this stream. Indices in this array record the
position of each intermediate value in the stream. When the
size of the stream in memory plus the size of index array
exceeds the predefined maximal value, quick sort is invoked
to sort all the buffered intermediate values and then write
them to disk.

WinDFS

In order to provide a distributed storage system MapRe-
duce.NET, WinDFS is provided according to this embodi-
ment using the C# programming language. WinDFS can be
deployed in a dedicated cluster environment or a shared
Enterprise Grid environment. Every machine running a
WinDFS instance can contribute a certain amount of disk
space. All the contributed disk spaces are organized as a
virtual data pool. WinDFS provides an object based interface
with a flat name space for that data pool. The object can also
be taken as a file. Each object contained in WinDFS is iden-
tified by a unique name, which is actually a GUID in .NET.
WinDFS supports put and get operations on objects.

The runtime system of WinDFS consist of an index server
with a bunch of object server. Objects are distributed to object
servers, while the location information for each object is
maintained by the index server. The index server also is
responsible for keeping the reliability of objects in the sys-
tem.

As a representative configuration, the instance of object
server runs on each worker machine for managing local
objects, while the meta server can be on the master machine.

Schedule Framework

Scheduling in this embodiment is conducted by the
MapReduce. NET scheduler. The major five phases of
MapReduce NET are grouped into two tasks: Map task and
Reduce task. The Map task executes three phases: map, par-
tition and sort, while the Reduce task executes merge and
reduce. Given a MapReduce NET job, it consists of m Map
tasks and r Reduce tasks. Each Map task has an input file and
generates r result files. Each Reduce task has m inputs files,
which are generated by m Map tasks.

Normally the input files for Map tasks are ready in WinDFS
prior to execution and thus the size of each Map input file can
be determined before scheduling. During the execution, Map
tasks dynamically generate output files, the size of which is
difficult to determine prior to job execution.

US 8,230,070 B2

25

The system aims to be deployed in an Enterprise Grid
environment, which essentially organizes idle resources
within a company or department as virtual super computer.
Normally, resources in Enterprise Grid are shared by two
categories of users. The first one is the owner of resources,
who has priority to use their resources; the second one is the
users of idle resources, who should not disturb the normal
usage of resource owner. Therefore, with an Enterprise Grid,
besides the known problems of a distributed system, such as
complex communications and failures, there is also that of
“soft failure”. Soft failure refers to the scenario in which the
resource involved in MapReduce execution has to quit com-
putation owing to domination by its owner.

Owing to the above dynamic features of MapReduce.NET
application and Enterprise Grid environments, a static sched-
uling algorithm was not chosen. Instead, a just-in-time sched-
uling policy was deployed for mapping Map and Reduce
tasks to distributed resources in an Enterprise Grid.

The scheduling algorithm for the MapReduce NET appli-
cations starts with scheduling Map tasks. Specifically, all
Map tasks are scheduled as independent tasks. The Reduce
tasks, however, are dependent on the Map tasks. Whenever
Reduce task is ready, that is, all its inputs are generated by
Map tasks, it will be scheduled according to status of
resources. The scheduling algorithm aims to optimize the
execution time for MapReduce.NET, which is achieved by
minimizing the execution of Map and Reduce phases respec-
tively.

During execution, each executor waits task execution com-
mands from the scheduler. For a Map task, normally its input
data locates locally. Otherwise, the executor needs to fetch
input data from neighbors. For a Reduce task, the executor has
to fetch all the input and merge them before execution. Fur-
thermore, the executor monitors the progress of executing
task and frequently reports the progress to the scheduler.

Performance Evaluation

MapReduce.NET, including the programming model,
runtime system and scheduling framework, has been imple-
mented and tested, and deployed on desktop machines at the
University of Melbourne. Performance was evaluated for the
runtime system based on two real applications: word count
and distributed sort.

All the experiments are executed in an enterprise Grid
consisting of 33 nodes. For distributed experiments, one
machine was set as master and the rest were configured as
worker machines. Each machine has a single Pentium 4 pro-
cessor, 1 GMB of memory, 160 GB IDE disk (10 GB is
dedicated for WinDFS storage), 1 Gbps Ethernet network and
runs Windows XP.

Samples Applications

The two sample applications, word count and distributed
sort, are benchmarks used by Google MapReduce and Phoe-
nix systems. To implement the Word Count application, users
split words for each text file in the map function and sum the
appearance number for each word in the reduce function. For
sort application, users do not have to do anything within map
and reduce functions, while the MapReduce runtime system
performs sorting automatically.

System Overhead

MapReduce can be taken as a parallel design pattern,
which trades performance to improve the simplicity of pro-
gramming Essentially, the Sort and Merge phases of MapRe-
duce runtime system introduce extra overhead. However, the
sacrificed perform cannot be overwhelming. Otherwise, it is
not acceptable for users. The overhead of MapReduce.NET
was evaluated with local execution. During local execution,
the input is from local disk and all 5 major phases of MapRe-

20

25

30

35

40

45

50

55

60

65

26

duce.NET executes sequentially on single machine. This is
called a local runner and can be used for debug purposes.

For local execution, both sample applications were config-
ured as follows:

The Word Count application took the example text files
used by Phoenix [51], with three settings of input sizes
of raw data: 10 MB, 100 MB and 1 GB respectively.

The Sortapplication sorts a number of records. Each record
consists of'a key and a value. Both the key and value are
random integers. Three configurations of input size were
adopted: 10 million, 100 million and 1,000 million
records respectively. Correspondingly, the sizes of raw
data are about 15 MB, 150 MB and 1.48 GB.

The performance result is split into three parts: sort,
10+Map and Merge+Reduce. The sort part is the execution
consumed by the sort phase, while the time consumed by the
rest of Map task is recorded by IO+Map part, which includes
the time consumed by reading input file, invoking map func-
tions and writing partitions of intermediate results to disk.
The Merge+Reduce part is the execution time of the Reduce
task. FIGS. 20A and 20B illustrate the percentage of these
three parts for executing Sort and Word Count applications
respectively. It is evident that different types of application
have different percentage distribution for each part. For Word
Count (see FIG. 20A), the time consumed by the reduce and
merge phases can even be ignored. The reason is the size of
results of Word Count is comparatively small. Differently
from Word Count, the reduce and merge phases of Sort appli-
cation (see FIG. 20B) still takes an important percentage. For
both applications, as the growth of problem size, the percent-
age of [O+Map part is correspondingly increasing. Since the
map and reduce function of both applications just executed
very simple tasks, actually the time consumed by the [O+Map
part mainly consists of the contributions from 10 operations.

The impact of buffer size on the execution time of appli-
cations was evaluated. In particular, the experiments were
executed with the different sizes of memory buffer for inter-
mediate results. The results are illustrated in FIGS. 21A and
21B. In the experiments, the size of memory buffer was set to
be 128 MB, 256 MB and 512 MB respectively and the results
for both applications under each configuration are illustrated.

Different from our expectation, increasing the size of
buffer does not have a big effect on the execution time of Word
Count and Sort applications. One interesting phenomena is
the performance with 256M and 512M buffer is even worse
than that with 128M buffer. One reasonable explanation is
that a bigger memory buffer can keep more intermediate
results, which involves extra overhead during performing
quick sort. At the same time, increasing the size of buffer can
save the number of 1O operations, because the possibility of
combining records with same key is increasing. This explains
why the performance with 512M buffer is better than with
256M buffer.

Overhead Comparison with Hadoop

The overhead of MapReduce. NET was compared with
Hadoop, the open source MapReduce implementation with
Java language. Hadoop is supported by Yahoo (trade mark)
and aims to work as a general purposed distributed platform.
The stable release of Hadoop, version 0.16.4 was adopted for
comparison purposes. To compare the overhead, the local
runner of Hadoop and MapReduce NET respectively were
run with same size of input for Word Count and Sort appli-
cations. The butfer size was configured to be 128 MB for both
implementations. The input for Sort consists of 1,000 million
records with 1.48 GB raw data, while for Word Count the size
of raw input data is 1 GB. The results are presented in FIGS.
22A and 22B. MapReduce.NET performs worse on the Word

US 8,230,070 B2

27

Count application than Hadoop, while outperforming
Hadoop on the Sort application. Specifically, for Sort appli-
cation, the sort phase of Hadoop consumes longer time than
the MapReduce.NET, while its 1O processing is more effi-
cient. Similar phenomenon happens for the Sort application.
However, the reduce and merge phases of Hadoop took com-
paratively longer time than our implementation.

Since Hadoop does not have a parallel version on Windows
platform, parallel performance was not compared with
Hadoop. Applications were configured as follows:

Word Count: takes the example text files used by Phoenix
[51]; the original text files were duplicated to generate an
example input with 6 GB raw data, then split into 32
files.

Distributed Sort: sorts 5,000 million records in an ascend-
ing order. The key of each record is a random integer.
The total raw data is about 7.6 GB, which is partitioned
into 32 files.

FIGS. 23A and 23B illustrate the scalable performance
result of the Word Count application. In these figures, the
execution time of Map phase consists of the time from start-
ing execution to the finish of all Map tasks, while the Reduce
execution time consists of merge phase plus invoking reduce
functions on all the work machines. From the results, we can
see map, sort and partition phases dominated the whole
execution and the performance increased as more resources
were added into the computation.

Different from the Word Count application, the Distributed
Sort application has a nearly uniform distribution of execu-
tion time for Map and Reduce tasks, as illustrated in FIGS.
24 A and 24B. However, this does not affect the nearly linearly
speedup while adding more resources. The network traffic
also takes an important percentage of the whole execution,
because the intermediate result of distributed sort is actually
same as the original input data.

Based on the experiments of the above two, typical
MapReduce applications, MapReduce NET is shown to pro-
vide a scalable performance within homogenous environ-
ments during the number of computation machines increases.

iii) Parameter Sweep Programming Model

The platform of FIG. 1 can also support the parameter
sweep programming model which canbe described as a XML
language. The special design XML language for parameter
sweep model allows user to define different types of param-
eters including single, range, random and enum parameters. A
user can also specify the shared files, input files and expected
output files their application needs, and a collection of com-
mands including execute command, substitute command,
delete command, environment command and copy com-
mand. By utilizing the parameter sweep model, the Aneka can
automatically generate tasks based on XML file and grid
enable the existing user applications.

iv) Platform Design Explorer

A design explorer is provided according another embodi-
ment, which allows users who are unfamiliar with the enter-
prise grid computing platform of FIG. 1 to design their appli-
cation based on its parameters. The design explorer provides
a easy-to-use wizard to create the application template which
will be submitted to the platform’s client manager, the client
manager being responsible for automatically parsing the tem-
plate and generating numbers of Grid tasks that will be
executed within the enterprise grid computing platform of
FIG. 1. The design explorer of this embodiment also provides
both textual and graphical information about the current sta-
tus of user submitted tasks. The design explorer enables users
to utilize the enterprise grid computing platform of FIG. 1

20

25

30

35

40

45

50

55

60

65

28

without writing any line of code. The design explorer is able
to help enterprise users scale their applications and increase
performance.

Conclusion

The grid computing platform of the embodiment of FIG. 1
provides a service-oriented enterprise grid computing frame-
work, using a container in which services can be added to
augment the capabilities of a node. Its flexibility has been
demonstrated using two different programming models
executed on top of the same enterprise grid. In addition, the
threading programming model, and core MPI APIs or the
Map Reduce APIs are also supported in the grid computing
platform of this embodiment.

Modifications within the scope of the invention may be
readily effected by those skilled in the art. It is to be under-
stood, therefore, that this invention is not limited to the par-
ticular embodiments described by way of example herein-
above.

Inthe claims that follow and in the preceding description of
the invention, except where the context requires otherwise
owing to express language or necessary implication, the word
“comprise” or variations such as “comprises” or “compris-
ing” is used in an inclusive sense, that is, to specify the
presence of the stated features but not to preclude the pres-
ence or addition of further features in various embodiments of
the invention.

Further, any reference herein to prior art is not intended to
imply that such prior art forms or formed a part of the com-
mon general knowledge in Australia or any other country.

REFERENCES

[1] A. Chien, B. Calder, S. Elbert, K. Bhatia, Entropia:
Architecture and Performance of an Enterprise Desktop Grid
System, Journal of Parallel and Distributed Computing, Vol.
63, No. 5, Academic Press, USA, May 2003.

[2] D. Anderson, J. Cobb, E. Korpela, M. Lebofsky, D.
Werthimer, SETT@home: An Experiment in Public-Resource
Computing, Communications of the ACM, Vol. 45 No. 11,
ACM Press, USA, November 2002.

[3] S. M. Larson, C. D. Snow, M. R. Shirts, V. S. Pande,
Folding@Home and Genome@Home: Using distributed
computing to tackle previously intractable problems in com-
putational biology, Computational Genomics, Richard Grant
(ed.), Horizon Press, 2002.

[4] M. Litzkow, M. Livany, M. Mutka, Condor—A Hunter
of Idle Workstations, Proceedings of the 8th International
Conference of Distributed Computing Systems (ICDCS 88),
San Jose, Calif., IEEE, CS Press, USA, 1988.

[5]C. Germain, V. Neri, G. Fedak, F. Cappello, XtremWeb:
building an experimental platform for Global Computing,
Proc. of the 1st IEEE/ACM International Workshop on Grid
Computing (Grid 2000), Bangalore, India, December 2000.

[6] A. Luther, R. Buyya, R. Ranjan, S. Venugopal,
Alchemi: A NET-Based Enterprise Grid Computing System,
Proceedings of the 6th International Conference on Internet
Computing (ICOMP’05), Jun. 27-30, 2005, Las Vegas, USA.

[7] P. Kacsuk, N. Podhorszki, T. Kiss, Scalable desktop
Grid system, Proc. of 7th International meeting on high per-
formance computing for computational science (VECPAR
2006), Rio de Janeiro, 2006.

[8] D. P. Anderson, BOINC: A System for Public-Resource
Computing and Storage, Proc. of 5th IEEE/ACM Interna-
tional Workshop on Grid Computing, Nov. 8, 2004, Pitts-
burgh, USA.

US 8,230,070 B2

29

[9] F. Cappello, 3rd Generation Desktop Grids, Proc. of 1st
XtremWeb Users Group Workshop (XW’07). Hammamet,
Tunisia, 2007.

[10] J. Venkat, Grid computing in the enterprise with the
UD MetaProcessor, Proceedings of the 2nd International
Conference on Peer-to-Peer Computing (P2P 2002), Sep. 5-7,
2002, Linkoping, Sweden.

[11] M. Pollack, Introduction to Spring.NET, Citigroup’s
FAST (Fast, Agile, Scalable Technology) Lecture Series,
New York, USA, Oct. 5, 2006. http://www.springframework-
.net, (accessed November, 2006).

[12] The Mono Project, An open source, UNIX version of
the Microsoft .NET development platform, http:/www-
.mono-project.com/ (accessed December 2006).

[13] M. Fowler, Inversion of Control Containers and the
Dependency Injection pattern, http://www.martinfowler-
.com/articles/injection.html, (accessed October, 2006).

[14] D. A. Stainforth, M. R. Allen, D. J. Frame, I. A.
Kettleborough, C. C. Christensen, T. Aina and M. Collins,
climateprediction.net: a global community for research in
climate physics, Environmental Online Communication,
Springer, London, 2004.

[15] L. Foster, K. Czajkowski, D. Ferguson, J. Frey, S.
Graham, T. Maguire, D. Snelling, S. Tuecke, Modeling and
Managing State in Distributed Systems: The Role of OGSI
and WSRF, Proceedings of the IEEE, volume 93, pages 604-
612, March 2005.

[16] J. Gubbi, M. Palaniswami, D. Lai, M. Parker, A Study
on the Effect of Using Physico-Chemical Features in Protein
Secondary Structure Prediction, Applied Artificial Intelli-
gence, pp. 609-617, World Scientific Press, 2006.

[17] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D.
J. Lipman, Basic Local Alignment Search Tool, Journal of
Molecular Biology, 1990 Oct. 5; 215(3):403-10.

[18] Srikumar Venugopal, Xingchen Chu, and Rajkumar
Buyya, A Negotiation Mechanism for Advance Resource
Reservation using the Alternate Offers Protocol, Proceedings
of the 16th International Workshop on Quality of Service
(IWQoS 2008, IEEE Communications Society Press, New
York, USA), 2-4 Jun. 2008, Twente, The Netherlands.

[19] Chao Jin and Rajkumar Buyya, MapReduce Program-
ming Model for NET-based Distributed Computing, Techni-
cal Report, GRIDS-TR-2008-15, Grid Computing and Dis-
tributed Systems Laboratory, The University of Melbourne,
Australia, 17 Oct. 2008.

[20] I. Foster and C. Kesselman, The Grid: Blueprint for a
Future Computing Infrastructure. San Francisco, USA: Mor-
gan Kaufmann Publishers, 1999.

[21] R. 1. Al-Ali, K. Amin, G. von Laszewski, O. F. Rana,
D. W. Walker, M. Hategan, and N. Zaluzec, “Analysis and
provision of qos for distributed grid applications,” Journal of
Grid Computing, vol. 2, no. 2, pp. 163-182, June 2004.

[22] D. Ouelhadj, J. Garibaldi, J. MacLaren, R. Sakel-
lariou, and K. Krishnakumar, “A multi-agent infrastructure
and a service level agreement negotiation protocol for robust
scheduling in grid computing.” in Proceedings of the 2005
European Grid Computing Conference (EGC 2005), 2005,
pp. 651-660.

[23] C. L. Dumitrescu and I. Foster, “Gruber: A grid
resource usage sla broker,” in Proceedings of the 11th Inter-
national Euro-Par Conference on Parallel Processing, Lisbon,
Portugal, ser. LNCS, no. 3648. Springer-Verlag, Berlin, Ger-
many, August 2005.

[24] E. Elmroth and J. Tordsson, “A grid resource broker
supporting advance reservations and benchmark-based

20

25

30

35

40

45

50

55

60

65

30

resource selection.” in State-of-the-art in Scientific Comput-
ing, ser. LNCS. Springer-Verlag, Berlin, Germany, 2006, vol.
3732, pp. 1061-1070.

[25]1 K. Czajkowski, 1. Foster, C. Kesselman, V. Sander, and
S. Tuecke, “SNAP: A protocol for negotiating service level
agreements and coordinating resource management in dis-
tributed systems,” in Proceedings of the 8th International
Workshop on Job Scheduling Strategies for Parallel Process-
ing (JSSPP 2002), Edinburgh, Scotland. Springer-Verlag,
Berlin, Germany, 2002, pp. 153-183.

[26] R. Ranjan, A. Harwood, and R. Buyya, “Sla-based
coordinated superscheduling scheme for computational
grids,” in Proceedings of the 8th IEEE International Confer-
ence on Cluster Computing (Cluster 2006), Barcelona, Spain.
IEEE CS Press, Los Alamitos, Calif., USA, 2006.

[27] A. Andrieux et al., “Web services agreement specifi-
cation (wsagreement),” Open Grid Forum, Tech. Rep. GFD.
107, 2007.

[28] R. Smith, “The Contract Net Protocol: High-Level
Communication and Control in a Distributed Problem
Solver,” IEEE Transactions on Computers, vol. C-29, no. 12,
pp. 1104-1113, 1980.

[29] A. Rubinstein, “Perfect equilibrium in a bargaining
model,” Econometrica, vol. 50, no. 1, pp. 97-109, January
1982.

[30] S. Venugopal, R. Buyya, and L. Winton, “A grid ser-
vice broker for scheduling e-science applications on global
data grids,” Concurrency and Computation: Practice and
Experience, vol. 18, no. 6, pp. 685-699, May 2006.

[31] X. Chu, K. Nadiminti, C. Jin, S. Venugopal, and R.
Buyya, “Aneka: Next-Generation Enterprise Grid Platform
for e-Science and e-Business Applications,” in Proceedings
of the 3rd IEEE International Conference on e-Science and
Grid Computing (e-Science 2007), Bangalore, India. IEEE
CS Press, Los Alamitos, Calif., USA., December 2007.

[32] T. Abdelzaher, E. Atkins, and K. Shin, “Qos negotia-
tion in real-time systems and its application to automated
flight control,” Transactions on Computers, vol. 49, no. 11,
pp. 1170-1183, 2000.

[33] J. Huang, P.-J. Wan, and D.-Z. Du, “Criticality- and
QoS-based multiresource negotiation and adaptation,” Real-
Time Systems, vol. 15, no. 3, pp. 249-273, November 1998.

[34] M. J. Buco, R. N. Chang, L. Z. Luan, C. Ward, J. L.
Wolf, and P. S. Yu, “Utility computing SLA management
based upon business objectives,” IBM System Journal, vol.
43, no. 1, pp. 159-178, 2004.

[35] J. Li and R. Yahyapour, “Learning-based negotiation
strategies for grid scheduling,” in Proceedings of the 6th
IEEE International Symposium on Cluster Computing and
the Grid (CCGrid 2006), Singapore. IEEE CS Press, Los
Alamitos, Calif., USA, May 2006.

[36] I. Foster, C. Kesselman, C. Lee, B. Lindell, K. Nahr-
stedt, and A. Roy, “A distributed resource management archi-
tecture that supports advance reservations and co-allocation,”
in Proceedings of the 7th International Workshop on Quality
of Service (IWQoS ’99). London, UK: IEEE CS Press, Los
Alamitos, Calif., USA, March 1999.

[37] I. Foster, A. Roy, and V. Sander, “A quality of service
architecture that combines resource reservation and applica-
tion adaptation,” in Proceedings of Eight International Work-
shop on Quality of Service (IWQoS 2000), Pittsburgh, Pa.,
USA. IEEE CS Press, Los Alamitos, Calif., USA, June 2000,
pp. 181-188.

[38] Y. Fu, J. Chase, B. Chun, S. Schwab, and A. Vandat,
“Sharp: an architecture for secure resource peering,” SIGOPS
Oper. Syst. Rev., vol. 37, no. 5, pp. 133-148, 2003.

US 8,230,070 B2

31

[39] S. Kraus, J. Wilkenfeld, and G. Zlotkin, “Multiagent
negotiation under time constraints,” Artificial Intelligence,
vol. 75, no. 2, pp. 297-345, 1995.

[40] J. Rosenschein and G. Zlotkin, Rules of encounter:
designing conventions for automated negotiation among
computers. MIT Press Cambridge, Mass., USA, 1994.

[41] D. E. Irwin, L. E. Grit, and J. S. Chase, “Balancing
Risk and Reward in a Market-based Task Service,” in Pro-
ceedings of the 13th IEEE international Symposium on High
Performance Distributed Computing (HPDC-13). Honolulu,
USA: IEEE CS Press, Los Alamitos, Calif., USA, June 2004.

[42] S. Venugopal and R. Buyya, “A Deadline and Budget
Constrained Scheduling Algorithm for e-Science Applica-
tions on Data Grids,” in Proceedings of the 6th International
Conference on Algorithms and Architectures for Parallel Pro-
cessing (ICA3PP-2005), ser. Lecture Notes in Computer Sci-
ence, vol. 3719. Melbourne, Australia.: Springer-Verlag, Ber-
lin, Germany, October 2005.

[43] P. Leah, M. Mealling, and R. Salz, “A Universally
Unique IDentifier (UUID) URN Namespace,” IETF RFC,
July 2005.

[44] M. A. Netto, K. Bubendorfer, and R. Buyya, “SLA-
based Advance Reservations with Flexible and Adaptive
Time QoS Parameters,” in Proceedings of the 5th Interna-
tional Conference on Service-Oriented Computing (ICSOC
2007), Vienna, Austria. Springer-Verlag, Berlin, Germany,
September 2007.

[45]J. Liand R. Yahyapour, “A negotiation model support-
ing coallocation for grid scheduling,” in Proc. of 7th IEEE/
ACM International Conference on Grid Computing (Grid
2006), Barcelona, Spain. IEEE CS Press, Los Alamitos,
Calif., USA, September 2006.

[46] A. Muw’alem and D. Feitelson, “Utilization, predict-
ability, workloads, and user runtime estimates in scheduling
the ibm sp2 with backfilling,” IEEE Transactions on Parallel
and Distributed Systems, vol. 12, no. 6, pp. 529-543, 2001.

[47] J. Broberg, S. Venugopal, and R. Buyya, “Market-
oriented Grids and Utility Computing: The State-of-the-art
and Future Directions,” Journal of Grid Computing. [Online]
Available: http://dx.doi.org/10.1007/s10723-007-9095-3.

[48] Apache. Hadoop. http://lucene.apache.org/hadoop/.

[49] A. W. McNabb, C. K. Monson, and K. D. Seppi,
Parallel PSO Using MapReduce, In Proceedings of the Con-
gress on Evolutionary Computation (CEC 2007), Singapore,
2007.

[50] A. Weiss. Computing in the Clouds. netWorker, 11(4):
16-25, Dec. 2007.

[51] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski,
C. Kozyrakis, Evaluating MapReduce for Multi-core and
Multiprocessor Systems, Proceedings of the 13th Intl. Sym-
posium on High-Performance Computer Architecture
(HPCA), Phoenix, Ariz., February 2007.

[52] D. A. Patterson, Technical perspective: the data center
is the computer, Communications of the ACM, 51-1, 105,
January 2008.

[53] D. Gregor and A. Lumsdaine, Design and Implemen-
tation of a High-Performance MPI for C# and the Common
Language Infrastructure, Principles and Practice of Parallel
Programming, pp. 133-142, February 2008, ACM.

[54] H. Sutter, J. Larus, Software and the Concurrency
Revolution, ACM Queue, Vol. 3, No. 7, pp 54-62, 2005.

[55] H. C. Yang, A. Dasdan, R. L.. Hsiao, and D. S. P. Ir.
Map-reduce-merge: simplified relational data processing on
large clusters, Proceedings of SIGMOD, 2007.

[56] J. Dean and S. Ghemawat, MapReduce: Simplified
Data Processing on Large Clusters, Proceedings of the 6th

20

25

30

35

40

45

50

55

60

65

32
Symposium on Operating System Design and Implementa-
tion (OSDI), San Francisco, Calif., December, 2004.

[57] J. Markoff and S. Hansell. Hiding in plain sight,
Google seeks more power, New York Times, Jun. 14, 2006.

[58] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly,
Dryad: Distributed Data-Parallel Programs from Sequential
Building Blocks, European Conference on Computer Sys-
tems (EuroSys), Lisbon, Portugal, March, 2007.

[59] M. Kruijf and K. Sankaralingam. MapReduce for the
Cell B. E. Architecture, TR1625, Technical Report, Depart-
ment of Computer Sciences, The University of Wisconsin-
Madison, 2007.

[60] R. Buyya, C. S. Yeo, and S. Venugopal, Market-Ori-
ented Cloud Computing: Vision, Hype, and Reality for Deliv-
ering IT Services as Computing Utilities, Proceedings of the
10th IEEE International Conference on High Performance
Computing and Communications (HPCC 2008), September,
2008, Dalian, China.

[61] R. E. Bryant, Data-Intensive Supercomputing: The
Case for DISC, CMU-CS-07-128, Technical Report, Depart-
ment of Computer Science, Carnegie Mellon University,
May, 2007.

[62] S. Chen, S. W. Schlosser. Map-Reduce Meets Wider
Varieties of Applications, IRP-TR-08-05, Technical Report,
Intel Research Pittsburgh, May, 2008.

[63] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein,
Introduction to Algorithms, Second Edition, The MIT Press,
Massachusetts, USA.

[64] T. Hey and A. Trefethen. The data deluge: an e-Sci-
ence perspective. In F. Berman, G. C. Fix, and A. J. G. Hey,
editors, Grid Computing: Making the Global Infrastructure a
Reality, pp. 809-824. Wiley, 2003.

[65] X. Chu, K. Nadiminti, J. Chao, S. Venugopal, and R.
Buyya, Aneka: Next-Generation Enterprise Grid Platform for
e-Science and e-Business Applications, Proceedings of the
3rd IEEE International Conference and Grid Computing,
Bangalore, India, 10-13 Dec. 2007.

[66] R. Buyya, C. S. Yeo, and S. Venugopal, Market-Ori-
ented Cloud Computing: Vision, Hype, and Reality for Deliv-
ering IT Services as Computing Utilities, Proceedings of the
10th IEEE International Conference on High Performance
Computing and Communications, 25-27 Sep. 2008, Dalian,
China.

The invention claimed is:

1. A system for providing grid computing on a network of
computing nodes in mutual data communication, said system
comprising:

a configurable service container executable at said nodes,
said service container comprising message dispatching,
communication, network membership, and persistence
modules, wherein said service container hosts pluggable
service modules, wherein when executed at said nodes,
at least one instance of said service container includes a
membership service module for maintaining network
connectivity between said nodes, wherein at least one
instance of said service container includes a scheduler
service module that receives one or more tasks from a
client based on an index node and schedules said tasks
on at least one of said nodes, and wherein at least one
instance of said service container includes an executor
service module that receives one or more tasks from said
scheduler service module, and executes said tasks that
are received, and returns at least one result to said sched-
uler service module; and

a computing device that creates multiple parallel program-
ming models based on said result for execution by a
computer program run on said network, wherein com-

US 8,230,070 B2

33

puterized applications that are constructed using differ-
ent parallel programming models are simultaneously
executable over said network.

2. The system as claimed in claim 1, wherein said service
modules support a selected programming model.

3. The system as claimed in claim 1, wherein said service
modules support a plurality of programming models.

4. The system as claimed in claim 1, wherein a plurality of
said computing nodes are executed on respective processor
cores of a single processor.

5. The system as claimed in claim 1, wherein said service
container includes configurable security and logging mod-
ules.

6. The system as claimed in claim 1, wherein at least one
instance of said service container includes more than one of
said membership service module, said scheduler service
module, and said executor service module.

7. The system as claimed in claim 1, wherein when
executed at said nodes, a plurality of instances of said service
container includes an executor module that executes tasks.

8. The system as claimed in claim 1, wherein each node
comprises a computing device, and wherein a single comput-
ing device comprises multiple nodes when the computing
device has multiple processors or multiple processor cores.

9. The system as claimed in claim 1, wherein services
provided by said modules and said service container are
mutually independent.

10. The system as claimed in claim 1, further comprising an
allocation manager service that checks an availability of a
computation resource on said nodes in response to a negotia-
tion for said computation resource, and reserves said compu-
tation resource when said negotiation succeeds.

11. The system as claimed in claim 10, wherein said nego-
tiation is conducted using a negotiation web service.

12. The system as claimed in claim 1, further comprising a
MapReduce programming model.

13. The system as claimed in claim 12, wherein said
MapReduce programming model is adapted for a .NET plat-
form.

14. A computing system comprising a grid of computing
nodes in mutual data communication, each of said nodes
comprising:

a configurable service container executed at a respective
node, said service container comprising message dis-
patching, communication, network membership, and
persistence modules, wherein said service container
hosts pluggable service modules, wherein at least one of
the service containers includes a membership service
module that maintains network connectivity between
said nodes, wherein at least one of said service contain-
ers includes a scheduler service module that receives one
ormore tasks from a client and schedules said tasks on at
least one of said nodes, and wherein at least one of said
service containers includes an executor service module
that receives one or more tasks from said scheduler
service module, executes said tasks that are received,
and returns at least one result to said scheduler service
module; and

acomputing device that creates multiple parallel program-
ming models based on said result for execution by a
computer program run on a network, wherein comput-
erized applications that are constructed using different
parallel programming models are simultaneously
executable over said network.

15. The computing system as claimed in claim 14, wherein

said service modules support a selected programming model.

20

25

30

35

40

45

50

55

60

65

34

16. The computing system as claimed in claim 14, wherein
said service modules support a plurality of programming
models.

17. The computing system as claimed in claim 14, wherein
aplurality of said computing nodes are executed on respective
processor cores of a single processor.

18. The computing system as claimed in claim 14, wherein
said service container includes configurable security and log-
ging modules.

19. The computing system as claimed in claim 14, wherein
at least one instance of said service container includes more
than one of said membership service module, said scheduler
service module, and said executor service module.

20. The computing system as claimed in claim 14, wherein
when executed at said nodes, a plurality of instances of said
service container includes an executor module that executes
tasks.

21. The computing system as claimed in claim 14, wherein
each node comprises a computing device, and wherein a
single computing device comprises multiple nodes when the
computing device has multiple processors or multiple proces-
SOr cores.

22. The computing system as claimed in claim 14, wherein
services provided by said modules and said service container
are mutually independent.

23. A grid computing method for providing grid computing
on a network of computing nodes in mutual data communi-
cation, said method comprising:

executing a configurable service container at said nodes,

said service container comprising message dispatching,
communication, network membership, and persistence
modules, wherein said service container hosts pluggable
service modules;

maintaining network connectivity between said nodes with

a membership service module of at least one instance of
said service container;

receiving one or more tasks from a client;

scheduling said tasks on at least one of said nodes with a

scheduler service module of at least one instance of said
service container;

receiving one or more tasks from said scheduler service

module;

executing said tasks that are received; and

returning at least one result to said scheduler service mod-

ule with an executor service module of at least one
instance of said service container.

24. The method as claimed in claim 23, further comprising
adapting said service modules to support a selected program-
ming model, and executing said selected programming
model.

25. The method as claimed in claim 23, further comprising
adapting said service modules to support a plurality of pro-
gramming models, and executing said programming models.

26. The method as claimed in claim 23, further comprising
adapting said service modules to support at least one parallel
programming model and at least one distributed program-
ming model.

27. The method as claimed in claim 23, wherein a plurality
of'said computing nodes comprise respective processor cores
of a single processor.

28. The method as claimed in claim 23, further comprising:

checking an availability of a computation resource on said

nodes with an allocation manager service in response to

a negotiation for said computation resource; and
reserving said computation resource with said allocation

manager service when said negotiation succeeds.

US 8,230,070 B2

35

29. The method as claimed in claim 28, further comprising
conducting said negotiation using a negotiation web service.

30. The method as claimed in claim 23, further comprising
providing a MapReduce programming model.

31. The method as claimed in claim 30, wherein said
MapReduce programming model is adapted for a .NET plat-
form.

32. A grid computing method for performing grid comput-
ing on a network of computing nodes in mutual data commu-
nication, said method comprising:

executing on each of said nodes a configurable service

container executed at a respective node, said service
container comprising message dispatching, communi-
cation, network membership, and persistence modules,

36

wherein said service container hosts pluggable service
modules, wherein at least one of the service containers
includes a membership service module that maintains
network connectivity between said nodes, wherein at
least one of said service containers includes a scheduler
service module that receives one or more tasks from a
client, and schedules said tasks on at least one of said
nodes, and wherein at least one of said service containers
includes an executor service module that receives one or
more tasks from said scheduler service module, executes
said tasks that are received, and returns at least one result
to said scheduler service module.

