a2 United States Patent

Beloglazov et al.

US009363190B2

US 9,363,190 B2
Jun. 7,2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

SYSTEM, METHOD AND COMPUTER
PROGRAM PRODUCT FOR
ENERGY-EFFICIENT AND SERVICE LEVEL
AGREEMENT (SLA)-BASED MANAGEMENT
OF DATA CENTERS FOR CLOUD
COMPUTING

Applicants: Anton Beloglazov, North Melbourne
(AU); Rajkumar Buyya, Clarinda (AU)

Inventors: Anton Beloglazov, North Melbourne
(AU); Rajkumar Buyya, Clarinda (AU)

Assignee: Manjrasoft Pty. Ltd., Melbourne,
Victoria (AU)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 373 days.

Appl. No.: 13/955,956

Filed: Jul. 31, 2013
Prior Publication Data
US 2015/0039764 Al Feb. 5, 2015
Int. CI.
GOGF 15/173 (2006.01)
HO4L 12911 (2013.01)
HO4L 29/08 (2006.01)
GOG6F 9/50 (2006.01)
U.S. CL
CPC ..o HO4L 47/70 (2013.01); GO6F 9/5088

(2013.01); GOG6F 9/5094 (2013.01); HO4L
67/025 (2013.01); HO4L 67/18 (2013.01); YO2B
60/142 (2013.01); Y02B 60/162 (2013.01)

Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2011/0185064 Al* 7/2011 Head ... GOG6F 9/5077
709/226
2012/0151490 Al* 6/2012 Zhang GOG6F 9/5094
718/102
2012/0304175 Al* 11/2012 Damola GO6F 11/3419
718/1

OTHER PUBLICATIONS

Luiz et al in “Multisize sliding window in workload estimation for
dynamic power management,” IEEE Transactions on Computers
59(12):1625-1639, 2010 .*

Beloglazov, Anton et al., “A Taxonomy and Survey of Energy-Effi-
cient Data Centers and Cloud Computing Systems,” published in
Advances in Computers, vol. 82, Copyright © 2011 Elsevier Inc.,
ISSN: 0065-2458/DOI: 10.1016/B978-0-12-385512-1.00003-7, pp.
47-111.

Beloglazov, Anton et al., “Optimal Online Deterministic Algorithms
and Adaptive Heuristics for Energy and Performance Efficient
Dynamic Consolidation of Virtual Machines in Cloud Data Centers,”
published in Concurrency and Computation: Practice and Experi-
ence, Concurrency Computat.: Pract. Exper. 2012; 24:1397-1420,
Published online in Wiley InterScience (www.interscience.wiley.
com). DOI: 10.1002/cpe.1867, Copyright © 2012 John Wiley &
Sons, Ltd., pp. 1-24.

(Continued)

Primary Examiner — Scott B Christensen
(74) Attorney, Agent, or Firm — Rahman LL.C

(57) ABSTRACT

Improving the utilization of physical resources and reducing
energy consumption in a cloud data center includes providing
a plurality of virtual machines in the cloud data center; peri-
odically reallocating resources of the plurality of virtual
machines according to a current resource demand of the plu-
rality of virtual machines in order to minimize a number of
active physical servers required to handle a workload of the
physical servers; maximizing a mean inter-migration time
between virtual machine migrations under the quality of ser-
vice requirement based on a Markov chain model; and using
amultisize sliding window workload estimation process for a
non-stationary workload to maximize the mean inter-migra-
tion time.

20 Claims, 17 Drawing Sheets

PROVIDING A PLURALITY OF VIRTUAL MACHINES
IN THE CLOUD DATA CENTER,

1301

l

PERIODICALLY REALLOCATING RESOURCES OF
THE PLURALITY OF VIRTUAL MACHINES
ACCORDING TO A CURRENT RESOURCE DEMAND
OF THE PLURALITY OF VIRTUAL MACHINES IN
ORDER TO MINIMIZE A NUMBER OF ACTIVE
PHYSICALSERVERS REQUIRED TO HANDLE A
WORKLOAD OF THE PHYSICAL SERVERS.

1303

l

MAXIMIZING A MEAN INTER-MIGRATION TIME
BETWEEN VIRTUAL MACHINE MIGRATIONS UNDER
THE QUALITY OF SERVICE REQUIREMENT BASED
ON A MARKOV CHAIN MODEL.

|~ 1305

!

USING A MULTISIZE SLIDING WINDOW WORKLOAD
ESTIMATION PROCESS FOR A NON-STATIONARY
WORKLOAD TO MAXIMIZE THE MEAN INTER-
MIGRATION TIME.

|~ 1307

US 9,363,190 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Beloglazov, Anton et al., “Deploying OpenStack on CentOS Using
the KVM Hypervisor and GlusterFS Distributed File System,” Tech-
nical Report CLOUDS-TR-2012-3, Cloud Computing and Distrib-
uted Systems Laboratory, The University of Melbourne, Aug. 14,
2012, pp. 1-49.

Benini, Luca, et al., “Policy Optimization for Dynamic Power Man-
agement,” published in IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 18, No. 6, Jun. 1999,
pp. 813-833.

Chung, Fui-Young, et al., “Dynamic Power Management for
Nonstationary Service Requests,” published in IEEE Transactions on
Computers, vol. 51, No. 11, Nov. 2002, pp. 1345-1361.

Andreolini, Mauro, et al., “Models and Framework for Supporting
Runtime Decisions in Web-Based Systems,” published in ACM
Transactions on the Web, vol. 2, No. 3, Article 17, Publication date:
Jul. 2008, Runtime Decisions in Web-Based Systems, pp. 17-17:43.
Beloglazov, Anton et al., “Managing Overloaded Hosts for Dynamic
Consolidation of Virtual Machines in Cloud Data Centers under
Quality of Service Constraints,” published in IEEE Transactions on
Parallel and Distributed Systems, vol. 24, No. 7, Jul. 2013, pp. 1366-
1379.

Fan, Xiaobo, et al., “Power Provisioning for a Warehouse-sized Com-
puter,” published in ISCA’07, Jun. 9-13, 2007, San Diego, California,
USA., Copyright 2007, pp. 13-23.

Feller, Eugene, et al., “Snooze: A Scalable and Autonomic Virtual
Machine Management Framework for Private Clouds,” published in
Informatics Mathematics—Innia, Research Report No. 7833 pub-
lished on Dec. 2011, 20 pages, Project-Teams MYRIADS.

Feller, Fugene, et al., “Energy Management in laaS Clouds: A Holis-
tic Approach,” published in Informatics Mathematics—Innia,
Research Report No. 7946,published on Apr. 2012, 21 pages, Project-
Teams MYRIADS.

Gmach, Daniel, et al., “An Integrated Approach to Resource Pool
Management: Policies, Efficiency and Quality Metrics,” HP Labora-
tories, HPL-2008-89, published in the 38th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Netwroks,
DSN’2008, Jun. 24-27, © Copyright 2008, 10 pages.

Guenter, Brian, et al., “Managing Cost, Performance, and Reliability
Tradeoffs for Energy-Aware Server Provisioning,” published by
Microsoft Research, Redmond, WA, 12 pages.

Hermenier, Fabien, et al., “Entropy: A Consolidation Manager for
Clusters,” published in INRIA—Institut National de Recherche en
Informatique et en Automatique, Research Report No. 6639, pub-
lished on Sep. 2008, 23 pages.

Jung, Gueyoung, et al., “Mistral: Dynamically Managing Power,
Performance, and Adaptation Cost in Cloud Infrastructures,” pub-
lished in College of Computing Georgia Institute of Technology,
Atlanta, GA and AT&T Labs Research 180 Park Ave., Florham Park,
NIJ.

Koomey, Jonathan G., Ph.D., “Growth in Data Center Electricity Use
2005 to 2010,” A report by Analytics Press, completed at the request
of the New York Times, Webpage: http://www.analyticspress.com/
datacenters.html, Aug. 1, 2011, 24 pages.

Kumar, Sanjay, et al., “vManage: Loosely Coupled Platform and
Virtualization Management in Data Centers,” HP Laboratories, HPL-
2009-117, published and presented at IEEE International Conference
on Autonomic Computing (ICAC) 2009, Barcelona, Spain, Jun.
15-19, 2009 Copyright, 11 pages.

Meisner, David, et al., “PowerNap: Eliminating Server Idle Power,”
published at ASPLOS’09, Mar. 7-11, 2009, Washington, DC, USA.,
Copyright © 2009, 12 pages.

Mills, K. et al., “Comparing VM-Placement Algorithms for On-
Demand Clouds,” published in 2011 Third IEEE International Con-
ference on Coud Computing Technology and Science, IEEE Com-
puter Society, pp. 91-98.

Nathuji, Ripal, et al., “VirtualPower: Coordinated Power Manage-
ment in Virtualized Enterprise Systems,” published in SOSP’07, Oct.
14-17, 2007, Stevenson, Washington, USA., Copyright 2007, 14
pages.

Park, Kyoungsoo, et al., “CoMon: A Mostly-Scalable Monitoring
System for PlanetLab,” published by Princeton University, 10 pages.
Speitkamp, Benjamin, et al., “A Mathematical Programming
Approach for Server Consolidation Problems in Virtualized Data
Centers,” published by IEEE Computer Society, IEEE Transactions
on Services Computing, vol. 3, No. X, XXXXXXX 2010, published
online on Apr. 29, 2010, 13 pages.

Srikantaiah, Shekhar, et al., “Energy Aware Consolidation for Cloud
Computing,” Pennsylvania State University, Microsoft Research,
Microsoft Research, 5 pages.

Verma, Akshat, et al., “pMapper: Power and Migration Cost Aware
Application Placement in Virtualized Systems,” V. Issarny and R.
Schantz (Eds.): Middleware 2008, LNCS 5346, pp. 243-264, 2008, ©
IFIP International Federation for Information Processing 2008.
Verma, Akshat, et al., “Server Workload Analysis for Power Minimi-
zation using Consolidation,” published by IBM India Research Lab.,
14 pages.

Weng, Chuliang, et al., “Automatic Performance Tuning for the
Virtualized Cluster System,” published by IEEE Computer System,
2009 29th IEEE International Conference on Distributed Computing
Systems, pp. 183-190.

Wang, Xiaorui, et al., “Coordinating Power Control and Performance
Management for Virtualized Server Clusters,” published by the IEEE
Computer Society, IEEE Transactions on Parallel and Distributed
Systems, vol. 22, No. 2, Feb. 2011, published online Apr. 29, 2010,
pp. 245-259.

Wood, Timothy, et al., “Black-box and Gray-box Strategies for Vir-
tual Machine Migration,” published by Univ. of Massachusetts
Ambherst and Intel, Portland, 14 pages.

Minyi, Yue, “A Simple Proof of the Inequality FFD (L)<9 OPT (L)+
1 VL for the FFD Bin-Packing Algorithm,” published in Acta
Mathematicae Applicatae Sinica, vol. 7 No. 4, published on Oct.
1991, pp. 321-331.

Zheng, Qin, et al., “Utilization-based pricing for power management
and profit optimization in data centers,” published in Elsevier, J.
Parallel Distrib. Comput. 72 (2012), pp. 27-34.

Zhu, Xiaoyun, et al., “1000 Islands: Integrated Capacity and
Workload Management for the Next Generation Data Center,” pub-
lished by Hewlett-Packard Laboratories and Technical University of
Munich (TUM), 10 pages.

Zheng, Wei, et al., “JustRunit: Experiment-Based Management of
Virtualized Data Centers,” HP Laboratories, HPL.-2009-92, pub-
lished and presented at USENIX Annual Technical Conference, Jun.
14-19, 2009, copyright USENIX Annual Technical Conference,
2009, 17 pages.

Luiz, Saulo O.D., et al., “Multisize Sliding Window in Workload
Estimation for Dynamic Power Management,” published by the
IEEE Computer Society, IEEE Transactions on Computers, vol. 59,
No. 12, Dec. 2010, pp. 1-15.

* cited by examiner

US 9,363,190 B2

Sheet 1 of 17

Jun. 7,2016

U.S. Patent

WA t WA - 4 wanezgng

|
_
_
w
|
|
w

HOIYINP PROUSEN 1SOH 7
{QOH “¥ 9} TORDIBP PEOLSAD ISOH "1
rfeuniy voneposueT) JED0

{

6

dwﬁsiii

Py

P T

VOIDSREP PRAPIIPUN B0 7
{COHIW “E3) uo0Eep PEDLDAC IS0 T
LFeunly HORePHOSIO) 18307

w w
| | ’ !

: | WA _ — Wa ﬁ A HODTMY

aDInnsay i aINDSIY
I

vomaas WA E | | | \ HOUIAIE A E

|
m
|

A ISOR] sphuony

16 7 uo 5oy Fonmiems g
ausoeid AT
1ADBRURAL BONTPHOSHENT) JONUIs)

ARReuwiA _

aphoarimn N7

PaABOGHSEC] / SIOLINUY IS PUSLD

ISOEF 49100807 A/

US 9,363,190 B2

Sheet 2 of 17

Jun. 7,2016

U.S. Patent

onJ

A K |
14
/‘
10199198
HEWLSY "6 SOIRWITISD
x NEIRRIEIN
SOZIS MOPULM PRIII[IS
|
| 10303105 e
SIS | o215 mopui ¢
$OOUBLITA

O1qe1da0or pUB SOOUBLIBA
i

1lg

(1“5 e

SMOPUTM
aeumsy ¢

§
o

rapng 9w
SNOIADI] '}

JJELIISG MIN]

SMOPUTAL
oIS 7

US 9,363,190 B2

Sheet 3 0f 17

Jun. 7,2016

U.S. Patent

(430

FRIS 1)

(oG o

H

;

140§ e

£3 0% §y RN W

o

RGO

-

(]

H
3

i

£}

U.S. Patent Jun. 7, 2016 Sheet 4 of 17 US 9,363,190 B2

FI1G. 4A

anjes L0 funjnsay

U.S. Patent Jun. 7, 2016 Sheet 5 of 17 US 9,363,190 B2

: :)

e
g L4
| i i H 3 ¥ H 3 k] H qi,,ax
o E £ % 9 o= " 2 2% 9 S
B o®m o&= B OF =w & & o= 7 Eee

LI 8 Jun oun g

U.S. Patent Jun. 7, 2016 Sheet 6 of 17

LR T T

,,
.
Y3y

US 9,363,190 B2

F1G. 5

Sheet 7 of 17

Jun. 7, 2016

U.S. Patent

9 ‘911

¥

SIS 10 Zy nnsey

430

Mwmmwm,mmm%w Y

%01

US 9,363,190 B2

Sheet 8 of 17

Jun. 7,2016

U.S. Patent

L"OM

Fndmony vaoy
ERiinisly

feump oy
waN yomsuadsy

w Y

u0IBAAY
soergiadsy

oo
et

1503 sndureTy

1Y PAON
ungyguadoy

=
=
=

o]

4

safruey IBOGED
wang wouuady |

SOF JI[OINE)

!

US 9,363,190 B2

Sheet 9 of 17

Jun. 7,2016

U.S. Patent

8 "OId
A

14 BAGN Orond ags Sugsn !
srmguedo) g wonmeoiog |

i
L8 4
mep adesn BFeury
anasar A0y 12qoIn
I

ISOEY JOIU0Y

232D aPesn
FTIQTBI TP

1AV LSay i Buso
sysanbas conesSig WA Bmgng

¥

JOBFOY
23Ry

€8 REFIR A
{Bo07g

98

piep sfesn
JRANOSDA QIS

PESEETST vrep sBuso
DQOIBOEIY PRI

B30T

v8 35051 aandoy

I

<L

US 9,363,190 B2

Sheet 10 of 17

Jun. 7,2016

U.S. Patent

6 "DIA

3 i 1
| | |
| u
i paisjdurod aonEIRTyy _ i

i |

i w
i STALA DTCIRTIN 1 i
i owmoed i
i LA UTLIIOCT }
m SINA IO IS VY w

m
|
i IS0 ST JO SIALA 195 I i
| i N isanbal peoliapily
| i
| | POINBP PROLRADUN
W i _ ‘
m | W _ BORNIING
16 _ Hpoiad
i i |
LI BRG] TSIBEUBIA EE{E AN
L8 1EQOED £8 {E207]

US 9,363,190 B2

Sheet 11 of 17

Jun. 7,2016

U.S. Patent

anadiE I I i

TSoNDol PEOISALY

ayerdras oF
SLA 102eg

PP PROLIDAQ (

-

r...ﬁH URTINDAXS
- SIpoLEd

01 "OIA
I i
m _
f
i oR3B diIos BOnEIBIN
iiiiiii =

{

i
] BIAA BB _
m mowmaneid
M N A QUL
m {
{ i
I i
] i
I i
I i
I i
I i
| {
N A m

TdV BAON \lm TOBEIEN
L8 TEGOTD

ISSEUTIN
TE507]

US 9,363,190 B2

Sheet 12 of 17

Jun. 7,2016

U.S. Patent

I1"DId

spour dasys
AL O3 IS J YOUMS pue
1ISOY 3} WOI] ABME SN A 34 [syma8nn
o1 mBeurr (2goid oy
0} manbas ¥ puag

/'lhcﬁ

PepROeLIBAR

SWA
PIII3BS Ay 8&@%
STIL 03 sadpurw RQOI3
syl o3 wﬁm?ﬁ e puag

WpUoBe Uondaes PRPROISAD
WA M 3Yoaug BY 3508
eI

SOTT
papeoNapun U/ papEURISpUNn
51 150 JOU ST IS0

WPL08ie ueu»Iep
PEOLIDDUN 31} 3%0AU]
mwﬁﬁm jeale]
iy woay eyep adesn
1011 JNNOEIT PRIy

10U SISO

[

WHRMOSTE DR3P
PEGIIRAC DU 3R0AUT

r\acﬂ

U.S. Patent Jun. 7, 2016 Sheet 13 of 17 US 9,363,190 B2

B JUPRE JRRRON. 1
B RN SR 48

FIG. 12A

1475

1.4

g;, 43 g it e e
{h 44K

3375

: :5,.~" §

Eoaac
>
o

-

U.S. Patent Jun. 7, 2016 Sheet 14 of 17 US 9,363,190 B2

I ; ; i ; Lz, B
.-."%‘-.. -.,i:-.»?.- . g ”mm
6 e A S : 3 3 < {:f? o

x%%
Lnoritl
F1G. 12B

o
]
e

£1 15

{5 543
L T
{34084

U.S. Patent Jun. 7, 2016 Sheet 15 of 17 US 9,363,190 B2

kYA
3

FIG. 12C

$
e
St
o)

i7

SUHIRIRIU WA

US 9,363,190 B2

Sheet 16 of 17

Jun. 7,2016

U.S. Patent

HINTIL NOLLVEDIIN
“HHINI NVHIN HHL AZIANIXVIN OL AVOIIHOM
AYVNOLLVLS'NON V 304 SSHO0dd NOLLVIALLSH
VO DIIOM MOANIM DNIAI'ES HZISIUINIA V ONISQ1

2

socr””

"TAHAOW NIVHD AOMYVIAN VNO
AASVd INAWAIINOTA ADIAMAS A0 ALI'TVAO dHL
HHANN SNOLLVEDIN ANTHOVIN TVOLLYTA NHHA LAY
HALLNOLLVHOIN-HAINI NVHIA VONIZIINIXVIA

&8

SUTAHAS TVOISAH HHL A0 AVOIIOM
VATANVH OL AAAIN0OTYT SHAANAS TVIISAHI
HALLDV A0 YAGINON VHZINININ OL ¥HJd0
NI SANTHOVINTVILLAIA JO ALVIVIY Id JHL A0
UNVINHA HOUNO0SHY INTIE 1D V OL ONIdHODIV
SANIHOVIN'TVALYIA A0 ALTTVH(Y Id HHL
HJO SHOYNOSHY ONILVODOTIVHI ATIVOIdOIHd

3

HALNID VIVA dNOTO HHL NI
SANIHOVIN'TVALYIA 40 ALTI'TVAN Id V ONITIAOYd

€1 "D

US 9,363,190 B2

Sheet 17 of 17

Jun. 7,2016

U.S. Patent

6IPT
vl HALIVAV
dALdVaV AOVAAAINI
£TPT AVIdSIA yASN SIvl
Tl
\
_ | | | | L |
0TrY L L L L L
ALIVAY STPT 9TPl vIvl 0IvT 7]
SNOLLVOINAWINOD HALAVAV O/ WO WV ndo ndd

o

11441

SMAOMLIAN

1

HLNAD
VIVA dnoio

13841

jRi 4}

v1 "DIA

00r1

US 9,363,190 B2

1

SYSTEM, METHOD AND COMPUTER
PROGRAM PRODUCT FOR
ENERGY-EFFICIENT AND SERVICE LEVEL
AGREEMENT (SLA)-BASED MANAGEMENT
OF DATA CENTERS FOR CLOUD
COMPUTING

BACKGROUND

1. Technical Field

The embodiments herein generally relate to energy-effi-
cient management of distributed computing resources and
data centers, and more particularly to cloud computing.

2. Description of the Related Art

Within this application several publications are referenced
by Arabic numerals within brackets. Full citations for these
and other publications may be found at the end of the speci-
fication immediately preceding the claims. The disclosures of
all these publications in their entireties are hereby expressly
incorporated by reference into the present application for the
purposes of indicating the background of the invention and
illustrating the general state of the art.

Cloud computing has revolutionized the information and
communications technology (ICT) industry by enabling on-
demand provisioning of computing resources based on a pay-
as-you-go model. An organization can either outsource its
computational needs to the Cloud avoiding high up-front
investments in a private computing infrastructure and conse-
quent maintenance costs, or implement a private Cloud data
center to improve the resource management and provisioning
processes. However, the problem of data centers is high
energy consumption, which has risen by 56% from 2005 to
2010, and in 2010 accounted to be between 1.1% and 1.5% of
the global electricity use [20]. Apart from high operating
costs, this results in substantial carbon dioxide (CO,) emis-
sions, which are estimated to be 2% of the global emissions
[14]. The problem has been partially addressed by improve-
ments in the physical infrastructure of modern data centers.
As reported by the Open Compute Project, Facebook’s
Oregon data center achieves a Power Usage Effectiveness
(PUE) of 1.08, which means that ~93% of the data center’s
energy consumption are consumed by the computing
resources. Therefore, now it is important to focus on the
resource management aspect; i.e., ensuring that the comput-
ing resources are efficiently utilized to serve applications.

One method to improve the utilization of data center
resources, which has been shown to be efficient [25, 32, 40,
15,16,33, 19,39, 21, 17, 7, 4], is dynamic consolidation of
Virtual Machines (VMs). This approach leverages the
dynamic nature of Cloud workloads: the VMs are periodi-
cally reallocated using live migration according to their cur-
rent resource demand in order to minimize the number of
active physical servers, referred to as hosts, required to handle
the workload. The idle hosts are switched to low-power
modes with fast transition times to eliminate the static power
and reduce the overall energy consumption. The hosts are
reactivated when the resource demand increases. This
approach has basically two objectives, namely minimization
of energy consumption and maximization of the Quality of
Service (QoS) delivered by the system, which form an
energy-performance trade-off.

Prior approaches to host overload detection for energy-
efficient dynamic VM consolidation proposed in the literature
can be broadly divided into three categories: periodic adap-
tation of the VM placement (no overload detection), thresh-
old-based heuristics, and decision-making based on statisti-
cal analysis of historical data. One of the first works, in which

10

15

20

25

30

35

40

45

50

55

60

65

2

dynamic VM consolidation has been applied to minimize
energy consumption in a data center, has been performed by
Nathuji and Schwan [25]. They explored the energy benefits
obtained by consolidating VMs using migration and found
that the overall energy consumption can be significantly
reduced. Verma et al. [32] modeled the problem of power-
aware dynamic VM consolidation as a bin-packing problem
and proposed a heuristic that minimizes the data center’s
power consumption, taking into account the VM migration
cost. However, the authors did not apply any algorithm for
determining when it is necessary to optimize the VM place-
ment—the proposed heuristic is simply periodically invoked
to adapt the placement of VMs.

Zhu et al. [40] studied the dynamic VM consolidation
problem and applied a heuristic of setting a static CPU utili-
zation threshold of 85% to determine when a host is over-
loaded. The host is assumed to be overloaded when the
threshold is exceeded. The 85% utilization threshold has been
first introduced and justified by Gmach et al. [15] based on
their analysis of workload traces. In their more recent work,
Gmach et al. [16] investigated the benefits of combining both
periodic and reactive threshold-based invocations of the
migration controller. VMware Distributed Power Manage-
ment [33] operates based on the same idea with the utilization
threshold set to 81%. However, static threshold heuristics
may be unsuitable for systems with unknown and dynamic
workloads, as these heuristics do not adapt to workload
changes and do not capture the time-averaged behavior of the
system.

Jung et al. [19] investigated the problem of dynamic con-
solidation of VMs running multi-tier web-applications to
optimize a global utility function, while meeting service level
agreement (SLA) requirements. The approach is workload-
specific, as the SLA requirements are defined in terms of the
response time pre-computed for each transaction type of the
applications. When the request rate deviates out of an allowed
interval, the system adapts the placement of VMs and the
states of the hosts. Zheng et al. [39] proposed automated
experimental testing of the efficiency of a reallocation deci-
sion prior to its application, once the response time, specified
in the SLAs, is violated. In the approach proposed by Kumar
et al. [21], the resource allocation is adapted when the appli-
cation’s SLAs are violated. Wang et al. [34] applied control
loops to manage resource allocation under response time QoS
constraints at the cluster and server levels. If the resource
capacity of a server is insufficient to meet the applications’
SLAs, a VM is migrated from the server. All these works are
similar to threshold-based heuristics in that they rely on
instantaneous values of performance characteristics but do
not leverage the observed history of system states to estimate
the future behavior of the system and optimize the time-
averaged performance.

Guenter et al. [17] implemented an energy-aware dynamic
VM consolidation system focused on web-applications,
whose SLAs are defined in terms of the response time. The
authors applied weighted linear regression to predict the
future workload and proactively optimize the resource allo-
cation. This approach is in line with the Local Regression
(LR) algorithm proposed in [3], which is used as one of the
benchmark algorithms. Bobroff et al. proposed a server over-
load forecasting technique based on time-series analysis of
historical data [7]. Unfortunately, the algorithm description is
generally too high level, which does not allow for easy imple-
mentation to compare it with previous approaches. Weng et
al. [35] proposed a load-balancing system for virtualized
clusters. A cluster-wide cost of the VM allocation is periodi-
cally minimized to detect overloaded and underloaded hosts,

US 9,363,190 B2

3

and reallocate VMs. This is a related work but with the oppo-
site objective—the VMs are deconsolidated to balance the
load across the hosts.

As mentioned above, the common limitations of the prior
works are that, due to their heuristic basis, they lead to sub-
optimal results and do not allow the system administrator to
explicitly set a QoS goal. Accordingly, there remains a need
for anew and improved energy-efficient and SL.A-based man-
agement of data centers for cloud computing.

SUMMARY

In view of the foregoing, an embodiment herein provides a
method of improving a utilization of physical resources and
reducing energy consumption in a cloud data center, the
method comprising: providing a plurality of virtual machines
in the cloud data center; periodically reallocating resources of
the plurality of virtual machines according to a current
resource demand of the plurality of virtual machines in order
to minimize a number of active physical servers required to
handle a workload of the physical servers, wherein the real-
locating comprises: determining when a physical server is
considered to be overloaded so that some of the virtual
machines are migrated from the overloaded physical serverto
other physical servers in order to meet a quality of service
requirement; determining when a physical server is consid-
ered to be underloaded so that the virtual machines of the
physical server are migrated to other physical servers,
wherein the physical server is switched to a lower power
mode; selecting particular virtual machines to migrate from
the overloaded physical server; and allocating the selected
virtual machines for migration to other active or re-activated
physical servers. The method further comprises maximizing a
mean inter-migration time between virtual machine migra-
tions under the quality of service requirement based on a
Markov chain model; and using a multisize sliding window
workload estimation process for a non-stationary workload to
maximize the mean inter-migration time.

The Markov chain model allows a derivation of a random-
ized control policy that optimally maximizes the mean inter-
migration time between virtual machine migrations under an
explicitly specified quality of service requirement for any
known stationary workload and a given state configuration in
an online setting. The method may further comprise: maxi-
mizing an activity time of the overloaded physical server; and
minimizing an activity time of an underloaded physical
server. A workload of a physical server comprises a central
processing unit utilization created over a period of time by a
set of virtual machines allocated to the physical server,
wherein the workload may be stationary. The non-stationary
workload is approximated as a sequence of stationary work-
loads that are enabled one after another.

The method may further comprise: submitting a virtual
machine provisioning request through a cloud user interface;
processing the request and instantiating required virtual
machines; collecting data on resource utilization of virtual
machines instantiated on a compute host; passing the data to
a local consolidation manager that invokes physical server
overload detection, physical server underload detection, a
virtual machine selection process; passing outcomes gener-
ated by the local consolidation manager to a global consoli-
dation manager; invoking a virtual machine placement pro-
cess to determine a new placement of a virtual machine
required to be migrated; initiating virtual machine migrations
as determined by the virtual machine placement process;
migrating the virtual machines as instructed by the global
consolidation manager; and upon completion of the required

10

15

20

25

30

35

40

45

50

55

60

65

4

migrations, the global consolidation manager switching the
physical servers from and to a lower power mode, wherein the
lower power mode comprises a sleep mode. The quality of
service requirement may be specified in terms of a workload
independent quality of service metric. The overload detection
occurs using an offline process.

A system and non-transitory program storage device read-
able by computer, tangibly embodying a program of instruc-
tions executable by the computer to perform the method of
improving a utilization of physical resources and reducing
energy consumption in a cloud data center are also provided,
and includes computer code means for performing the
method and a display unit that displays the maximized mean
inter-migration time.

These and other aspects of the embodiments herein will be
better appreciated and understood when considered in con-
junction with the following description and the accompany-
ing drawings. It should be understood, however, that the fol-
lowing descriptions, while indicating preferred embodiments
and numerous specific details thereof, are given by way of
illustration and not of limitation. Many changes and modifi-
cations may be made within the scope of the embodiments
herein without departing from the spirit thereof, and the
embodiments herein include all such modifications.

BRIEF DESCRIPTION OF THE DRAWINGS

The embodiments herein will be better understood from
the following detailed description with reference to the draw-
ings, in which:

FIG. 1 illustrates a diagram of a high-level view of a system
(e.g., a cloud data center) implementing dynamic VM con-
solidation according to an embodiment herein;

FIG. 2 illustrates a block diagram of the multisize sliding
window workload estimation according to an embodiment
herein;

FIG. 3 illustrates a graphical representation of the esti-
mated p,, compared to py, according to an embodiment
herein;

FIGS. 4A and 4B illustrate graphical representations of the
resulting OTF value and time until a migration produced by
the MHOD and benchmark algorithms according to the
embodiments herein;

FIG. 5 illustrates a graphical representation of a compari-
son of MHOD with LRR according to an embodiment herein;

FIG. 6 illustrates a graphical representation of a compari-
son of OTFT, OTFTM, and MHOD according to an embodi-
ment herein;

FIG. 7 illustrates a schematic diagram of the combined
deployment of OpenStack and OpenStack Neat according to
an embodiment herein;

FIG. 8 illustrates a system view of a deployment process
according to an embodiment herein;

FIG. 9 illustrates a schematic diagram of a global manager
including a sequence diagram of handling an underload
request according to an embodiment herein;

FIG. 10 illustrates a schematic diagram of a global man-
ager including a sequence diagram of handling an overload
request according to an embodiment herein;

FIG. 11 illustrates a block diagram of a local manager
including an activity diagram according to an embodiment
herein;

FIGS. 12A through 12C illustrate graphical representa-
tions of the experimental results according to the embodi-
ments herein;

FIG. 13 is a flow diagram illustrating a method according to
an embodiment herein; and

US 9,363,190 B2

5

FIG. 14 is a computer system used with the embodiments
herein.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

The embodiments herein and the various features and
advantageous details thereof are explained more fully with
reference to the non-limiting embodiments that are illustrated
in the accompanying drawings and detailed in the following
description. Descriptions of well-known components and
processing techniques are omitted so as to not unnecessarily
obscure the embodiments herein. The examples used are
intended merely to facilitate an understanding of ways in
which the embodiments herein may be practiced and to fur-
ther enable those of skill in the art to practice the embodi-
ments herein. Accordingly, the examples should not be con-
strued as limiting the scope of the embodiments herein.

The embodiments herein provide a new and improved
energy-efficient and SLA-based management of data centers
for cloud computing. Referring now to the drawings, and
more particularly to FIGS. 1 through 14, where similar ref-
erence characters denote corresponding features consistently
throughout the figures, there are shown preferred embodi-
ments.

The QoS requirements can be defined in terms of a variety
of metrics and are formalized in the SLAs. In this work, to
specify the QoS requirements a modification of the workload
independent metric proposed in [3] is applied. Therefore, the
problem transforms into minimization of energy consump-
tion under QoS constraints. This problem is too complex to be
treated analytically as a whole, as just the VM placement,
which is a part of dynamic VM consolidation, is an NP-hard
problem [32, 19, 7]. Moreover, many aspects of the problem
have to be addressed, e.g., the heterogeneity of physical
resources and VMs; non-stationary and unknown workloads,
as observed in Infrastructure as a Service (IaaS) environ-
ments; power and performance costs of VM migrations; and
the large scale of Cloud data center infrastructures. Another
argument for splitting the problem is decentralization of the
resource management algorithm, which is desirable for scal-
ing the resource management system for efficient handling of
thousands of servers. Therefore, to make the problem of
dynamic VM consolidation tractable and provide decentrali-
zation it is proposed to divide it into 4 sub-problems:

1. Deciding when a host is considered to be overloaded, so
that some VMs should be migrated from it to other hosts to
meet the QoS requirements.

2. Deciding when a host is considered to be underloaded, so
that its VMs should be migrated, and the host should be
switched to a low-power mode.

3. Selecting VMs to migrate from an overloaded host.

4. Allocating the VMs selected for migration to other active
or re-activated hosts.

A system (e.g., a cloud data center) 1 implementing this
model is shown in FIG. 1. The basic actions performed by the
system 1 are the following:

1. Users 2 submit VM provisioning requests through a
Cloud user interface 3.

2. The VM life cycle manager 4 processes user requests and
instantiates the required VMs 8.

3. The resource utilization monitor 7 collects the data on
the resource utilization of VMs 8 instantiated on a compute
host 9 and passes these data to the local consolidation man-
ager 6, which invokes host overload detection (e.g., MHOD),
host underload detection, and VM selection algorithms, and
passes the outcomes to the global consolidation manager 5.

10

15

20

25

30

35

40

45

50

55

60

65

6

4. The global consolidation manager 5, which is on the
controller host 10, processes requests received from local
consolidation managers 6 and invokes a VM placement algo-
rithm to determine a new placement of VM required to be
migrated. Then, the global consolidation manager 5 initiates
VM migrations as determined by the VM placement algo-
rithm.

5. VMs 8 are migrated as instructed by the global consoli-
dation manager 5. Upon completion of the required migra-
tions, the global consolidation manager 5 switches hosts 9
from and to the sleep mode accordingly.

First, with respect to the first sub-problem—the problem of
host overload detection. Detecting when a host becomes over-
loaded directly influences the QoS, since if the resource
capacity is completely utilized, it is highly likely that the
applications are experiencing resource shortage and perfor-
mance degradation. What makes the problem ofhost overload
detection complex is the necessity to optimize the time-aver-
aged behavior of the system, while handling a variety of
heterogeneous workloads placed on a single host. To address
this problem, most of the current approaches to dynamic VM
consolidation apply either heuristic-based techniques, such
as utilization thresholds [40, 15, 16, 33]; decision-making
based on statistical analysis of historical data [17, 7]; or
simply periodic adaptation of the VM allocation [25, 32]. The
limitations of these approaches are that they lead to sub-
optimal results and do not allow the administrator to explic-
itly set a QoS goal. In other words, the performance in regard
to the QoS delivered by the system can only be adjusted
indirectly by tuning parameters of the applied host overload
detection algorithm. In contrast, the embodiments herein
enable the system administrator to explicitly specity a QoS
goal in terms of a workload independent QoS metric. The
underlying analytical model allows a derivation of an optimal
randomized control policy for any known stationary work-
load and a given state configuration. The embodiments herein
provide the following features in the context of algorithm/
method/model:

1. Itis analytically shown that to improve the quality of VM
consolidation, it is necessary to maximize the mean time
between VM migrations initiated by the host overload detec-
tion algorithm.

2. An optimal offline algorithm is proposed for host over-
load detection, and its optimality is proven.

3. A novel Markov Chain model is introduced that allows a
derivation of a randomized control policy that optimally
solves the problem of maximizing the mean time between
VM migrations under an explicitly specified QoS goal for any
known stationary workload and a given state configuration in
the online setting.

4. To handle unknown non-stationary workloads, the Mul-
tisize Sliding Window workload estimation approach [22] is
applied to heuristically build an adapted algorithm, which
leads to approximately 15% higher mean inter-migration
time compared to the best benchmark algorithm for the input
workload traces used in our experiments. The adapted algo-
rithm leads to approximately 88% of the mean inter-migra-
tion time produced by the optimal offline algorithm.

Some of the features on the system side are the following:

1. An architecture of an extensible software framework
(computer program product) for dynamic VM consolidation
designed to transparently integrate with OpenStack installa-
tions and allowing configuration-based substitution of mul-
tiple implementations of algorithms for each of the four
defined sub-problems of dynamic VM consolidation.

2. An implementation of the framework in Python released
under the Apache 2.0 license and publicly available online.

US 9,363,190 B2

7
3. An implementation of several algorithms for dynamic
VM consolidation, including the MHOD algorithm, pro-
posed and evaluated by simulations described above and
below.

4. An initial version of a benchmark suite comprising the
software framework, workload traces, performance metrics,
and methodology for evaluating and comparing dynamic VM
consolidation solutions following the distributed model.

5. Experimental evaluation of the framework on a 5-node
OpenStack deployment using real-world application work-
load traces collected from more than a thousand PlanetLab
VMs hosted on servers located in more than 500 places
around the world [27]. According to the estimates of potential
energy savings, the algorithms reduce energy consumption
by up to 33% with a limited performance impact.

The embodiments herein use static and dynamic threshold
heuristics as benchmark algorithms in the experimental
evaluation of the proposed approach. The embodiments
herein evaluate the algorithm by simulations using real-world
workload traces from more than a thousand PlanetlLab VMs
hosted on servers located in more than 500 places around the
world. The experiments show that the introduced algorithm
outperforms the benchmark algorithms, while meeting the
QoS goal in accordance with the theoretical model. The algo-
rithm uses a workload independent QoS metric and transpar-
ently adapts its behavior to various workloads using a
machine-learning technique; therefore, it can be applied in an
environment with unknown non-stationary workloads, such
as laaS.

The model provided by the embodiments herein is based on
Markov chains requiring a few fundamental modeling
assumptions. First, the workload must satisfy the Markov
property, which implies memoryless state transitions and an
exponential distribution of state transition delays. These
assumptions must be taken into account in an assessment of
the applicability of the proposed model to a particular system.
A more detailed discussion of the modeling assumptions and
validation of the assumptions is given below.

Benini et al. [6] describe the power management of elec-
tronic systems using Markov decision processes. A Markov
chain model is created for the case of a known stationary
workload and a given state configuration. Using a workload
independent QoS metric, a Non-Linear Programming (NLP)
problem formulation is derived. The solution of the derived
NLP problem is the optimal control policy that maximizes the
time between VM migrations under the specified QoS con-
straint in the online setting. Since most real-world systems,
including IaaS, experience highly variable non-stationary
workloads, the Multisize Sliding Window workload estima-
tion technique proposed by Luiz et al. [22] is applied to
heuristically adapt the proposed model to non-stationary sto-
chastic environments and practical applications. Although the
final approach is a heuristic approach, in contrast to the pre-
vious works, it is based on an analytical model that allows the
computation of an optimal control policy for any known
stationary workload and a given state configuration.

The Objective of a Host Overload Detection Algorithm

To improve the quality of VM consolidation, it is necessary
to maximize the time intervals between VM migrations from
overloaded hosts. Since VM consolidation is applied to
reduce the number of active hosts, the VM consolidation
quality is inversely proportional to H, the mean number of
active hosts over n time steps:

25

40

60

65

u ®

H:%Z a;,

i=1

where a, is the number of active hosts at the time step i=1,
2,...,n.Alower value of H represents a better quality of VM
consolidation.

To investigate the impact of decisions made by host over-
load detection algorithms on the quality of VM consolidation,
consider an experiment, where at any time step, the host
overload detection algorithm can initiate a migration from a
host due to an overload. There are two possible consequences
of a decision to migrate a VM relevant to host overload
detection: Case 1, when a VM to be migrated from an over-
loaded host cannot be placed on another active host due to
insufficient resources, and therefore, a new host has to be
activated to accommodate the VM and Case 2, when a VM to
be migrated can be placed on another active host. To study
host overload detection inisolation, it is assumed that no hosts
are switched off during the experiment, i.e., once a host is
activated, it remains active until n.

Let p be the probability of Case 1, i.e., an extra host has to
be activated to migrate a VM from an overloaded host deter-
mined by the host overload detection algorithm. Then, the
probability of Case 2 is (1-p). Let T be a random variable
denoting the time between two subsequent VM migrations
initiated by the host overload detection algorithm. The
expected number of VM migrations initiated by the host
overload detection algorithm over n time steps is n/E[T],
where E[T] is the expected inter-migration time.

Based on the definitions given above, the number of extra
hosts switched on due to VM migrations initiated by the host
overload detection algorithm over n time steps can be defined
as X~B(/E[T],p), which is a binomially distributed random
variable. The expected number of extra hosts activated is
E[X]=np/E[T]. Let A be a random variable denoting the time
during which an extra host is active between the time steps 1
and n. The expected value of A can be defined as follows:

ey @
E[A]=)| (n-(i-DET)p
i=1
nop
= [ﬁJz(n+n— ([WJ - 1)E[T]) < 3)
np n
7(1 * E[T]) “
(1) can be rewritten as follows:
1 (&)
H= ;; a;
1& 1&
==Y a +=> (ag-ay) (6)
n i=1 n i=1
|
=a + ;Z (a; —ay). @]
i=1

The first term a, is a constant denoting the number of hosts
that have been initially active and remain active until the end
of the experiment. The second term

US 9,363,190 B2

i
H :;; (@ —ar)

is the mean number of hosts switched on due to VM migra-
tions being active per unit of time over n time steps. It is
desirable to analyze the average behavior, and thus estimate
the expected value of H*. It is proportional to a product of the
expected number of extra hosts switched on due to VM migra-
tions and the expected activity time of an extra host normal-
ized by the total time, as shown in (8-10).

1 ®)
—E[X]E[A]
n
<l ©
S nE[T] 2 E[T]

np2 n (10)
= 2ET] (1 + ﬁ)

Since the objective is to improve the quality of VM con-
solidation, it is necessary to minimize E[H*]. From (8-10),
the only variable that can be directly controlled by a host
overload detection algorithm is E[T]; therefore, to minimize
E[H*] the objective of a host overload detection algorithm is
to maximize E[T], i.e., to maximize the mean time between
migrations from overloaded hosts.

A Workload Independent QoS Metric

To impose QoS requirements on the system, an extension
of the workload independent QoS metric introduced in [3] is
applied. The embodiments herein assume a host can be in one
of two states in regard to its load level: (1) serving regular
load; and (2) being overloaded. It is assumed that if a host is
overloaded, the VMs allocated to the host are not being pro-
vided with the required performance level leading to perfor-
mance degradation. To evaluate the overall performance deg-
radation, a metric denoted Overload Time Fraction (OTF) is
defined as follows:

an

2
OTF(u) = @

where u, is the CPU utilization threshold distinguishing the
non-overload and overload states of the host; t, is the time,
during which the host has been overloaded, which is a func-
tion of u,; and t, is the total time, during which the host has
been active. Using this metric, SL.As can be defined as the
maximum allowed value of OTF. For example, if in the SL.As
it is stated that OTF must be less or equal to 10%, it means that
on average a host is allowed to be overloaded for not more
than 10% of its activity time. Since the provider is interested
in maximizing the resource utilization while meeting the
SLAs, from his perspective this requirement corresponds to
the QoS goal of OTF—=10%, while OTF<10%. The definition
of'the metric for a single host can be extended to a set of hosts
by substituting the time values by the aggregated time values
over the set of hosts.

The exact definition of the state of a host, when it is over-
loaded, depends on the specific system requirements. How-
ever, the value of the CPU utilization threshold u, defining the
states of a host does not affect the proposed model, which
allows setting the threshold to any value. For example, in the
experiments, it is defined that a host is overloaded, when its

10

15

20

30

40

45

50

55

60

65

10

CPU utilization is 100%, in which case the VMs allocated to
this host do not get the required CPU capacity leading to
performance degradation. The reasoning behind this is the
observation that if a host serving applications is experiencing
100% utilization, the performance of the applications is con-
strained by the host’s capacity; therefore, the VMs are not
being provided with the required performance level.

Ithas been claimed in the literature that the performance of
servers degrade, when their load approaches 100% [38, 30].
For example, the study of Srikantaiah et al. [30] has shown
that the performance delivered by the CPU degrades when the
utilization is higher than 70%. If due to system requirements,
it is desirable to avoid performance degradation, the proposed
OTF metric allows the specification of the CPU utilization
threshold at the required level below 100%. The host is con-
sidered to be overloaded, when the CPU utilization is higher
than the specified threshold.

In general, other system resources, such as memory, disk,
and network bandwidth, should also be taken into account in
the definition of QoS requirements. However, emphasis is
placed on CPU as it is one of the main resources that are
usually oversubscribed by Cloud providers.

Verma et al. [31] proposed a similar metric for estimating
the SLA violation level in a system, which they defined as the
number of time instances, when the capacity of a server is less
than the demand of all applications placed on it. However,
their metric shows a non-normalized absolute value, which,
for example, cannot be used to compare systems processing
the same workload for different periods of time. In contrast,
the OTF metric is normalized and does not depend on the
length of the time period under consideration.

In the next section, based on the objective of a host over-
load detection algorithm derived above, the OTF metric intro-
duced in this section, an optimal offline algorithm for the host
overload detection problem is proposed, and its optimality is
proved.

An Optimal Offline Algorithm

As shown above, it is necessary to maximize the mean time
between VM migrations initiated by the host overload detec-
tion algorithm, which can be achieved by maximizing each
individual inter-migration time interval. Therefore, the prob-
lem formulation is limited to a single VM migration; i.e., the
time span of a problem instance is from the end of a previous
VM migration and to the end of the next. Given the above, the
problem of host overload detection can be formulated as an
optimization problem (12)-(13).

15(tm, 4y) > max (12)

1o (tms)
=
Lot)

a3

where t,, is the time when a VM migration has been initiated;
u, is the CPU utilization threshold defining the overload state
of the host; t(t,,,u,) is the time, during which the host has
been overloaded, which is a function oft,, and u,; t, is the total
time, during which the host has been active, which is also a
function of t,, and u,; and M is the limit on the maximum
allowed OTF value, which is a QoS goal expressed in terms of
OTF. The aim of a host overload detection algorithm is to
select the t,, that maximizes the total time until a migration,
while satisfying the constraint (13). Itis important to note that
the optimization problem (12)-(13) is only relevant to host
overload detection, and does not relate to host underload
situations. In other words, maximizing the activity time of a

US 9,363,190 B2

11

host is only important for highly loaded hosts. Whereas for
underloaded hosts, the problem is the opposite—the activity
time needs to be minimized.

In the offline setting, the state of the system is known at any
point in time. Consider an offline algorithm that passes
through the history of system states backwards starting from
the last known state. The algorithm decrements the time and
re-calculates the OTF value

1o (tms Ur)
1oty)

at each iteration. The algorithm returns the time that corre-
sponds to the current iteration if the constraint (13)is satisfied
(Algorithm 1).

Algorithm 1 The Optimal Offline (OPT) algorithm:

Input: A system state history
Input: M, the maximum allowed OTF
Output: A VM migration time
1: while history is not empty do
if OTF of history _ M then
return the time of the last history state
else

B W N

drop the last state from history

Theorem 1 Algorithm 1 is an optimal offline algorithm
(OPT) for the problem of host overload detection.

Proof:

Let the time interval covered by the system state history be
[t,.t,], and t,, be the time returned by Algorithm 1. Then,
according to the algorithm the system states corresponding to
the time interval (t,,.t,] do not satisty the constraint (13).
Sincet,, is the right bound of the interval [t,,t,,], then t,, is the
maximum possible time that satisfies the constraint (13).
Therefore, t,, is the solution of the optimization problem
(12)-(13), and Algorithm 1 is an optimal offline algorithm for
the host overload detection problem.

A Markov Chain Model for Host Overload Detection

In the following sections, the proposed model is based on
the definitions of Markov chains, a mathematical framework
for statistical modeling of real-world processes.

Background on Markov Chain

This section introduces the basic definitions of the Markov
chains modeling framework. Bolch [8] provides a detailed
introduction to Markov chains.

A stochastic process {X,, X;, . .., X, ... } at the
consecutive points of observation 0, 1, . . ., n+1 constitutes a
Discrete-Time Markov Chain (DTMC) if the following rela-
tion on the conditional Probability Mass Function (PMF)
holds VneN,, and Vs,eS=N,:

P 1780011 X, =8, X 17801
PN 178041 1X,75,)-

Xo=s0)=
14)

Given an initial state s,, a DTMC evolves step by step
according to the one-step transition probabilities:

PyD0)=PX,, 1 =8, X, =s,=0). 15

If the conditional PMF is independent of the time param-
eter n, the DTMC is referred to as time-homogeneous and
(15) reduces to: p,~P(X,,,,=jIX,=1)VneT. Starting from a
state 1, the DTMC transitions to a state j, so that

10

15

20

25

30

35

40

45

50

55

60

12

Zpij=1,
7

where Osp,<1. The one-step transition probabilities p,; are
usually summarized in a non-negative transition probability
matrix Pp,].

LetteT be the time parameter, where T = R*=[0,c0); let S be
the state space of the stochastic process comprising all pos-
sible values of X, (for each teT). A stochastic process {X:
teT} constitutes a Markov process if for all O=t,<t,< . . .
<t <t,,,, VneN, and Vs,eS the conditional Cumulative Dis-
tribution Function (CDF) of X, depends only on the previ-
ous value X, and not on the earlier values X, X, . X,

P&,

el

P&,

e 1

<81 WG =8, X

-1

=81 X, =5,).

S,

n—1r

Xy =50)=
(16)

A stochastic process {X,:teT} constitutes a Continuous-
Time Markov Chain (CTMC) if for arbitrary teR,*, with
O=ty<t,<...<t,<t ,, VneN, and Vs,eS=N, for the condi-
tional PMF, the relation (16) holds. In other words, a CTMC
is a Markov process restricted to a discrete, finite, or count-
ably infinite state space S, and a continuous-parameter space
T. The right-hand side of (16) is referred to as the transition
probability p,(u,v) of the CTMC to travel from state i to state
jduring the period of time [u,v), withu,veT and u=v: p,(u,v)=
P(X,=jIX,=1). If the transition probabilities p,(u,v) depend
only on the time difference t=v-u and not on the actual values
of'u and v, the CTMC is time-homogeneous with simplified
transition probabilities: p,()=P(X,,, =X, =1).

The embodiments herein focus on time-homogeneous
Markov chains, which can also be described as Markov
chains with stationary transition probabilities. Time-homo-
geneous Markov chains correspond to stationary workloads;
i.e., workloads, whose statistical properties do not change
over time. As provided below, it is shown how a time-homo-
geneous Markov model can be adapted to cases of non-sta-
tionary workloads.

Another characteristic that describes transitions of a
CTMC between the states is the instantaneous transition rate
q,(t) of the CTMC traveling from state i to state j. The non-
negative, finite, continuous functions q,,(t) satisfy the follow-
ing conditions:

lim pyt, 1+ A1) 17

qijm:AtaO Ar HES

lim py,t+AD-1 (18
g:i(1) = A _—

-0 Ar

where At is chosen such that

Z gy (DAL +o(AD = 131, j & S.
jes

A matrix Q=[q,;]Vi,jeS is called the infinitesimal generator
matrix of the transition probability matrix P()=[p,()]. The
elements g,; on the main diagonal of Q are given by:

_Ejss,jsiq i

A vector 7(t), [rt,(t)]VieS contains the probabilities that the
CTMC will be in the state i at the time t. Using the Kolmog-
orov forward equation [8], the following equation for the
unconditional state probability vector 7(t) can be derived:

i~

US 9,363,190 B2

13

dn() _
dr

19
7(D)Q. 19

A ftransition probability matrix P of an ergodic DTMC
(e.g.,a DTMC with all the transition probabilities being non-
zero) can be transformed into an infinitesimal generator
matrix of the corresponding CTMC as follows:

0=P-1, 20)

where [is the identity matrix. Next, using the definitions
given in this section, a Markov chain model for the host
overload detection problem is introduced.

The Host Model

Each VM allocated to a host at each point in time utilizes a
part of the CPU capacity determined by the application work-
load. The CPU utilization created over a period of time by a
set of VMs allocated to a host constitutes the host’s workload.
For the initial analysis, it is assumed that the workload is
known a priori, stationary, and satisfies the Markov property.
In other words, the CPU utilization of a host measured at
discrete time steps can be described by a single time-homo-
geneous DTMC.

There is a controller component, which monitors the CPU
utilization of the host and according to a host overload detec-
tion algorithm decides when a VM should be migrated from
the host to satisfy the QoS requirements, while maximizing
the time between VM migrations. As provided above, the
problem formulation is limited to a single VM migration; i.e.,
the time span of a problem instance is from the end of a
previous VM migration to the end of the next.

To describe a host as a DTMC, states are assigned to N
subsequent intervals of the CPU utilization. For example, if
N=11, the state 1 is assigned to all possible values of the CPU
utilization within the interval [0%,10%), 2 to the CPU utili-
zation within [10%,20%), . . ., N to the value 100%. The state
space S of the DTMC contains N states, which correspond to
the defined CPU utilization intervals. Using this state defini-
tion and knowing the workload of a host in advance, by
applying the Maximum Likelihood Estimation (MLE)
method it is possible to derive a matrix of transition probabili-
ties P. The matrix is constructed by estimating the probabili-
ties of transitions

i

- 2. Cik
kes

Pi

between the defined N states of the DTMC for i,jeS, where c,;
is the number of transitions between states i and j.

An additional state (N+1) is added to the Markov chain
called an absorbing state. A state keS is said to be an absorb-
ing state if and only if no other state of the Markov chain can
be reached from it, i.e., p,=1. In other words, once the
Markov chain reaches the state k, it stays in that state indefi-
nitely. The resulting extended state space is S*=SU{(N+1)}.
According to the model provided by the embodiments herein,
the absorbing state (N+1) represents the state where the
DTMC transitions once a VM migration is initiated. Accord-
ing to this definition, the control policy can be described by a
vector of the probabilities of transitions from any non-absorb-
ing state to the absorbing state (N+1), i.e., the probabilities of
VM migrations, which are denoted m,, where ieS. To add the
state (N+1) into the model, the initial transition probability

10

15

20

25

30

35

40

45

50

55

60

14

matrix P is extended with a column of unknown transition
probabilities m=[m,]VieS resulting in an extended matrix of
transition probabilities P*:

pii - Piv M ©@n
P*: * * i

Pyt -+ Pnv TN

0 0 0 1

where p;* are defined as follows:

Py*=py(1-m,), Vi jeS. 22

In general, the workload experienced by the host’s VMs
can lead to any CPU utilization from 0% to 100%; therefore,
the original DTMC can be assumed to be ergodic. Later, the
extended DTMC will be restricted to the states in S; therefore,
using Q=P-1[8], the extended matrix of transition probabili-
ties P* can be transformed into a corresponding extended
matrix of transition rates Q*:

-1 ... piy m (23)

Ph1 - pyn—1 my .

In the next section, a QoS constraint is formulated in terms
of the introduced model, derived extended matrix of transi-
tion rates Q*, and OTF metric.

The QoS Constraint

Let

L(t):fﬂ(u)du,
0

then L,(t) denotes the total expected time the CTMC spends in
the state 1 during the interval [0,t). By integrating an equation
for the unconditional state probability vector zt(t): dm(t)/dt=n
(H)Q on both sides, a new differential equation for L(t) is
derived [8]:

@4

dL@)
dt

@5

= L(OQ + n(0), L(0) = 0.

The expected time spent by the CTMC before absorption
can be calculated by finding the limit

lim
Lg(co) = oo Ls(n)

restricting the state space to the states in S. The limit exists
due to a non-zero probability of a transition to the absorbing
state (N+1). However, the limit does not exist for the state
(N+1). Therefore, to calculate [Lg(), the extended infinitesi-
mal generator matrix Q¥ is restricted to the states in S, result-
ing in a matrix Qg * of the size NxN. The initial probability
vector m(0) is also restricted to the states in S resulting in
7(0). Restricting the state space to non-absorbing states
allows the computation of

US 9,363,190 B2

15

lim

100

on both sides of (25) resulting in the following linear equation

[8]:

L()Qs*=-m4(0).

Let N denote the state of a host when it is overloaded, e.g.,
when the CPU utilization is equal to 100%, then the expected
time spent in the state N before absorption can be calculated
by finding L,{() from a solution of the system of linear
equations (26). Similarly, the total expected time of the host
being active can be found as

6

Z Li(co).

ies

Letting the VM migration time be T, the expected OTF can
be calculated as follows:

orp < It Tve) 27
T + 2, Li(co)
ies
The Optimization Problem

By the solution of (26), closed-form equations for

Ly(@)Lo(),Ln(®)

are obtained. The unknowns in these equations are m,,
m,, . .., m,, which completely describe the policy of the
controller. In the model provided by the embodiments herein,
the utility function is the total expected time until absorption,
as the objective is to maximize the inter-migration time. To
introduce the QoS goal in the problem formulation, a limit M
on the maximum allowed value of the OTF metric is specified
as a constraint resulting in the following optimization prob-
lem:

Z L;(c0) » max 28
ies
T+ Ly(eo) 29)
T+ X Lifeo) = 7
ies

The equations (28-29) form an NLP problem. The solution
of this NLP problem is the vector m of the probabilities of
transitions to the absorbing state, which forms the optimal
control policy defined as a PMF m=[m,]VieS. At every time
step, the optimal control policy migrates a VM with the prob-
ability m,, where ieS is the current state. The control policy is
deterministic if IkeS:m;=1 and VieS,i=m,~0, otherwise the
policy is randomized.

Since the total time until absorption and T, are non-nega-
tive, the problem formulation (28-29) can be simplified to
(30-31).

Z L;i(c0) —» max (B0

ies

10

15

20

25

30

35

40

45

50

55

60

65

16

-continued
(1 = M)(T + Ly (c0)) — MZ Li(c0) < 0.

ies

BD

Modeling Assumptions

The introduced model allows the computation of the opti-
mal control policy of a host overload detection controller for
a given stationary workload and a given state configuration. It
is important to take into account that this result is based on a
few fundamental modeling assumptions. First, it is assumed
that the system satisfies the Markov property, or in other
words, the sojourn times (i.e., the time a CTMC remains in a
state) are exponentially distributed. Assuming an exponential
distribution of sojourn times may not be accurate in many
systems. For instance, state transition delays can be determin-
istic due to a particular task scheduling, or follow other than
exponential statistical distribution, such as a bell-shaped dis-
tribution. Another implication of the Markov property is the
assumption of memoryless state transitions, which means
that the future state can be predicted solely based on the
knowledge of the current state. It is possible to envision
systems, in which future states depend on more than one past
state.

Another assumption is that the workload is stationary and
known a priori, which does not hold in typical computing
environments. In the next section, it is shown how the intro-
duced model can be heuristically adapted to handle unknown
non-stationary workloads. The proposed heuristically
adapted model removes the assumption of stationary and
known workloads; however, the assumptions implied by the
Markov property must still hold. Further below, the proposed
heuristically adapted model is evaluated, and the assumptions
are tested through a simulation study using real workload
traces from more than a thousand Planetl.ab VMs. The simu-
lation results show that the model is efficient for this type of
mixed computing workloads.

With a correct understanding of the basic model assump-
tions and careful assessment of the applicability of the pro-
posed model to a particular system, an application of the
model can bring substantial performance benefits to the
resource management algorithms. As demonstrated by the
simulation study provided below, the proposed approach out-
performs the benchmark algorithms in terms of both the mean
inter-migration time and the precision of meeting the speci-
fied QoS goal.

Non-Stationary Workloads

The model introduced above works with the assumption
that the workload is stationary and known. However, this is
not the case in systems with unknown non-stationary work-
loads, such as laaS. One of the ways to adapt the model
defined for known stationary workloads to the conditions of
initially unknown non-stationary workloads is to apply the
Sliding Window workload estimation approach proposed by
Chung et al. [10].

The base idea is to approximate a non-stationary workload
as a sequence of stationary workloads U=(u,, u,, .. ., u,) that
are enabled one after another. In this model, the transition
probability matrix P becomes a function of the current sta-
tionary workload P(u).

Chung et al. [10] called a policy that makes ideal decisions
for a current stationary workload u, the best adaptive policy.
However, the best adaptive policy requires the perfect knowl-
edge of the whole sequence of workloads U and the times, at
which the workloads change. In reality, a model of a workload
u, can only be built based on the observed history of the
system behavior. Moreover, the time at which the current

US 9,363,190 B2

17

workload changes is unknown. Therefore, it is necessary to
apply a heuristic that achieves results comparable to the best
adaptive policy. According to the Sliding Window approach,
a time window of length 1, slides over time and is always
capturing the last 1,, events. Let c;; be the observed number of
transitions between states 1 and j, 1,jeS, during the last window
1,,- Then, applying the MLE method, the transition probability
p,, is estimated as

<

- X ci
kes

Pi

As the window length 1,,—, the estimator p,; converges to
the real value of the transition probability p,, if the length of
the current stationary workload u, is equal to 1,, [10].

However, the Sliding Window approach introduces three
sources of errors in the estimated workload:

1. The biased estimation error, which appears when the
window length 1, is shorter than the length of a sequence of
outliers.

2. The resolution error (referred to as the sampling error by
Luiz et al. [22]), which is introduced due to the maximum
precision of the estimates being limited to 1/1 .

3. The adaptation time (referred to as the identification
delay by Luiz et al. [22]), which is a delay required to com-
pletely fill the window with new data after a switch from a
stationary workload u,_; to a new stationary workload u,.

Luiz et al. [22] extended the Sliding Window approach by
employing multiple windows with different sizes, where a
window to use is selected dynamically using the information
about the previous system state and variances of the estimates
obtained from different windows. They referred to the
extended approach as the Multisize Sliding Window
approach. The proposed algorithm dynamically selects the
best window size to eliminate the bias estimate error and
benefit from both the small sampling error of large window
sizes and small identification error of small window sizes.
The embodiments herein use the Multisize Sliding Window
approach to the model introduced above to adapt it to initially
unknown non-stationary workloads.

The calculation of the expected OTF (27) is adapted by
transforming it to a function of teR* to incorporate the infor-
mation that is known by the algorithm at the time of decision
making:

T + y() + Ly(c0)
Tn+1+ Y Li(co)’

ies

OTF(1) = 62

where y(t) is a function returning the total time spent in the
state N during the time interval [0,t].
Multisize Sliding Window Workload Estimation

This section briefly introduces the Multisize Sliding Win-
dow approach; for more details, reasoning and analysis please
refer to Luiz et al. [22]. A high level view of the estimation
algorithm is shown in FIG. 2, with reference to FIG. 1. First,
to eliminate the biased estimation error, the previous history
is stored separately for each state in S resulting in S state
windows W, i=1,2,...,S.

Let J, D, and N, be positive numbers; the following repre-
sents a sequence of window sizes:

L=(JJ+DJ+2D, . .. J+(N~1)D)

I, =I®N~1D

Winax

10

15

20

25

30

35

40

45

50

55

60

65

18

is the maximum window size. At each time t, the Previous
State Buffer 20 stores the system state s,_, atthe time t-1 and
controls the window selector 22, which selects a window W,
such that s,_,=i. The notation W,%(t) denotes the content of the
window W, in a position k at the time t. The selected window
shifts its content one position to the right to store the current
system state:

Wi o=@, Vi=1,...]

Winax

discards the rightmost element W,»7(t); and stores s, in the
position W,'(t). Once the selected state window W, is
updated, new probability estimates are computed based on
this state window for all window sizes as follows:

I (33)
PRUACESY!
k=1
(L, =
pi(t, m) I
where “=" is the equivalence operation, i.e.,

(1=1)=1,(1=0)=0. A computed probability estimate is
stored in N ; out of the SSN estimate windows E,,, (1), where
1,jeS, and m is the estimate window size index, 1=sm=N . N,
estimate windows E,,,() are selected such that s, ,=iand s, =,
Vm=1,...,N,

Similar to the update process of the state windows, the
selected estimate windows shift their contents one position to
the right, discard the rightmost element Eiij”(t), and store
p,(t.L,,) in the position Eijml(t). To evaluate the precision of
the probability estimates, the variance S(i,j,t,m) of the prob-
ability estimates obtained from every updated estimate win-
dow is estimated:

| i 34
Pyl m) = EZE@M(’)’
k=1

- 1 Im) (35)
St o tom) = 1 kZ‘ (B0 = Pyt L))’

where “p,(t,m) is the mean value of the probability estimates
calculated from the state window W, of length L,,,. To deter-
mine what values of the variance can be considered to be low
enough, the following function of acceptable variance V , (p,;
(t,m),m) is defined [22]:

Pij(ts L)1 = py(t, L))
—

(36)
Vao(pij(t, m), m) =

Using the function of acceptable variance, probability esti-
mates are considered to be adequate if S(i,j,t,m)=<V,,.(p,,(t;m),
m)

Based on the definitions given above, a window size selec-
tion algorithm can be defined (Algorithm 2). According to the
selected window sizes, transition probability estimates 24 are
selected from the estimate windows.

Algorithm 2 The window size selection algorithm

Input: J, D, N, t, 1, j
Output: The selected window size
1: L,<7

US 9,363,190 B2

19

-continued

Algorithm 2 The window size selection algorithm

2: fork=0toN,- 1do

3: if S(i,j,tk) = V,.(p,(t,k) k) then
4: L,<T+

5t else

6: break loop

7

return 1,

The presented approach addresses the errors mentioned
above as follows:

1. The biased estimation error is eliminated by introducing
dedicated history windows for each state: even if a burst of
transitions to a particular state is longer than the length of the
window, the history of transitions from the other states is
preserved.

2. The sampling error is minimized by selecting the largest
window size constrained by the acceptable variance function.

3. The identification error is minimized by selecting a
smaller window size when the variance is high, which can be
caused by a change to the next stationary workload.

The Control Algorithm

A control algorithm based on the model introduced above
is referred to as the Optimal Markov Host Overload Detection
(MHOD-OPT) algorithm. The MHOD-OPT algorithm
adapted to unknown non-stationary workloads using the Mul-
tisize Sliding Window workload estimation technique intro-
duced above is referred to as the Markov Host Overload
Detection (MHOD) algorithm. A high-level view of the
MHOD-OPT algorithm is shown in Algorithm 3. In the online
setting, the algorithm is invoked periodically at each time step
to make a VM migration decision.

Algorithm 3 The MBOD-OPT algorithm

Input: Transition probabilities
Output: A decision on whether to migrate a VM

1: Build the objective and constraint functions
2: Invoke the brute-force search to find the m vector
3: If a feasible solution exists then
4: Extract the VM migration probability
5: if the probability is <1 then
6: return false
7: return true
Closed-form equations for L.;(o0), [.,(®), . . ., L() are

precomputed offline from (26); therefore, the run-time com-
putation is not required. The values of transition probabilities
are substituted into the equations for

Ly(@)Lo(),Ln(®)

and the objective and constraint functions of the NLP prob-
lem are generated by the algorithm. To solve the NLP prob-
lem, a brute-force search algorithm with a step of 0.1 is
applied, as its performance was sufficient for the purposes of
simulations. In MHOD-OPT, a decision to migrate a VM is
made only if either no feasible solution can be found, or the
migration probability corresponding to the current state is 1.

The justification for this is the fact that if a feasible solution
exists and the migration probability is less than 1, then for the
current conditions there is no hard requirement for an imme-
diate migration of a VM.

20

Algorithm 4 The MHOD algorithm

Input: A CPU utilization history
Output: A decision on whether to migrate a VM

1: if the CPU utilization history size > T; then
2: Convert the last CPU utilization value to a state
3: Invoke the Multisize Sliding Window estimation to obtain the

estimates of transition probabilities

10 4: Invoke the MHOD-OPT algorithm
5: return the decision returned by MHOD-OPT
6: return false
15 The MHOD algorithm shown in Algorithm 4 can be

25

40

45

50

55

60

65

viewed as a wrapper over the MHOD-OPT algorithm, which
adds the Multisize Sliding Window workload estimation.
During the initial learning phase T,, which was set to 30 time
steps, the algorithm does not migrate a VM. Once the learning
phase is over, the algorithm applies the Multisize Sliding
Window technique to estimate the probabilities of transitions
between the states and invokes the MHOD-OPT algorithm
passing the transition probability estimates as the argument.
The result of the MHOD-OPT algorithm invocation is
returned to the user.

The CPU Model

The proposed models and algorithms are suitable for both
single core and multi-core CPU architectures. The capacity of
a single core CPU is modeled in terms of its clock frequency
F. A VM’s CPU utilization v, is relative to the VM’s CPU
frequency f, and is transformed into a fraction of the host’s
CPU utilization U. These fractions are summed up over the N
VMs allocated to the host to obtain the host’s CPU utilization,
as shown in (37).

N 37
U= FZ fu.

For the purpose of the host overload detection problem,
multi-core CPUs are modeled as proposed in [3]. A multi-
core CPU with n cores each having a frequency fis modeled
as a single core CPU with the nf frequency. In other words, F
in (37) is replaced by nf. This simplification is justified, as
applications and VMs are not tied down to a specific core, but
can by dynamically assigned to an arbitrary core by a time-
shared scheduling algorithm. The only physical constraint is
that the CPU capacity allocated to a VM cannot exceed the
capacity of a single core. Removing this constraint would
require the VM to be executed on more than one core in
parallel. However, automatic parallelization of VMs and their
applications cannot be assumed.

Performance Evaluation on a Single Computing Server
Importance of Precise Workload Estimation

The purpose of this section is to show that the precision of
the workload estimation technique is desirable to achieve
high performance of the MHOD algorithm. To show this, an
artificial workload was constructed that illustrates a case
when the MHOD algorithm with the Multisize Sliding Win-
dow workload estimation leads to lower performance com-
pared to MHOD-OPT due to its inability to adapt quickly
enough to a highly non-stationary workload.

US 9,363,190 B2

21
TABLE 1

An artificial non-stationary workload

0-60's 60-86 s 86-160 s
Poo 1.0 0.0 1.0
Por 0.0 1.0 0.0
Pio 1.0 0.0 1.0
Py 0.0 1.0 0.0

It is defined that the host can be in one of two possible states
{0,1}, where the state 1 means that the host is being over-
loaded. Let the non-stationary workload be composed of a
sequence of three stationary workloads, whose probabilities
of transitions between the states are shown in Table 1. Simu-
lations are used to evaluate the algorithms. For this experi-
ment, the OTF constraint was set to 30%, and the sequence of
window sizes for the Multisize Sliding Window workload
estimation was (30, 40, 50, 60, 70, 80, 90, 100). The code of
the simulations is written in Clojure. To foster and encourage
reproducibility of experiments, the source code of the simu-
lations has been made publicly available online.

TABLE 2
Comparison of MHOD, MHOD-OPT and OPT
MHOD-30 MHOD-OPT-30 OPT-30
OTF 29.97% 16.30% 16.30%
Time 87 160 160

The simulation results are shown in Table 2. According to
the results, for the workload defined in Table 1 the MHOD-
OPT algorithm provides exactly the same performance as the
optimal offline algorithm (OPT). However, the MHOD algo-
rithm migrates a VM at the beginning of the third stationary
workload because it is not able to immediately recognize the
change of the workload, as shown for p,, and p,,, in FIG. 3,
with reference to FIGS. 1 and 2.

In summary, even though the Multisize Sliding Window
workload estimation provides high quality of estimation [22],
in some cases it may result in an inferior performance of the
MHOD algorithm compared to MHOD-OPT. This result was
expected, as MHOD-OPT skips the estimation phase and
utilizes the knowledge of real transition probabilities. The
artificial workload used in this section was specifically con-
structed to show that imprecise workload estimation may lead
to unsatisfactory performance of the MHOD algorithm. How-
ever, as shown in the next section, the MHOD algorithm
performs closely to OPT for real-world workloads.
Evaluation Using Planetlab Workload Traces

In an environment with multiple hosts, the MHOD algo-
rithm operates in a decentralized manner, where independent
instances of the algorithm are executed on every host. There-
fore, to evaluate the MHOD algorithm under a real-world
workload, a single host with a quad-core CPU serving a set of
heterogeneous VMs was simulated. The clock frequency of a
single core of the host was set to 3 GHz, which according to
the model introduced above transforms into 12 GHz. These
CPU characteristics correspond to a mid-range Amazon EC2
physical server type [24]. The amount ofthe host’s memory is
assumed to be enough for the VMs. The CPU frequency of a
VM was randomly set to one of the values approximately
corresponding to the Amazon EC2 instance types: 1.7 GHz, 2
GHz, 2.4 GHz, and 3 GHz. The CPU utilization of the VMs
was simulated based on the data provided as a part of the
CoMon project, a monitoring infrastructure for Planetlab

10

25

30

40

45

50

55

22

[27]. The project provides the data measured every five min-
utes from more than a thousand VMs running in more than
500 locations around the world. For the experiments, ten days
were randomly selected from the workload traces collected
during March and April 2011.

For a simulation run, a randomly generated set of VMs with
the CPU utilization traces assigned is allocated to the host. At
each time step, the host overload detection algorithm makes a
decision of whether a VM should be migrated from the host.
The simulation runs until either the CPU utilization traces are
over, or until a decision to migrate a VM is made by the
algorithm. At the end of a simulation run, the resulting value
of the OTF metric is calculated according to (11). The algo-
rithm of assigning the workload traces to a set of VMs is
presented in Algorithm 5. To avoid trivial cases and stress the
algorithms with more dynamic workloads, the original work-
load traces were filtered. The maximum allowed OTF after
the first 30 time steps was constrained to 10% and the mini-
mum overall OTF was constrained to 20%. Using the work-
load assignment algorithm, 100 different sets of VMs that
meet the defined OTF constraints were pregenerated. Every
algorithm was run for each set of VMs.

Algorithm 5 The workload trace assignment algorithm

Input: A set of CPU utilization traces

Output: A set of VMs

1: Randomly select the host’s minimum CPU utilization at the time O
from 80%, 85%, 90%, 95%, and 100%

2 while the host’s utilization < the threshold do

3: Randomly select the new VM’s CPU frequency

4: Randomly assign a CPU utilization trace

5 Add the new VM to the set of created VMs

6 return the set of created VMs

Benchmark Algorithms

In addition to the optimal offline algorithm introduced
above, a number of benchmark algorithms were imple-
mented. The benchmark algorithms were run with different
parameters to compare with the proposed MHOD algorithm.
This section gives a brief overview of the benchmark algo-
rithms; a detailed description of each of them is given in [3].
The first algorithm is a simple heuristic based on setting a
CPU utilization threshold (THR), which monitors the host’s
CPU utilization and migrates a VM if the defined threshold is
exceeded. This threshold-based heuristic was applied in a
number of related works [40, 15, 16, 33]. The next two algo-
rithms apply statistical analysis to dynamically adapt the
CPU utilization threshold: based on the median absolute
deviation (MAD), and on the interquartile range (IQR).

Two other algorithms are based on estimation of the future
CPU utilization using local regression and a modification of
the method robust to outliers, referred to as robust local
regression. These algorithms are denoted Local Regression
(LR) and Local Regression Robust (LRR) respectively. The
LR algorithm is in line with the regression-based approach
proposed by Guenter et al. [17]. Another algorithm continu-
ously monitors the host’s OTF and decides to migrate a VM if
the current value exceeds the defined parameter. This algo-
rithm is referred to as the OTF Threshold (OTFT) algorithm.
The last benchmark algorithm, the OTF Threshold Migration
Time (OTFTM) algorithm, is similar to OTFT; however, it
uses an extended metric that includes the VM migration time:

US 9,363,190 B2

23

T +1,
T+

OTF(1,, 1;) = S

where t, is the time, during which the host has been over-
loaded; t, is the total time, during which the host has been
active; and T, is the VM migration time.

MHOD Compared with Benchmark Algorithms

To shorten state configuration names of the MHOD algo-
rithm, they are referred to by denoting the thresholds between
the utilization intervals. For example, a 3-state configuration
([0%,80%), [80%,100%), 100%) is referred to as 80-100. The
following 2- and 3-state configurations of the MHOD algo-
rithm were simulated: 80-100, 90-100, and 100 (a 2-state
configuration). Each state configuration with the OTF param-
eter set to 10%, 20% and 30% was simulated. For experi-
ments, the VM migration time was set to 30 secs.

In order to find out whether different numbers of states and
different state configurations of the MHOD algorithm signifi-
cantly influence the algorithm’s performance in regard to the
time until a migration and the resulting OTF value, paired
t-tests were conducted. The tests on the produced time until a
migration data for comparing MHOD 80-100 with MHOD
100 and MHOD 90-100 with MHOD 100 showed non-statis-
tically significant difterences with the p-values 0.20 and 0.34
respectively. This means that the simulated 2- and 3-state
configurations of the MHOD algorithm on average lead to
approximately the same time until a migration. However,
there are statistically significant differences in the resulting
OTF value produced by these algorithms: 0.023% with 95%
Confidence Interval (CI) (0.001%, 0.004%) and
p-value=0.033 for MHOD 100 compared with MHOD
80-100; and 0.022% with 95% CI (0.000%, 0.004%) and
p-value=0.048 for MHOD 100 compared with MHOD
90-100. However, differences in the resulting OTF value in
the order of less than 0.1% are not practically significant;
therefore, the conclusion is that the simulated 2- and 3-state
configurations produce approximately the same results. Fur-
ther in this section, only the ([0%, 100%), 100%) 2-state
configuration of MHOD is compared with the benchmark
algorithms, as it requires simpler computations compared
with the 3-state configurations.

The experimental results comparing the 2-state configura-
tion of the MHOD algorithm (for the MHOD algorithm, the
OTF parameter is denoted in the suffix of the algorithm’s
name, e.g., for 10%, 20% and 30%: MHOD-10, MHOD-20
and MHOD-30) with the benchmark algorithms are depicted
in FIGS. 4A and 4B, with reference to FIGS. 1 through 3. It is
remarkable how closely the resulting OTF value of the
MHOD algorithm resembles the value set as the parameter of
the algorithm for 10% and 20%. The wider spread for 30% is
explained by the characteristics of the workload: in many
cases the overall OTF is lower than 30%, which is also
reflected in the resulting OTF of the optimal offline algorithm
(OPT-30). The experimental results show that the algorithm is
capable of meeting the specified OTF goal, which is consis-
tent with the theoretical model introduced above.

FIGS. 4A and 4B show that the THR, MAD, and IQR
algorithms are not competitive compared with the LR, LRR
and MHOD algorithms, as the produced time until a migra-
tion is low and does not significantly improve by adjustments
of the algorithm parameters. To compare the LR and LRR
algorithms with the MHOD algorithms, additional simula-
tions of the MHOD algorithm with the OTF parameter match-
ing the mean value of the resulting OTF produced by LR and
LRR were conducted. The following OTF parameter values

35

40

45

50

55

24
of'the MHOD algorithm were set to match the mean resulting
OTF values of LR and LRR: to match LR-1.05, LR-0.95 and
LR-0.85—9.9%, 18.2% and 31% respectively; to match
LRR-1.05, LRR-0.95 and LRR-0.85—9.9%, 17.9% and
30.4% respectively.

TABLE 3

Paired T-tests with 95% CIs for comparing the time
until a migration produced by MHOD. LR and LRR.

Alg. 1 (x10%) Alg. 2 (x10%) Diff. (x10%) p-value
MHOD (39.64) LR (44.29) 4.65 (2.73, 6.57) <0.001
MHOD (39.23) LRR (44.23) 5.00 (3.09, 6.91) <0.001

As intended, paired t-tests for the comparison of MHOD
with LR and MHOD with LRR showed non-statistically sig-
nificant differences in the resulting OTF values with both
p-values >0.9. Results of paired t-tests for comparing the time
until a migration produced by the algorithms with matching
resulting OTF values are shown in Table 3. The MHOD and
LRR algorithms are graphically compared in FIG. 5, with
reference to FIGS. 1 through 4B.

According to the results, there is a statistically significant
difference in the time until a migration produced by the algo-
rithms: the MHOD algorithm on average leads to approxi-
mately 10.5% and 11.3% shorter time until a migration than
LR and LRR respectively with the same mean resulting OTF
values. This means that the MHOD algorithm leads to a
slightly lower quality of VM consolidation compared with the
LR and LRR algorithms, while providing the advantage of
explicit specification of a QoS goal in terms of the OTF
metric. In contrast, the performance of the LR and LRR
algorithms in regard to the QoS can only be adjusted indi-
rectly by tuning the safety parameter. As seen in FIG. 5, the
lower time until a migration produced of the MHOD algo-
rithm can be partially explained by the fact that the spread of
the resulting OTF produced by the LRR algorithm is much
wider than that of MHOD, while MHOD precisely meets the
specified QoS goal. This means that in many cases LRR
provides worse QoS than MHOD, which leads to a higher
time until a migration.

Comparison of MHOD with OTFT and OTFTM

OTFT and OTFTM are two other algorithms that apart
from the MHOD algorithm allow explicit specification of the
QoS goal in terms of the OTF parameter. To compare the
performance of the OTFT, OTFTM and MHOD algorithms,
another performance metrics introduced. This metric is the
percentage of SLA violations relatively to the total number of
VM migrations, where SLA requirements are defined as
OTF=M, M is the limit on the maximum allowed resulting
OTF value. The SLA violation counter is incremented if after
a VM migration the resulting OTF is higher than the value M
specified in the SLAs.

The OTFT, OTFTM and MHOD algorithms were simu-
lated using the Planetlab workload described earlier. The
algorithms were simulated with the following values of the
OTF parameter set as the SLA requirement: 10%, 20% and
30%. The simulation results are shown in FIG. 6, with refer-
enceto FIGS. 1 through 5. The graphs show that MHOD leads
to slightly lower resulting OTF values and time until a migra-
tion. The SLLA violation levels caused by the algorithms are
shown in Table 4. It is clear that the MHOD algorithm sub-
stantially outperforms the OTFT and OTFTM algorithms in
the level of SLA violations leading to only 0.33% SLA vio-
lations, whereas both OTFT and OTFTM cause SLA viola-
tions of 81.33%.

US 9,363,190 B2

25
TABLE 4

SLA violations by OTFT, OTFTM and MHOD

OTF Parameter OTFT OTFTM MHOD
10% 100/100 100/100 0/100
20% 100/100 100/100 1/100
30% 44/100 44/100 0/100

Overall 81.33% 81.33% 0.33%

The obtained results can be explained by the fact that both
OTFT and OTFTM are unable to capture the overall behavior
of the system over time and fail to meet the SLA require-
ments. In contrast, the MHOD algorithm leverages the
knowledge of the past system states and by estimating future
states avoids SLA violations. For instance, in a case of a steep
rise in the load, OTFT and OTFTM react too late resulting in
an SLA violation. In contrast, MHOD acts more intelligently
and by predicting the potential rise migrates a VM before an
SLA violation occurs. As aresult, for the simulated PlanetLab
workload the MHOD algorithm keeps the level of SLA vio-
lations at less than 0.5%.

Comparison of MHOD with OPT

FIGS. 4A and 4B include the results produced by the
optimal offline algorithm (OPT) for the same values of the
OTF parameter set for the MHOD algorithm: 10%, 20% and
30%. The results of paired t-tests comparing the performance
of OPT with MHOD are shown in Table 5. The results show
that there is no statistically significant difference in the result-
ing OTF value, which means that for the simulated PlanetLab
workload the MHOD algorithm on average leads to approxi-
mately the same level of adherence to the QoS goal as the
optimal offline algorithm.

TABLE §

Paired T-tests for comparing MHOD with OPT

OPT MHOD Difference p-value
OTF 18.31% 18.25% 0.06% (-0.03,0.15) =0.226
Time 45,767 41,128 4,639 (3617,5661) <0.001

There is a statistically significant difference in the time
until a migration with the mean difference 04,639 with 95%
CI: (3617, 5661). Relatively to OPT, the time until a migra-
tion produced by the MHOD algorithm converts to 88.02%
with 95% CI: (86.07%, 89.97%). This means that for the
simulated Planetlab workload, the MHOD algorithm on
average delivers approximately 88% of the performance of
the optimal offline algorithm, which is highly efficient for an
online algorithm.

System Architecture and Implementation for Dynamic VM
Consolidation in a Cloud Data Center

This section introduces an architecture and implementa-
tion of OpenStack Neat, a software framework (computer
program product) for distributed dynamic VM consolidation
in Cloud data centers based on the OpenStack platform. The
framework is designed and implemented as a transparent
add-on to OpenStack, which means that the OpenStack instal-
lation need not be modified or specifically configured to ben-
efit from OpenStack Neat. FIG. 7, with reference to FIGS. 1
through 6, depicts a typical system 70 deployment of the key
components of OpenStack and OpenStack Neat, which may
include multiple instances of compute 71 and controller hosts
72. The framework acts independently of the base OpenStack
platform and applies VM consolidation processes by invok-
ing public Application Programming Interfaces (APIs) of

10

25

35

40

45

26

OpenStack. The purpose of the OpenStack Neat framework is
twofold: (1) providing a fully operational software for
dynamic VM consolidation that can be applied to existing
OpenStack Clouds; and (2) providing an extensible software
framework for conducting research on dynamic VM consoli-
dation.

OpenStack Neat is designed and implemented following
the distributed approach to dynamic VM consolidation intro-
duced previous sections. The target environment is an laaS,
e.g., Amazon EC2, where the provider is unaware of applica-
tions and workloads served by the VMs, and can only observe
them from outside. The proposed approach to distributed
dynamic VM consolidation consists in splitting the problem
into four sub-problems: underload/overload detection, VM
selection, and VM placement.

The current implementation of OpenStack Neat assumes a
single instance of the controller responsible for placing VMs
selected for migrations on hosts. However, due to distributed
underload/overload detection and VM selection algorithms,
the overall scalability is significantly improved compared
with existing centralized solutions. Furthermore, it is poten-
tially possible to implement replication of OpenStack Neat’s
global manager, which would provide a completely distrib-
uted system, as discussed below.

Related Work in System Context

Research work can be divided into two categories: (1)
theoretical work on various approaches to dynamic VM con-
solidation; and (2) practically implemented and publicly
available software systems. The framework presented in this
case study follows the distributed approach to dynamic VM
consolidation proposed in the previous sections, where every
compute host locally solves the problems of underload/over-
load detection and VM selection. Then, it sends a request to a
global manager to place only the selected for migration VMs
on other hosts.

A similar approach was followed by Wood et al. [36] in
their system called Sandpiper aimed at load balancing in
virtualized data centers using VM live migration. The main
objective of the system is to avoid host overloads referred to
as hot spots by detecting them and migrating overloaded VMs
to less loaded hosts. The authors applied an application-ag-
nostic approach, referred to as a black-box approach, in
which VMs are observed from outside, without any knowl-
edge of applications resident in the VMs. A hot spot is
detected when the aggregate usage of a host’s resources
exceeds the specified threshold for k out of n last measure-
ments, as well as for the next predicted value. Another pro-
posed approach is gray-box, when a certain application-spe-
cific data are allowed to be collected. The VM placement is
computed heuristically by placing the most loaded VM to the
least loaded host. The difference from the approach proposed
in this case study is that VMs are not consolidated; therefore,
the number of active hosts is not reduced to save energy.

Despite the large volume of research published on the topic
of dynamic VM consolidation, there are very few software
implementations publicly available online. One ofthe earliest
implementation of a VM consolidation manager is the
Entropy project. Entropy is a VM consolidation manager for
homogeneous clusters developed by Hermenier et al. [18] and
released under the LGPL license. Entropy is built on top of
Xen and focused on two objectives: (1) maintaining a con-
figuration of the cluster, where all VMs are allocated suffi-
cient resources; and (2) minimizing the number of active
hosts.

To optimize the VM placement, Entropy applies a two-
phase approach. First, a constraint programming problem is
solved to find an optimal VM placement, which minimizes

US 9,363,190 B2

27

the number of active hosts. Then, another optimization prob-
lem is solved to find a target cluster configuration with the
minimal number of active hosts that also minimizes the total
cost of reconfiguration, which is proportional to the cost of
VM migrations. In comparison to OpenStack Neat, Entropy
may find a more optimal VM placement by computing a
globally optimal solution for VM placement. However, the
required optimization problems must be solved by a central
controller with limited opportunities for replication, thus lim-
iting the scalability of the system and introducing a single
point of failure. This approach is applicable to relatively
small-scale private Clouds; however, it cannot be applied to
large-scale data centers with tens of thousands of nodes, such
as Rackspace [28], where decentralization and fault-toler-
ance are essential.

Feller et al. [12, 13] proposed and implemented a frame-
work for distributed management of VMs for private Clouds
called Snooze. In addition to the functionality provided by the
existing Cloud management platforms, such as OpenStack,
Eucalyptus, and OpenNebula, Snooze implements dynamic
VM consolidation as one of its base features. Another differ-
ence is that Snooze implements hierarchical distributed
resource management. The management hierarchy is com-
posed of three layers: local controllers on each physical node;
group managers managing a set of local controllers; and a
group leader dynamically selected from the set of group man-
agers and performing global management tasks. The distrib-
uted structure enables fault-tolerance and self-healing by
avoiding single points of failure and automatically selecting a
new group leader if the current one fails.

Snooze also integrates monitoring of the resource usage by
VMs and hosts, which can be leveraged by VM consolidation
policies. These policies are intended to be implemented at the
level of group managers, and therefore can only be applied to
subsets of hosts. This approach partially solves the problem
of scalability of VM consolidation by the cost of losing the
ability of optimizing the VM placement across all the nodes of
the data center. OpenStack Neat enables scalability by dis-
tributed underload/overload detection and VM selection, and
potentially replicating the VM placement controllers. In con-
trast to Snooze, it is able to apply global VM placement
algorithms for the selected for migration VMs by taking into
account the full set of hosts. Another difference is that Open-
Stack Neat transparently integrates with OpenStack, a Cloud
platform widely adopted and supported by the industry, thus
ensuring long-term development of the platform.

System Design

The aim of the OpenStack Neat project is to provide an
extensible framework for dynamic consolidation of VMs
based on the OpenStack platform. Extensibility in this con-
text means the ability to implement new VM consolidation
algorithms and apply them in OpenStack Neat without the
necessity to modify the source code of the framework itself.
Different implementations of the algorithms can be plugged
into the framework by modifying the appropriate options in
the configuration file. More information on configuring and
extending the framework is given below.

OpenStack Neat provides an infrastructure required for
monitoring VMs and hypervisors, collecting resource usage
data, transmitting messages and commands between the sys-
tem components, and invoking VM live migrations. The
infrastructure is agnostic to VM consolidation algorithms in
use and allows implementing custom decision-making algo-
rithms for each of the four sub-problems of dynamic VM
consolidation: host underload/overload detection, VM selec-
tion, and VM placement. The implementation of the frame-
work includes the algorithms proposed in sections. The fol-

5

10

15

20

25

30

35

40

45

50

55

60

65

28

lowing sections discuss the requirements and assumptions,
integration of the proposed framework with OpenStack, each
of'the framework’s components, as well as configuration and
extensibility of the framework.

Requirements and Assumptions

The components of the framework are implemented in the
form of OS services running on the compute and controller
hosts of the data center in addition to the core OpenStack
services. The framework components interact through a Rep-
resentational State Transfer (REST) interface; therefore, net-
work communication via the corresponding port specified in
the framework’s configuration must be enabled.

OpenStack Neat relies on live migration to dynamically
relocate VMs across physical machines. To enable live migra-
tion, it is required to set up a shared storage and correspond-
ingly configure OpenStack Nova (i.e. the OpenStack Com-
pute service) to use this storage for storing VM instance data.
For instance, a shared storage can be provided using the
Network File System (NFS), or the GlusterFS distributed file
system [5].

OpenStack Neat uses a database for storing information
about VMs and hosts, as well as resource usage data. It is
possible to use the same database server used by the core
OpenStack services. In this case, it is only required to create
a new database and user for OpenStack Neat. The required
database tables are automatically created by OpenStack Neat
on the first launch of its services.

Another requirement is that all the compute hosts must
have a user, which is enabled to switch the host into a low-
power mode, such as Suspend to RAM. This user account is
used by the global manager to connect to the compute hosts
via the Secure Shell (SSH) protocol and switch them into the
sleep mode when necessary. More information on deactivat-
ing and reactivating physical nodes is given below.

Since OpenStack Neat is implemented in Python, VM con-
solidation algorithms to be plugged in should also be imple-
mented in Python. It may be required to implement VM
consolidation algorithms in another programming language
for various reasons, such as performance requirements. Inte-
gration of such algorithms can be achieved by providing
Python wrappers that redirect calls to the corresponding
external programs.

Integration with OpenStack

OpenStack Neat services are installed independently of the
core OpenStack services. Moreover, the activity of the Open-
Stack Neat services is transparent to the core OpenStack
services. This means that OpenStack does not need to be
configured in a special way to be able to take advantage of
dynamic VM consolidation implemented by OpenStack
Neat. It also means, that OpenStack Neat can be added to an
existing OpenStack installation without the need to modify its
configuration.

The transparency is achieved by the independent resource
monitoring implemented by OpenStack Neat, and the inter-
action with the core OpenStack services using their public
APIs. The OpenStack APIs are used for obtaining informa-
tion about the current state of the system and performing VM
migrations. In particular, the APIs are used to get the current
mapping of VMs to hosts, hardware characteristics of hosts,
parameters of VM flavors (i.e., instance types), VM states,
and invoke VM live migrations. Although OpenStack Neat
performs actions affecting the current state of the system by
relocating VMs across hosts, it is transparently handled by the
core OpenStack services since VM migrations are invoked
via the public OpenStack APIs, which is equivalent to invok-
ing VM migrations manually by the system administrator.

US 9,363,190 B2

29

In the following sections, hosts running the Nova Compute
service; 1.e., hosting VM instances, are referred to as compute
hosts; and a host running the other OpenStack management
services but not hosting VM instances is referred to as the
controller host.

System Components

OpenStack Neat is composed of a number of components
and data stores, some of which are deployed on the compute
hosts 72, and some on the controller host 71, which can
potentially have multiple replicas. As shown in FIG. 8, with
reference to FIGS. 1 through 7, the system 80 is composed of
three main components:

Global manager 87—a component that is deployed on the
controller host 71 and makes global management deci-
sions, such as mapping VM instances to hosts, and ini-
tiating VM live migrations.

Local manager 83—a component that is deployed on every
compute host 72 and makes local decisions, such as
deciding that the host is underloaded or overloaded, and
selecting VM to migrate to other hosts.

Data collector 86—a component that is deployed on every
compute host 72 and is responsible for collecting data on
the resource usage by VM instances and hypervisors,
and then storing the data locally 84 and submitting it to
the central database 85.

The deployment model may vary for each particular sys-
tem 80 depending on its requirements. For instance, the cen-
tral database 85 can be deployed on a separate physical node,
or be distributed across multiple physical nodes. The location
and deployment of the database server (e.g., central database
85) is transparent to OpenStack Neat, which only requires a
configuration parameter to be set to the network address of the
database front-end server. For simplicity, in the experimental
testbed used in this case study, the database server (e.g.,
central database 85) is deployed on the same physical node
hosting the global manager 87, as shown in FIG. 8.

The Global Manager

The global manager 87 is deployed on the controller host
71 and is responsible for making VM placement decisions
and initiating VM migrations. It exposes a REST web service,
which accepts requests from local managers 83. The global
manager 87 processes two types of requests: (1) relocating
VMs from an underloaded host; and (2) offloading a number
of VMs from an overloaded host.

FIG. 9, with reference to FIGS. 1 through 8, shows a
sequence diagram of handling a host underload request by the
global manager 87. First, a local manager 83 detects anunder-
load of the host using the specified in the configuration under-
load detection algorithm. Then, it sends an underload request
to the global manager 87 including the name of the under-
loaded host. The global manager 87 calls the OpenStack Nova
API 91 to obtain the list of VM currently allocated to the
underloaded host. Once the list of VMs is received, the global
manager 87 invokes the VM placement algorithm with the
received list of VMs along with their resource usage and
states of hosts fetched from the database as arguments. Then,
according to the VM placement generated by the algorithm,
the global manager 87 submits the appropriate VM live
migration requests to the OpenStack Nova API 91, and moni-
tors the VM migration process to determine when the migra-
tions are completed. Upon the completion of the VM migra-
tions, the global manager 87 switches the now idle source host
into the sleep mode using the procedure described below.

As shown in FIG. 10, with reference to FIGS. 1 through 9,
handling overload requests is similar to underload requests.
The difference is that instead of sending just the host name,
the local manager 83 also sends a list of UUIDs of the VM

20

25

35

40

45

55

30

selected by the configured VM selection algorithm to be
offloaded from the overloaded host. Once the request is
received, the global manager 87 invokes the specified in the
configuration VM placement algorithm and passes as argu-
ments the list of VMs received from the local manager 83 to
be placed on other hosts along with other system information.
If some of the VM are placed on hosts that are currently in the
sleep mode, the global manager reactivates them using the
Wake-on-LLAN technology, as described below. Then, simi-
larly to handling underload requests, the global manager 87
submits VM live migration requests to the OpenStack Nova
API 91.

Rest API

The global manager exposes a REST web service (REST
API) for processing VM migration requests sent by local
managers. The service Uniform Resource Locator (URL) is
defined according to configuration options specified in /etc/
neat/neat.conf, which is discussed in detail below. The two
relevant options are:

global_manager_host—the name of the host running the

global manager;

global_manager_port—the port that should be used by the

web service to receive requests.

Using these configuration options, the service URL is com-
posed according to the following template: http://global_ma-
nager_host:global_manager_port/. The global manager 87
processes two types of requests from local managers 83: host
underloads, and host overloads discussed in the previous
section. Both types of requests are served at a single
resource ‘/” accessed using the PUT method of the Hypertext
Transfer Protocol (HTTP). The type of a received request is
determined by the global manager 87 by analyzing the param-
eters included in the request. The following parameters are
common to both types of requests:

username—the admin user name specified in the configu-

ration file, which is used to authenticate the client mak-
ing the request as being allowed to access the web ser-
vice. This parameter is sent SHA-1-encrypted to avoid
sending the user name in the open form over the net-
work.

password—the admin password specified in the configu-

ration file, which is used to authenticate the client mak-
ing the request as being allowed to access the web ser-
vice. Similarly to username, this parameter is also sent
encrypted with the SHA-1 algorithm.

time—the time when the request has been sent. This

parameter is used by the global manager to identify and
enforce time-outs, which may happen if a request has
been sent along time ago rendering it non-representative
of the current state of the system.

host—the host name of the overloaded or underloaded

host, where the local manager sending the request is
deployed on.

reason—an integer specifying the type of the request,

where 0 represents a host underload request, and 1 rep-
resents a host overload request.

If the request type specified by the reason parameter is 1
(i.e., denoting an overload request), there is an extra manda-
tory parameter vm_uuids. This is a string parameter, which
must contain a coma-separated list of Universally Unique
Identifiers (UUIDs) of VMs selected for migration from the
overloaded host.

If a request contains all the required parameters and the
provided credentials are correct, the service responds with the
HTTP status code 200 OK. The service uses standard HTTP
error codes to respond in cases of errors. The following error
codes are used:

US 9,363,190 B2

31

400—bad input parameter: incorrect or missing param-

eters;

401—unauthorized: user credentials are missing;

403—forbidden: user credentials do not much the ones

specified in the configuration file;

405—method not allowed: the request has been made with

a method other than the only supported PUT method;
422—precondition failed: the request has been sent more
than 5 seconds ago, which means that the states of the
hosts or VMs may have changed—a retry is required.
Switching Power States of Hosts

One of the main features required to be supported by the
hardware and OS in order to take advantage of dynamic VM
consolidation to save energy is the Advanced Configuration
and Power Interface (ACPI). The ACPI standard defines plat-
form-independent interfaces for power management by the
OS. The standard is supported by Linux, the target OS for the
OpenStack platform. ACPI defines several sets of power
states, the most relevant of which is the sleep state S3, referred
to as Suspend to RAM. Meisner et al. [23] showed that power
consumption of a typical blade server can be reduced from
450 W in the active state to just 10.4 W in the S3 state. The
transition latency is currently mostly constrained by the
Power Supply Unit (PSU) of the server, which leads to the
total latency of approximately 300 ms. This latency is accept-
able for the purposes of dynamic VM consolidation, as VM
live migrations usually take tens of seconds.

The Linux OS provides an API to programmatically switch
the physical machine into the sleep mode. In particular, Cen-
tOS supports a pm-utils package, which includes command
line programs for changing the power state of the machine.
First, to check whether the Suspend to RAM state is sup-
ported, the following command can be used: pm-is-sup-
ported—suspend. If the command returns 0, the Suspend to
RAM state is supported, otherwise it is not supported. If the
state is supported, the following command can be used to
enable it: pm-suspend.

It is possible to reactivate a physical machine over the
network using the Wake-on-LLAN technology. This technol-
ogy has been introduced in 1997 by the Advanced Manage-
ability Alliance (AMA) formed by Intel and IBM, and is
currently supported by most modern servers. To reactivate a
server using Wake-on-LLAN, it is necessary to send over the
network a special packet, called the magic packet. This can be
done using the ether-wake Linux program as follows: ether-
wake-i interface mac_address, where interface is replaced
with the name of the network interface to send the packet
from, and mac_address is replaced with the actual Media
Access Control (MAC) address of the host to be reactivated.
The Local Manager

The local manager component 83 is deployed on every
compute host as an OS service running in the background.
The service periodically executes a function that determines
whether it is necessary to reallocate VMs from the host. A
high-level view of the workflow performed by the local man-
ager 83 is shown in FIG. 11, with reference to FIGS. 1 through
10. At the beginning of each iteration it reads (1101) from the
local storage 84 the historical data on the resource usage by
the VMs and hypervisor stored by the data collector 86. Then,
the local manager 83 invokes (1103) the specified in the
configuration underload detection algorithm to determine
(1105) whether the host is underloaded. If the host is under-
loaded, the local manager sends (1107) an underload request
to the global manager’s REST API to migrate all the VMs
from the host and switch the host to a low-power mode.

If the host is not underloaded, the local manager proceeds
to invoking (1109) the specified in the configuration overload

10

15

20

25

30

35

40

45

50

55

60

65

32

detection algorithm. Then, another decision process (1111)
occurs. If the host is overloaded, the local manager invokes
(1113) the configured VM selection algorithm to select VMs
to offload from the host. Once the VMs to migrate from the
host are selected, the local manager sends (1115) an overload
request to the global manager’s REST API to migrate the
selected VMs. Similar to the global manager 87, the local
manager 83 can be configured to use custom underload detec-
tion, overload detection, and VM selection algorithms using
the configuration file discussed below.
The Data Collector

The data collector 86 is deployed on every compute host 72
as an OS service running in the background. The service
periodically collects the CPU utilization data for each VM
running on the host, as well as data on the CPU utilization by
the hypervisor. The collected data are stored in the local
file-based data store 84, and also submitted to the central
database 85. The data are stored as the average number of
MHz consumed by a VM during the last measurement inter-
val of length T. In particular, the CPU usage C,"(t,,t;) of aVM
1, which is a function of the bounds of a measurement interval
[to.t;], is calculated as shown in (39).

i (1) ’

39
Ciwo,) = o9

where n," is the number of virtual CPU cores allocated to the
VM i; F is the frequency of a single CPU core in MHz; and
T,"(t) is the CPU time consumed by the VM i up to the time t.
The CPU usage of the hypervisor th (tost;) is calculated as a
difference between the overall CPU usage and the CPU usage
by the set of VMs allocated to the host, as shown in (40).

Wt F() - (1) (40)

Chig, 1) =
i(to, 1) p—

- Z Ci (10, 11),

ieV;

where njh is the number of physical cores of the host j; 'cjh(t) is
the CPU time consumed by the host overall up to the time t;
and 'V, is the set of VM allocated to the host j. The CPU usage
data are stored as integers. This data format is portable: the
stored values can be approximately converted to the CPU
utilization percentages for any host or VM type, supporting
heterogeneous hosts and VMs.

The actual data are obtained using libvirt’s API in the form
of'the CPU time consumed by VMs and hosts overall to date.
Using the CPU time collected at the previous time step, the
CPU time for the last time interval is calculated. According to
the CPU frequency of the host and the length of the time
interval, the CPU time is converted into the required average
MHz consumed by the VM over the last time interval. Then,
using the VMs’ CPU utilization data, the CPU utilization by
the hypervisor is calculated. The collected data are stored
both locally 84 and submitted to the central database 85. The
number of the latest data values to be stored locally and
passed to the underload/overload detection and VM selection
algorithms is defined by the data_collector_data_length
option in the configuration file.

At the beginning of every iteration, the data collector 86
obtains the set of VMs currently running on the host using the
Nova API 91 and compares them to the VMs running on the
host at the previous time step. If new VMs have been found,
the data collector fetches the historical data about them from
the central database 85 and stores the data in the local file-

US 9,363,190 B2

33

based data store 84. If some VMs have been removed, the data
collector 86 removes the data about these VMs from the local
data store 84.

While OpenStack Neat oversubscribes the CPU ofhosts by
taking advantage of information on the real-time CPU utili-
zation, it does not overcommit RAM. In other words, RAM is
still a constraint in placing VMs on hosts; however, the con-
straint is the maximum amount of RAM that can be used by a
VM statically defined by its instance type, rather than the
real-time RAM consumption. One of the reasons for that is
that RAM is a more critical resource compared with the CPU,
as an application may fail due to insufficient RAM, whereas
insufficient CPU may just slow down the execution of the
application. Another reason is that in contrast to the CPU,
RAM usually does not become a bottleneck resource, as
shown by an analysis of workload traces and information
from the industry [29, 1].

Data Stores

As shown in FIG. 8, the system 80 contains two types of
data stores:

Central database 85—a database server, which can be
deployed either on the controller host 71, or on one or
more dedicated hosts (not shown).

Local file-based data storage 84—a data store deployed on
every compute host 72 and used for temporary caching
the resource usage data to use by the local managers 83
in order to avoid excessive database queries.

The details about the data stores are given in the following

subsections.
Central Database

The central database 85 is used for storing historical data
on the resource usage by VMs and hypervisors, as well as
hardware characteristics of hosts. The central database 85 is
populated by the data collectors 86 deployed on compute
hosts 72. There are two main use cases when the data are
retrieved from the central database 85 instead of the local
storage 84 of the compute hosts 72. First, it is used by local
managers 83 to fetch the resource usage data after VM migra-
tions. Once a VM migration is completed, the data collector
86 deployed on the destination host fetches the required his-
torical data from the central database 85 and stores them
locally 84 for use by the local manager 83.

The second use case of the central database 85 is when the
global manager 87 computes a new placement of VMs on
hosts. VM placement algorithms require information on the
resource consumption of all the hosts in order to make global
allocation decisions. Therefore, every time there is a need to
place VMs on hosts, the global manager 87 queries the central
database 85 to obtain the up-to-date data on the resource
usage by hypervisors and VMs.

TABLE 6

The database schema:

Field Type
The hosts table
id Integer
hostname String(255)
cpu_mhz Integer
cpu__cores Integer
ram Integer
The host__resource__usage table

id Integer
host-id Integer

10

15

20

25

30

35

40

45

50

55

60

65

34
TABLE 6-continued

The database schema:

Field Type
timestamp DateTime
cpu_mhz Integer
The vms table
id Integer
uuid String(36)
The vim__resource__usage table
id Integer
vm__id Integer
timestamp DateTime
cpu_mhz Integer

As shown in Table 6, the database schema contains four
main tables: hosts, host_resource_usage, vms, and vm_re-
source_usage. The hosts table stores information about hosts,
such as the host names, CPU frequency of a physical core in
MHz, number of CPU cores, and amount of RAM in MB. The
vims table stores the UUIDs of VMs assigned by OpenStack.
The host_resource_usage and vm_resource_usage tables
store data on the resource consumption over time by hosts and
VMs respectively.

Local File-Based Data Store

A local manager 83 at each iteration requires data on the
resource usage by the VMs and hypervisor of the correspond-
ing host in order to pass them to the underload/overload
detection and VM placement algorithms. To reduce the num-
ber of queries to the central database 85 over the network
(e.g., network 1425 in FIG. 14), apart from submitting the
data into the central database 85, the data collector 86 tem-
porarily stores the data locally 84. This way, the local man-
ager 83 can justread the data from the local file storage 84 and
avoid having to retrieve data from the central database 85.

The data collector 86 stores the resource usage data locally
84 in local_data_directory/vms/ as plain text files, where
local_data_directory is defined in the configuration file dis-
cussed below. The data for each VM are stored in a separate
file named after the UUID ofthe VM. The data on the resource
usage by the hypervisor are stored in the local_data_direc-
tory/host file. The format of the files is a new line separated
list of integers representing the average CPU consumption in
MHz during measurement intervals.

Configuration

The configuration of OpenStack Neat is stored in the /etc/
neat/neat.conf file in the standard INI format using the ‘#
character for denoting comments. It is assumed that this file
exists on all the compute and controller hosts and contains the
same configuration.

One of the ideas implemented in OpenStack Neat is pro-
viding the user with the ability to change the implementation
and parameters of any of the four VM consolidation algo-
rithms simply by modifying the configuration file. This pro-
vides the means of adding to the system and enabling custom
VM consolidation algorithms without modifying the source
code of the framework. The algorithms are configured using
the options with the algorithm_prefix. More information on
adding and enabling VM consolidation algorithms is given
below.

Extensibility of the Framework

One of the main points of the framework’s extensibility is
the ability to add new VM consolidation algorithm to the
system and enable them by updating the configuration file
without the necessity in modifying the source code of the

US 9,363,190 B2

35

framework itself. There are four algorithms that can be
changed through a modification of the configuration file:
underload/overload detection, VM selection, and VM place-
ment algorithms. The values of the corresponding configura-
tion options should be fully qualified names of functions
available as a part of one of the installed Python libraries. The
fact that the functions are specified by their fully qualified
names also means that they can be installed as a part of a
Python library independent from OpenStack Neat. The four
corresponding configuration options are the following:

1. algorithm_underload_detection_factory

2. algorithm_overload_detection_factory

3. algorithm_vm_selection_factory

4. algorithm_vm_placement_factory

Since an algorithm may need to be initialized prior to its
usage, the factory function pattern is applied. The functions
specified as values of any of the algorithm_*_factory con-
figuration options are not functions that actually implement
VM consolidation algorithms, rather they are functions that
return initialized instances of functions implementing the
corresponding VM consolidation algorithms. All functions
implementing VM consolidation algorithms and their facto-
ries should adhere to the corresponding predefined interfaces.
For example, all factory functions of overload detection algo-
rithms must accept a time step, migration time, and algorithm
parameters as arguments. The function must return another
function that implements the required consolidation algo-
rithm, which in turn must follow the interface predefined for
overload detection algorithms.

Every function implementing an overload detection algo-
rithm must: (1) accept as arguments a list of CPU utilization
percentages and dictionary representing the state of the algo-
rithm; and (2) return a tuple containing the decision of the
algorithm as a boolean and updated state dictionary. If the
algorithm is stateless, it should return an empty dictionary as
the state. Definitions of the interfaces of functions imple-
menting VM consolidation algorithms and their factories are
given in Table 7.

Table 7: Interfaces of VM Consolidation Algorithms and
their Factory Functions

10

15

20

25

30

35

36

solidation algorithm may also preserve state across invoca-
tions. This can be useful for implementing stateful algo-
rithms, or as a performance optimization measure, e.g., to
avoid repeating costly computations. Preserving state is done
by accepting a state dictionary as an argument, and returning
the updated dictionary as the second element of the return
tuple.

Currently, the data collector 86 only collects data on the
CPU utilization. It is possible to extend the system 80 to
collect other types of data that may be passed to the VM
consolidation algorithms. To add another type of data, it is
necessary to extend the host_resource_usage and vm_re-
source_usage database tables by adding new fields for storing
the new types of data. Then, the execute function of the data
collector should be extended to include the code required to
obtain the new data and submit them to the central database
85. Finally, the local managers 83 and global managers 87
need to be extended to fetch the new type of data from the
central database 85 to be passed to the appropriate VM con-
solidation algorithms.

Deployment

OpenStack Neat needs to be deployed on all the compute
hosts 72 and controller hosts 71. The deployment includes
installing dependencies, cloning the project’s Git repository,
installing the project, and starting up the services. The process
is cumbersome since multiple steps should be performed on
each host. The OpenStack Neat distribution includes a num-
ber of Shell scripts that simplify the deployment process. The
following steps are required to perform a complete deploy-
ment of OpenStack Neat:

1. Clone the project’s repository on the controller host by

executing:

git clone git://github.com/beloglazov/openstack-neat.git

2. Install the required dependencies by executing the fol-

lowing command from the cloned repository ifthe OS of
the controller is CentOS: ./setup/deps-centos.sh

3. In the cloned repository, modify neat.conf to meet the

requirements. In particular, it is necessary to enter the
names of the available compute hosts 72. It is also nec-

Algorithm return

Algorithm Factory arguments Algorithm arguments
Underload 1. time_ step: int. =0 1. cpu__utilization: list(float)
detection 2. migration_ time: float, =0 2. state: dict(str: *)
3. params: dict(str: *)
Overload 1. time_ step: int. =0 1. cpu__utilization: list(float)
detection 2. migration_ time: float, =0 2. state: dict(str: *)
3. params: dict(str: *)
VM 1. time__step: int. =0 vms__cpu: dict(str: list(int))
selection 2. migration_ time: float, =0 vms__ram: dict(str: list(int))
3. params: dict(str: *) state: dict(str: *)
VM 1. time__step: int. =0 hosts__cpu__usage: dict(str: int)
placement 2. migration_ time: float, =0 hosts__cpu__total: dict(str: int)
3. params: dict(str: *) hosts__ram_ usage: dict(str: int)

hosts__ram_ total: dict(str: int)

vms__cpu: dict(str: list(int))
vms__ram: dict(str: list(int))
state: dict(str: *)

VRN R W W

inactive__hosts__cpu: dict(str: int)
inactive__hosts__ram: dict(str: int)

. decision: bool
. state: dict(str: *)

[

—

. decision: bool
state: dict(str: *)

N

1. vms: list(str)
2. state: dict(str: *)

1. alloc.: dict(str: str)
2. state: dict(str: *)

Using the algorithm_*_parameters configuration options,
it is possible to pass arbitrary dictionaries of parameters to
VM consolidation algorithm factory functions. The param-
eters must be specified as an object in the JSON format on a
single line. The specified JSON strings are automatically
parsed by the system and passed to factory functions as
Python dictionaries. Apart from being parameterized, a con-

60

65

essary to create a database on the database server acces-
sible with the details specified in the configuration file.

4. Install OpenStack Neat on the controller host 71 by
executing the following command from the project’s
directory: sudo python setup.py install. This command
will also copy the modified configuration file to /etc/
neat/neat.conf.

US 9,363,190 B2

37

5. Using the scripts provided in the package, it is possible
to install OpenStack Neat on all the compute hosts 72
specified in the configuration file remotely from the
controller 71. First, the following command can be used
to clone the repository on all the compute hosts 72:
/compute-clone-neat.py.
6. Once the repository is cloned, OpenStack Neat and its
dependencies can be installed on all the compute hosts
72 by executing the two following commands on the
controller 71: ./compute-install-deps.py; ./compute-in-
stall-neat.py
7. Next, it is necessary to copy the modified configuration
file to the compute hosts 72, which can be done by the
following command: ./compute-copy-conf.py
8. All OpenStack Neat services can be started on the con-
troller 71 and compute hosts 72 with the following single
command ./all-start.sh
Once all the steps listed above are completed, OpenStack
Neat’s services should be deployed and started up. If any
service fails, the log files can be found in /var/log/neat/ on the
corresponding host.
VM Consolidation Algorithms
As mentioned earlier, OpenStack Neat is based on the
approach to the problem of dynamic VM consolidation, pro-
posed in the previous sections, which includes dividing the
problem into four sub-problems: (1) host underload detec-
tion; (2) host overload detection; (3) VM selection; and (4)
VM placement. This section discusses some of the imple-
mented algorithms.
Host Underload Detection
In the experiments of this case study, a simple heuristic is
used for the problem of underload detection shown in Algo-
rithm 6. The algorithm calculates the mean of the n latest CPU
utilization measurements and compares it to the specified
threshold. If the mean CPU utilization is lower than the
threshold, the algorithm detects a host underload situation.
The algorithm accepts three arguments: the CPU utilization
threshold, the number of last CPU utilization values to aver-
age, and a list of CPU utilization measurements.

Algorithm 6 The averaging threshold-
based underload detection algorithm

Input: threshold, n, utilization
Output: Whether the host is underloaded
1: If utilization is not empty then

2 utilization < last n values of utilization

3: meanUtilization < sum(utilization) / len(utilization)
4: return meanUtilization = threshold

5 return false

Host Overload Detection

OpenStack Neat includes several overload detection algo-
rithms, which can be enabled by modifying the configuration
file. One of the simple included algorithms is the averaging
Threshold-based (THR) overload detection algorithm. The
algorithm is similar to Algorithm 6, while the only difference
is that it detects overload situations if the mean of the n last
CPU utilization measurements is higher than the specified
threshold.

Another overload detection algorithm included in the
default implementation of OpenStack Neat is based on esti-
mating the future CPU utilization using local regression (i.e.,
the Loess method), referred to as the Local Regression Robust
(LRR) algorithm shown in Algorithm 7, which has been intro-
duced in [3]. The algorithm calculates the Loess parameter
estimates, and uses them to predict the future CPU utilization

10

15

20

25

30

35

40

45

50

55

60

65

38

at the next time step taking into account the VM migration
time. In addition, the LR algorithm accepts a safety param-
eter, which is used to scale the predicted CPU utilization to
increase or decrease the sensitivity of the algorithm to poten-
tial overloads.

Algorithm 7 The Local Regression Robust
(LRR) overload detection algorithm

Input: threshold, param, n, migrationTime, utilization
Output: Whether the host is overloaded

1: if len(utilization) < n then.

2: return false

3: estimates <— loessRobustParameterEstimates(last n values of
utilization)

4: prediction < estimates[0] + estimates[1] x (1 + migrationTime)

return param x prediction = threshold

A more complex overload detection algorithm included in
OpenStack Neat is the Markov Overload Detection (MHOD)
algorithm introduced and described in detail in the previous
sections.

VM Selection

Once a host overload has been detected, it is necessary to
determine what VMs are the best to be migrated from the host.
This problem is solved by VM selection algorithms. An
example of such an algorithm is simply randomly selecting a
VM from the set of VMs allocated to the host. Another algo-
rithm shown in Algorithm 8 is called Minimum Migration
Time Maximum CPU utilization MMTMC). This algorithm
first selects VMs with the minimum amount of RAM to mini-
mize the live migration time. Then, out of the selected subset
of VMs, the algorithm selects the VM with the maximum
CPU utilization averaged over the last n measurements to
maximally reduce the overall CPU utilization of the host.

Algorithm 8 The MMTMC algorithm

Input: n, vmsCpuMap, vmsRamMap
Output: A VM to migrate
: minRam < min(values of vmsRamMap)
maxCpu < 0
selectedVm < None
for vim, cpu in vimsCpuMap do
if vmsRamMap[vm] > minRam then
continue
vals <= last n values of cpu
mean < sum(vals) / len(vals)
9: if maxCpu < mean then

10: maxCpu < mean
11: selectedVm < vin
12: return selectedVm

VM Placement

The VM placement problem can be seen as a bin packing
problem with variable bin sizes, where bins represent hosts;
bin sizes are the available CPU capacities of hosts; and items
are VMs to be allocated with an extra constraint on the
amount of RAM. As the bin packing problem is NP-hard, it is
appropriate to apply a heuristic to solve it. OpenStack Neat
implements a modification of the Best Fit Decreasing (BFD)
algorithm, which has been shown to use no more than
11/9-OPT+1 bins, where OPT is the number of bins of the
optimal solution [37].

US 9,363,190 B2

39

Algorithm 9 The Best Fit Decreasing
(BFD) VM placement algorithm

Input: n, hostsCpu, hostsRam, inactiveHostsCpu, inactiveHostsRam,
vmsCpu, vmsRam
Output: A map of VM UUIDs to host names

1: vmTuples < empty list

2: for vm, cpu in vimsCpu do

3: vals < last n values of cpu
4: append a tuple of the mean of vals, vmsRam[vm], and v to
vmTuples

5: vms < sortDecreasing(vinTuples)

6: hostTuples < empty list

7: for host, cpu in hostsCpu do

8: append a tuple of cpu, hostsRam[host] host to host(Tuples
9: hosts < sortIncreasing(hostTuples)

: inactiveHostTuples < empty list

11: for host cpu in inactiveHostsCpu do

12: append a tuple of cpu, inactiveHostsRam[host], host to
inactiveHostTuples

13: inactiveHosts <= sortIncreasing(inactiveHost Tuples)

14: mapping < empty map

15: for vinCpu, vinRam, vmUuid in vims do

16: mapped < false

17: while not mapped do

18: allocated < false

19: for _, _, host in hosts do

20: if hostsCpulhost] = vinCpu and hostsRam[host] =

vmRam then

21: mapping[vmUuid] < host

22: hostsCpulhost] <= hostsCpu[host] - vimCpu

23: hostsRam[host] <= hostsRam[host] — vmRam

24: mapped < true

25: allocated < true

26: break

27: if not allocated then

28: if inactiveHosts is not empty then

29: activatedHost <= pop the first from inactiveHosts

30: append activatedHost to hosts

31: hosts < sortIncreasing(hosts)

32: hostsCpu[activatedHost[2]] < activatedHost[0]

33: hostsRam[activatedHost[2]] < activatedHost[1]

34: else

35: break

36: if len(vims) == len(mapping) then

37: return mapping

38: return empty map

The implemented modification of the BFD algorithm
shown in Algorithm 9 includes several extensions: the ability
to handle extra constraints, namely, consideration of cur-
rently inactive hosts, and a constraint on the amount of RAM
required by the VMs. An inactive host is only activated when
a VM cannot be placed on one of the already active hosts. The
constraint on the amount of RAM is taken into account in the
first fit manner; i.e., if a host is selected for a VM as a best fit
according to its CPU requirements, the host is confirmed if it
just satisfies the RAM requirements. In addition, similarly to
the averaging underload and overload detection algorithms,
the algorithm uses the mean values of the last n CPU utiliza-
tion measurements as the CPU constraints. The worst-case
complexity of the algorithm is (n+m/2)m, where n is the
number of physical nodes, and m is the number of VMs to be
placed. The worst case occurs when every VM to be placed
requires a new inactive host to be activated.

Implementation

OpenStack Neat is implemented in Python. The choice of
the programming language has been mostly determined by
the fact that OpenStack itself is implemented in Python;
therefore, using the same programming language could
potentially simplify the integration of the two projects. Since
Python is a dynamic language, it has a number of advantages,
such as concise code, no type constraints, and monkey patch-
ing, which refers to the ability to replace methods, attributes,

10

15

20

25

30

35

40

45

55

60

65

40

and functions at run-time. Due to its flexibility and expres-
siveness, Python typically helps to improve productivity and
reduce the development time compared with statically typed
languages, such as Java and C++. The downsides of dynamic
typing are the lower run-time performance and lack of com-
pile time guarantees provided by statically typed languages.

To compensate for the reduced safety due to the lack of
compile time checks, several programming techniques are
applied in the implementation of OpenStack Neat to mini-
mize bugs and simplify maintenance. First, the functional
programming style is followed by leveraging the functional
features of Python, such as higher-order functions and clo-
sures, and minimizing the use ofthe object-oriented program-
ming features, such as class hierarchies and encapsulation.
One desirable technique that is applied in the implementation
of OpenStack Neat is the minimization of mutable state.
Mutable state is one of the causes of side effects, which
prevent functions from being referentially transparent. This
means that if a function relies on some global mutable state,
multiple calls to that function with the same arguments do not
guarantee the same result returned by the function for each
call.

The implementation of OpenStack Neat tries to minimize
side effects by avoiding mutable state where possible, and
isolating calls to external APIs in separate functions covered
by unit tests. In addition, the implementation splits the code
into small easy to understand functions with explicit argu-
ments that the function acts upon without mutating their
values. To impose constraints on function arguments, the
Design by Contract (DbC) approach is applied using the
PyContracts library. The approach prescribes the definition of
formal, precise, and verifiable interface specifications for
software components. PyContracts lets the programmer to
specify contracts on function arguments via a special format
of Python docstrings. The contracts are checked at run-time,
and if any of the constraints is not satisfied, an exception is
raised. This approach helps to localize errors and fail fast,
instead of hiding potential errors. Another advantage of DbC
is comprehensive and up-to-date code documentation, which
can be generated from the source code by automated tools.

To provide stronger guarantees of the correctness of the
program, itis desirable to apply unit testing. According to this
method, each individual unit of source code, which in this
context is a function, should be tested by an automated pro-
cedure. The goal of unit testing is to isolate parts of the
program and show that they perform correctly. One of the
most efficient unit testing techniques is implemented by the
Haskell QuickCheck library. This library allows the defini-
tion of tests in the form of properties that must be satisfied,
which do not require the manual specification of the test case
input data. QuickCheck takes advantage of Haskell’s rich
type system to infer the required input data and generates
multiple test cases automatically.

The implementation of OpenStack neat uses Pyqcy, a
QuickCheck-like unit testing framework for Python. This
library allows the specification of generators, which can be
seen as templates for input data. Similarly to QuickCheck,
Pyqcy uses the defined templates to automatically generate
input data for hundreds of'test cases for each unit test. Another
Python library used for testing of OpenStack Neat is Mock-
test. This library leverages the flexibility of Python’s monkey
patching to dynamically replace, or mock, existing methods,
attributes, and functions at run-time. Mocking is essential for
unit testing the code that relies on calls to external APIs. In
addition to the ability to set artificial return values of methods
and functions, Mocktest allows setting expectations on the

US 9,363,190 B2

41

number of the required function calls. If the expectations are
not met, the test fails. Currently, OpenStack Neat includes
more than 150 unit tests.

TABLE 8

The OpenStack Neat codebase summary

Package Files Lines of code Lines of comments
Core 21 2,144 1,946
Tests 20 3,419 260

OpenStack Neat applies Continuous Integration (CI) using
the Travis CI service. The aim of the CI practice is to detect
integration problems early by periodically building and
deploying the software system. Travis Cl is attached to Open-
Stack Neat’s source code repository through Git hooks. Every
time modifications are pushed to the repository, Travis CI
fetches the source code and runs a clean installation in a
sandbox followed by the unit tests. If any step of the integra-
tion process fails, Travis CI reports the problem.

Despite all the precautions, run-time errors may occur in a
deployed system. OpenStack Neat implements multi-level
logging functionality to simplify the post-mortem analysis
and debugging process. The verbosity of logging can be
adjusted by modifying the configuration file. Table 8 provides
information on the size of the current codebase of OpenStack
Neat. Table 9 summarizes the set of libraries used in the
implementation of OpenStack Neat.

TABLE 9

10

15

20

25

42

minutes from more than a thousand VMs deployed on servers
located in more 500 places around the world. Ten days of
workload traces collected during March and April 2011 have
been randomly chosen, which resulted in the total of 11,746
24-hour long traces.

The workload from Planetl.ab VMs is representative of an
TaaS Cloud environment, such as Amazon EC2, in the sense
that the VMs are created and managed by multiple indepen-
dent users, and the infrastructure provider is not aware of
what particular applications are executing in the VMs. Fur-
thermore, this implies that the overall system workload is
composed of multiple independent heterogeneous applica-
tions, which also corresponds to an IaaS environment. How-
ever, there is difference from a public Cloud provider, such as
Amazon EC2. The difference is that PlanetLab is an infra-
structure mainly used for research purposes; therefore, the
applications are potentially closer to the HPC type, rather
than web services, which are common in public Clouds.

HPC applications are typically CPU-intensive with lower
dynamics in the resource utilization compared with web ser-
vices, whose resource consumption depends on the number of
user requests and may vary over time. HPC workload is easier
to handle for a VM consolidation system due to infrequent
variation in the resource utilization. Therefore, to stress the
system in the experiments, the original workload traces have
been filtered to leave only the ones that exhibit high variabil-
ity. In particular, only the traces that satisty the following two
conditions have been selected: (1) at least 10% of time the
CPU utilization is lower than 20%; and (2) at least 10% of

Libraries used by OpenStack Neat

Library License Description

Distribute Python 2.0 A library for managing Python projects and distributions.
http://bitbucket.org/tarek/distribute

Pyqey FreeBSD A QuickCheck-like unit testing framework for Python,
http://github.com/Xion/pyqey

Mocktest LGPL A Python library for mocking objects and functions.
http://github.com/gfxmonk/mocktest

PyContracts LGPL A Python library for Design by Contract (DbC).
http://github.com/AndreaCensi/contracts

SQLAlchemy MIT A Python SQL toolkit, also used by the core OpenStack services.
http://www.sqlalchemy.org/

Bottle MIT A micro web-framework for Python.
http://bottlepy.org/

Requests ISC A Python HTTP client library.
http://python-requests.org/

libvirt LGPL A visualization toolkit with Python bindings.

http:/libvirt.org/
Python-novaclient Apache 2.0

A Python Nova API client implementation.

http://github.com/openstack/python-novaclient

NumPy BSD A library for scientific computing.
http://numpy.scipy.org/

SciPy BSD A library of extra tools for scientific computing.
http://scipy.org/

Workload Traces

To make experiments reproducible, it is desirable to rely on
a set of input traces to reliably generate the workload, which
would allow the experiments to be repeated as many times as
necessary. It is also desirable to use workload traces collected
from a real system rather than artificially generated, as this
would help to reproduce a realistic scenario. This case study
uses workload trace data provided as a part of the CoMon
project, a monitoring infrastructure of PlanetLab [27]. The
traces include data on the CPU utilization collected every five

60

65

time the CPU utilization is higher than 80%. This signifi-
cantly reduced the number of workload traces resulting in
only 33 out of 11,746 24-hour traces left. The set of selected
traces and filtering script are available online [2].

The resulting number of traces was sufficient for the
experiments, whose scale was limited by the size of the test-
bed described below. If a larger number of traces are required
to satisfy larger scale experiments, one approach is to relax
the conditions of filtering the original set of traces. Another
approach is to randomly sample with replacement from the

US 9,363,190 B2

43

limited set of traces. If another set of suitable workload traces
becomes publicly available, it can be included in the bench-
mark suite as an alternative.
Performance Metrics

For effective performance evaluation and comparison of
algorithms it is essential to define performance metrics that
capture the relevant characteristics of the algorithms. One of
the objectives of dynamic VM consolidation is the minimi-
zation of energy consumption by the physical nodes, which
can be a metric for performance evaluation and comparison.
However, energy consumption is highly dependent on the
particular model and configuration of the underlying hard-
ware, efficiency of power supplies, implementation of the
sleep mode, etc. A metric that abstracts from the mentioned
factors, but is directly proportional and can be used to esti-
mate energy consumption, is the time of a host being idle,
aggregated over the full set of hosts. Using this metric, the
quality of VM consolidation can be represented by the
increase in the aggregated idle time of hosts. However, this
metric depends on the length of the overall evaluation period
and the number of hosts. To eliminate this dependency, a
normalized metric is proposed that is referred to as the Aggre-
gated Idle Time Fraction (AITF) defined as shown in (41).

2 uh “
heH
% ()’

heH

AITF =

where H is a set ofhosts; t,(h) is the idle time of the host h; and
t,(h) is the total activity time of the host h. To quantify the
overall QoS delivered by the system, the Aggregated Over-
load Time Fraction (AOTF) metric is applied, which is based
on (11) and defined as in (42).

> tth,) “2)

heH

AOTF(u) =22
i
hZetb()

where t,(h,u,) is the overload time of the host h calculated
according to the overload threshold u,; and t,(h) is the total
busy (non-idle) time of the host h. The overhead of dynamic
VM consolidation in the system is proposed to be evaluated in
terms of the number of VM migrations initiated as a part of
dynamic consolidation. This metric is referred to as the VM
Migration Count (VMMC). Apart from that, the execution
time of various components of the system including the
execution time of the VM consolidation algorithms is evalu-
ated.
Performance Evaluation Methodology

One of the key points of the proposed performance evalu-
ation methodology is the minimization of manual steps
required to run an experiment through automation. Automa-
tion begins from scripted installation of the OS, OpenStack
services and their dependencies on the testbed’s nodes, as
described in the OpenStack installation guide [5]. The next
step is writing scripts for preparing the system for an experi-
ment, which includes starting up the required services, boot-
ing VM instances, and preparing them for starting the work-
load generation.

While most of the mentioned steps are trivial, workload
generation is complicated by the requirement of synchroniz-
ing the time of starting the workload generation on all the

25

30

40

45

55

44

VMs. Another desirable aspect of workload generation is the
way workload traces are assigned to VMs. Typically, the
desired behavior is assigning a unique workload trace out of
the full set of traces to each VM. Finally, it is desirable to
create and maintain a specific level of CPU utilization for the
whole interval between changes of the CPU utilization level
defined by the workload trace for each VM.

This problem is addressed using a combination of a CPU
load generation program, and a workload distribution web
service and clients deployed on VMs [2]. When a VM boots
from a pre-configured image, it automatically starts a script
that polls the central workload distribution web service to be
assigned a workload trace. Initially, the workload distribution
web service drops requests from clients deployed on VMs to
wait for the moment when all the required VM instances are
booted up and ready for generating workload. When all cli-
ents are ready, the web service receives acommand to start the
workload trace distribution. The web service starts replying
to clients by sending each of them a unique workload trace.
Upon receiving a workload trace, every client initiates the
CPU load generator and passes the received workload trace as
an argument. The CPU load generator reads the provided
workload trace file, and starts generating CPU utilization
levels corresponding to the values specified in the workload
trace file for each time frame.

During an experiment, OpenStack Neat continuously logs
various events into both the database and log files on each
host. After the experiment, the logged data are used by special
result processing scripts to extract the required information
and compute performance metrics discussed above, as well as
the execution time of various system components. This pro-
cess should be repeated for each combination of VM consoli-
dation algorithms under consideration. After the required set
of experiments is completed, other scripts are executed to
perform automated statistical tests and plotting graphs for
comparing the algorithms.

The next section presents an example of application of the
proposed benchmark suite, and in particular applies: (1)
OpenStack Neat as the dynamic VM consolidation frame-
work; (2) the filtered PlanetLab workload traces above; (3)
the performance metrics defined above; and (4) the proposed
evaluation methodology. The full set of scripts used in the
experiments is available online [2].

Performance Evaluation Using a Cloud Data Center

In this section, the embodiments herein evaluate Open-
Stack Neat and several dynamic VM consolidation algorithm
discussed above
Experimental Testbed

The testbed used for performance evaluation of the system
comprises of the following example hardware:

1x Dell Optiplex 745

Intel® Core™ 2 CPU (2 cores, 2 threads) 6600 @ 2.40
GHz

2 GB DDR2-667

Seagate Barracuda 80 GB, 7200 RPM SATA 1I
(ST3808110AS)

Broadcom 5751 NetXtreme Gigabit Controller
4x IBM System x3200 M3

Intel® Xeon® CPU (4 cores, 8 threads), X3460 @ 2.80
GHz

4 GB DDR3-1333

Western Digital 250 GB, 7200 RPM SATA II
(WD2502ABYS-23B7A)

US 9,363,190 B2

45
Dual Gigabit Ethernet (2x Intel 825741 Ethernet Control-
ler)

1x Netgear ProSafe 16-Port 10/100 Desktop Switch FS116

The Dell Optiplex 745 machine was chosen to serve as the
controller host 71 running all the major OpenStack services
and the global manager 87 of OpenStack Neat. The 4 IBM
System x3200 M3 servers were used as compute hosts 72; i.e.
running OpenStack Nova, and local managers 83 and data
collectors 86 of OpenStack Neat. All of the machines formed
a local network connected via the Netgear FS 116 network
switch.

Unfortunately, there was a hardware problem preventing
the system from taking advantage of dynamic VM consoli-
dation to save energy. The problem was that the compute
nodes of the testbed did not support the Suspend to RAM
power state, which is the most suitable for the purpose of
dynamic VM consolidation. This state potentially provides
very low switching latency, on the order of 300 ms, while
reducing the energy consumption to a negligible level [23].

10

15

46

load detection algorithm was changed for each experiment by
going through the following list of algorithms and their
parameters:
1. MAX-ITF algorithm—a base line algorithm, which
never detects host overloads leading to the maximum
ITF for the host, where the algorithm is used.
2. The THR algorithm with the n parameter set to 2, and the
CPU utilization threshold set to 0.8, 0.9, and 1.0.
3. The LRR algorithm with the safety parameter set to 0.9,
1.0,and 1.1.
4. The MHOD algorithm with the OTF parameter set t0 0.2,
0.3, and 0.4.

Each experiment was run three times to handle the vari-
ability caused by random factors, such as the initial VM
placement, workload trace assignment, and component com-
munication latency. All of the system initialization and result
processing scripts, along with the experiment result packages
are available online [2].

Experimental Results and Analysis
TABLE 10

The experimental results (mean values with 95% Cls)

Algorithm

AITF AOTF VM migrations

THR-0.8
THR-0.9

36.9% (35.6, 38.2)
43.0% (42.6,43.5)
49.2% (49.2, 49.4)
37.9% (37.9, 38.0)
40.3% (38.1, 42.4)
47.3% (45.2,49.4)
37.7% (36.8, 38.5)
38.1% (37.7, 38.5)
40.7% (37.0, 44.4)
49.2% (49.1, 49.3)

15.4% (12.5, 18.3)
27.0% (25.7,28.1)
42.2% (33.0, 51.3)
17.8% (12.8,22.7)
23.8% (21.4, 26.1)
34.4% (28.8, 40.0)
16.0% (13.5, 18.5)
17.9% (16.8, 18.9)
21.4% (16.7, 26.0)
40.4% (35.8, 44.9)

167.7 (152.7, 182.6)
75.3 (70.2, 80.5)
113 (9.9,12.8)

195.7 (158.3,233.0)
93.7 (64.6, 122.8)
28.3 (23.2,33.5)

158.3 (153.2, 163.5)

138.0 (81.6, 194.4)

116.3 (26.6, 206.0)
14.0 (7.4, 20.6)

tion by the servers, the AITF metric introduced above was
applied to evaluate the system, which can be seen as a repre-
sentation of potential energy savings.

Experimental Setup and Algorithm Parameters

From the point of view of experimenting with close to real
world conditions, it is interesting to allocate as many VMs on
acompute host as possible. This would create a more dynamic
workload and stress the system. At the same time, it is desir-
able to use full-fledged VM images representing realistic user
requirements. Therefore, the Ubuntu 12.04 Cloud Image [9]
was used in the experiments, which is one of the Ubuntu VM
images available in Amazon EC2.

Since the compute hosts of the testbed contained limited
amount of RAM, to maximize the number of VMs served by
a single host, it was necessary to use a VM instance type with
the minimum amount of RAM sufficient for Ubuntu 12.04.
The minimum required amount of RAM was empirically
determined to be 128 MB. This resulted in the maximum of28
VMs being possible to instantiate on a single compute host.
Therefore, to maximize potential benefits of dynamic VM
consolidation on the testbed containing 4 compute nodes, the
total number of VM instances was set to 28, so that in an ideal
case all of them can be placed on a single compute host, while
the other 3 hosts are kept idle. Out of the 33 filtered Planetlab
workload traces discussed above, 28 traces were randomly
selected; i.e., one unique 24-hour trace for each VM instance.
The full set of selected traces is available online [2].

During the experiments, all the configuration parameters of
OpenStack Neat were set to their default values except for the
configuration of the overload detection algorithm. The over-

40

50

55

60

65

The results of experiments are graphically depicted in
FIGS. 12A through 12C, with reference to FIGS. 1 through
11. The mean values of the obtained AITF and AOTF metrics,
and the number of VM migrations along with their 95%
Confidence Intervals (Cls) are displayed in Table 10. The
results of MAX-ITF show that for the current experiment
setup it is possible to obtain high values of AITF of up to 50%,
while incurring a high AOTF of more than 40%. All the THR,
LRR, and MHOD allow tuning of the AITF values by adjust-
ing the algorithm parameters. For the THR algorithm, the
mean AITF increases from 36.9% to 49.2% with the corre-
sponding decrease in the QoS level from 15.4% to 42.2% by
varying the CPU utilization threshold from 0.8 to 1.0. The
mean number of VM migrations decreases from 167.7 for the
80% threshold to 11.3 for the 100% threshold. The THR
algorithm with the CPU utilization threshold set to 100%
reaches the mean AITF shown by the MAX-ITF algorithm,
which is expected as setting the threshold to 100% effectively
disables host overload detection. Similarly, adjusting the
safety parameter of the LRR algorithm from 1.1 to 0.9 leads
to an increase of the mean AITF from 37.9% to 47.3% with a
growth of the mean AOTF from 17.8% to 34.4% and decrease
of the mean number of VM migrations from 195.7 to 28.3.
THR-1.0 reaches the mean AITF of 49.2% with the mean
AQOTF of 42.2%, while LRR-0.9 reaches a close mean AITF
of 47.3% with the mean AOTF of only 34.4%, which is a
significant decrease compared with the AOTF of THR-1.0.

Varying the OTF parameter of the MHOD algorithm from
0.2 to 0.4 leads to an increase of the mean AITF from 37.7%
to 40.7% with an increase of the mean AOTF from 16.0% to

US 9,363,190 B2

47

21.4%. First, it is desirable to note that the algorithm meets
the specified QoS constraint by keeping the value of the
AOTF metric below the specified OTF parameters. However,
the resulting mean AOTF is significantly lower than the speci-
fied OTF parameters: 17.9% for the 30% OTF, and 21.4% for
the 40% OTF. This can be explained by a combination of two
factors: (1) the MHOD algorithm is parameterized by the
per-host OTF, rather than AOTF, which means that it meets
the OTF constraint for each host independently; (2) due to the
small scale of the experimental testbed, a single underloaded
host used for offloading VMs from overloaded hosts is able to
significantly skew the AITF metric. The AITF metric is
expected to be closer to the specified OTF parameter for
large-scale OpenStack Neat deployments. A comparison of
the results produced by LRR-1.1 and LRR-1.0 with MHOD-
0.2 and MHOD-0.4 reveals that the MHOD algorithm leads to
lower values of the AOTF metric (higher level of QoS) for
approximately equal values of the AITF metric.

Using the obtained AITF and AOTF metrics for each algo-
rithm and data on power consumption by servers, it is possible
to compute estimates of potential energy savings relatively to
a non-power-aware system assuming that hosts are switched
to the sleep mode during every idle period. To obtain a lower
bound on the estimated energy savings, it is assumed that
when dynamic VM consolidation is applied, the CPU utiliza-
tion of each host is 80% when it is active and non-overloaded,
and 100% when it is overloaded. According to the data pro-
vided by Meisner et al. [23], power consumption of a typical
blade server is 450 W in the fully utilized state, 270 W in the
idle state, and 10.4 W in the sleep mode. Using the linear
server power model proposed by Fan et al. [11] and the power
consumption data provided by Meisner et al. [23], it is pos-
sible to calculate power consumption of a server at any utili-
zation level.

To calculate the base energy consumption by a non-power-
aware system, it is assumed that in such a system 80 all the
compute hosts 72 are always active with the load being dis-
tributed across them. Since, the power model applied in this
study is linear, it is does not matter how exactly the load is
distributed across the servers. The estimated energy con-
sumption levels for each overload detection algorithm, along
with the corresponding base energy consumption by a non-
power-aware system, and percentages of the estimated energy
savings are presented in Table 11.

10

15

20

25

30

35

40

48
TABLE 11-continued

Energy consumption estimate;

Energy, Base energy, Energy
Algorithm kWh kWh savings
LRR-1.0 24.96 34.18 26.97%
LRR-0.9 22.60 33.20 31.93%
MHOD-0.2 25.70 34.53 25.59%
MHOD-0.3 25.59 34.48 25.76%
MHOD-0.4 24.72 34.12 27.54%
MAX-ITF 22.07 32.94 33.01%

According to the estimates, MAX-ITF leads to the highest
energy savings over the base energy consumption of approxi-
mately 33% by the cost of substantial performance degrada-
tion (AOTF=40.4%). The THR, LRR, and MHOD algorithms
lead to energy savings from approximately 25% to 32%
depending on the specified parameters. Similarly to the above
comparison of algorithms using the AITF metric, LRR-0.9
produces energy savings close to those of THR-1.0 (31.93%
compared with 32.91%), while significantly reducing the
mean AOTF from 42.2% to 34.4%. The MHOD algorithm
produces approximately equal or higher energy savings than
the LRR algorithm with lower mean AITF values, i.e., higher
levels of QoS, while also providing the advantage of speci-
fying a QoS constraint as a parameter of the algorithm. The
obtained experimental results confirm the hypothesis that
dynamic VM consolidation is able to significantly reduce
energy consumption in an IaaS Cloud with a limited perfor-
mance impact.

Table 12 lists mean values of the execution time along with
95% Cls measured for each overload detection algorithm
during the experiments for some of the system components:
processing underload and overload requests by the global
manager (GM) 87, overload detection algorithms executed by
the local manager (LM) 83, and iterations of the data collector
(DC) 86. Request processing by the global manager 87 takes
on average between 30 and 60 seconds, which is mostly
determined by the time required to migrate VMs. The mean
execution time of the MHOD algorithm is higher than those
of THR and LRR, while still being under half a second result-
ing in a negligible overhead considering that it is executed at
most once in five minutes. The mean execution time of an
iteration of the data collector is similarly under a second,
which is also negligible considering that it is executed only
once in five minutes.

TABLE 12

The execution time of components in seconds (mean values with 95% Cls)

GM underload

GM overload LM overload DC

33.5(26.4,40.5)
344 (27.6,41.1)
41.6 (27.1,56.1)
41.7 (9.6, 73.7)

60.3 (54.0, 66.7)
50.3 (47.8,52.8)
53.7(50.9, 56.6)

0.003 (0.000, 0.006)
0.006 (0.003, 0.008)
0.440 (0.429, 0.452)
0.001 (0.000, 0.001)

0.88 (0.84, 0.92)
0.76 (0.73, 0.80)
0.92 (0.88, 0.96)
1.03 (0.96, 1.10)

Algorithm
THR
LRR
MHOD
MAX-ITF
TABLE 11
Energy consumption estimates
Energy, Base energy, Energy
Algorithm kWh kWh savings
THR-0.8 25.99 34.65 24.99%
THR-0.9 24.01 33.80 28.96%
THR-1.0 22.09 32.93 32.91%
LRR-1.1 25.66 34.50 25.63%

60

65

Scalability Remarks

Scalability and eliminating single points of failure are
desirable benefits of designing a dynamic VM consolidation
system in a distributed way. According to the approach
adopted in the design of OpenStack Neat, the underload/
overload detection and VM selection algorithms are able to
inherently scale with the increased number of compute hosts.
This is due to the fact that they are executed independently on
each compute host 72 and do not rely on information about

US 9,363,190 B2

49

the global state of the system. In regard to the database setup,
there exist distributed database solutions, e.g., the MySQL
Cluster [26].

On the other hand, in the current implementation of Open-
Stack Neat, there assumed to be only one instance of the
global manager 87 deployed on a single controller host 71.
This limits the scalability of VM placement decisions and
creates a single point of failure. However, even with this
limitation the overall scalability of the system is significantly
improved compared with existing completely centralized VM
consolidation solutions. Compared with centralized solu-
tions, the only functionality implemented in OpenStack Neat
by the central controller is the placement of VMs selected for
migration, which constitute only a fraction of the total num-
ber of VMs in the system. To address the problem of a single
point of failure, it is possible to run a second instance of the
global manager 87, which initially does not receive requests
from the local managers 83 and gets automatically activated
when the primary instance of the global manager 87 fails.
However, the problem of scalability is more complex since it
is necessary to have multiple independent global managers 87
concurrently serving requests from local managers 83.

Potentially it is possible to implement replication of the
global manager 87 in line with OpenStack’s approach to
scalability by replication of its services. From the point of
view of communication between the local managers 83 and
global managers 87, replication can be simply implemented
by a load balancer that distributes requests from the local
managers 83 across the set of replicated global managers 87.
A more complex problem is synchronizing the activities of
the replicated global managers 87. It is necessary to avoid
situations when two global managers 87 place VMs on a
single compute host 72 simultaneously, since that would
imply that they use an out-of-date view of the system state.
One potential solution to this problem could be a continuous
exchange of information between global managers 87 during
the process of execution of the VM placement algorithm; i.e.,
ifahostis selected by a global manager 87 fora VM, it should
notify the other global managers 87 to exclude that host from
their sets of available destination hosts.

The embodiments herein proposed a Markov chain model
and control algorithm for the problem of host overload detec-
tion as a part of dynamic VM consolidation. The model allows
a system administrator to explicitly seta QoS goal in terms of
the OTF parameter, which is a workload independent QoS
metric. For a known stationary workload and a given state
configuration, the control policy obtained from the Markov
model optimally solves the host overload detection problem
in the online setting by maximizing the mean inter-migration
time, while meeting the QoS goal.

Using the Multisize Sliding Window workload estimation
approach, the model has been heuristically adapted to handle
unknown non-stationary workloads. In addition, an optimal
offline algorithm for the problem of host overload detection
has been proposed to evaluate the efficiency of the MHOD
algorithm. The conducted experimental study has led to the
following conclusions:

1. For the simulated Planetl.ab workload, 3-state configu-
rations of the MHOD algorithm on average produce approxi-
mately the same results as the ([0,100),100) 2-state configu-
ration of the MHOD algorithm; therefore, the 2-state
configuration is preferred, as it requires simpler computa-
tions.

2. The 2-state configuration of the MHOD algorithm leads
to approximately 11% shorter time until a migration than the
LRR algorithm, the best benchmark algorithm. However, the
MHOD algorithm provides the advantage of explicit specifi-

20

40

45

50

55

50

cation of a QoS goal in terms of the OTF metric. In contrast,
the performance of the LR and LRR algorithms in regard to
the QoS can only be adjusted indirectly by tuning the safety
parameter. Moreover, the spread of the resulting OTF value
produced by the MHOD algorithm is substantially narrower
compared with the LR and LRR algorithms, which means the
MHOD algorithm more precisely meets the QoS goal.

3. The MHOD algorithm substantially outperforms the
OTFT and OTFTM algorithms in the level of SLA violations
resulting in less than 0.5% SLA violations compared to
81.33% of OTFT and OTFTM.

4. The MHOD algorithm on average provides approxi-
mately the same resulting OTF value and approximately 88%
of the time until a VM migration produced by the optimal
offline algorithm (OPT).

5. The MHOD algorithm enables explicit specification of a
desired QoS goal to be delivered by the system through the
OTF parameter, which is successfully met by the resulting
value of the OTF metric.

The introduced model is based on Markov chains requiring
a few fundamental assumptions. It is assumed that the work-
load satisfies the Markov property, which may not be true for
all types of workloads. Careful assessment of the assumptions
discussed above is desirable in an investigation of the appli-
cability of the proposed model to a particular system. How-
ever, the experimental study involving multiple mixed het-
erogeneous real-world workloads has shown that the
algorithm is efficient in handling them. For the simulated
Planetl.ab workload the MHOD algorithm performed within
a 12% difference from the performance of the optimal offline
algorithm, which is highly efficient for an online algorithm.

The MHOD algorithm has been implemented and evalu-
ated as part of a framework for dynamic VM consolidation in
OpenStack Clouds, called OpenStack Neat. The experimen-
tal results and estimates of energy consumption have shown
that OpenStack Neat is able to reduce energy consumption by
the compute nodes of a 4-node testbed by 25% to 33%, while
resulting in a limited application performance impact from
approximately 15% to 40% AOTF. The MHOD algorithm has
led to approximately equal or higher energy savings with
lower mean AOTF values compared with the other evaluated
algorithms, while also allowing the system administrator to
explicitly specify a QoS constraint in terms of the OTF met-
ric.

The performance overhead of the framework is nearly neg-
ligible taking on average only a fraction of'a second to execute
iterations of the components. The request processing of the
global manager takes on average between 30 and 60 seconds
and is mostly determined by the time required to migrate
VMs. The results have shown that dynamic VM consolidation
brings significant energy savings with a limited impact on the
application performance. The proposed framework can be
applied in both further research on dynamic VM consolida-
tion, and real OpenStack Cloud deployments to improve the
utilization of resources and reduce energy consumption.

The embodiments herein have proposed a novel system
and framework for dynamic VM consolidation in OpenStack
Clouds, called OpenStack Neat. The framework follows a
distributed model of dynamic VM consolidation, where the
problem is divided into four sub-problems: host underload
detection, host overload detection, VM selection, and VM
placement. Through its configuration, OpenStack Neat can be
customized to use various implementations of algorithms for
each for the four sub-problems of dynamic VM consolida-
tion. OpenStack Neat is transparent to the base OpenStack
installation by interacting with it using the public APIs, and
not requiring any modifications of OpenStack’s configura-

US 9,363,190 B2

51

tion. The embodiments herein have also proposed a bench-
mark suite comprising OpenStack Neat as the base software
framework, a set of PlanetLab workload traces, performance
metrics, and methodology for evaluating and comparing
dynamic VM consolidation algorithms following the distrib-
uted model.

Through a synchronization model and replication of global
managers 87, a complete distributed and fault-tolerant
dynamic VM consolidation system can be achieved. The data
collector 86 can be extended to collect other types of data in
addition to the CPU utilization that can be used by VM con-
solidation algorithms.

The experimental results and estimates of energy con-
sumption have shown that OpenStack Neat is able to reduce
energy consumption by the compute nodes of a 4-node test-
bed by 25% to 33%, while resulting in a limited application
performance impact from approximately 15% to 40% AOTF.
The MHOD algorithm has led to approximately equal or
higher energy savings with lower mean AOTF values com-
pared with the other evaluated algorithms, while also allow-
ing the system administrator to explicitly specify a QoS con-
straint in terms of the OTF metric. The performance overhead
of the framework is nearly negligible taking on average only
afraction of a second to execute iterations of the components.
The request processing of the global manager 87 takes on
average between 30 and 60 seconds and is mostly determined
by the time required to migrate VMs. The results have shown
that dynamic VM consolidation brings significant energy sav-
ings with a limited impact on the application performance.

FIG. 13, with reference to FIGS. 1 through 12C, is a flow
diagram illustrating a method for improving a utilization of
physical resources and reducing energy consumption in a
cloud data center according to an embodiment herein. The
method comprises providing (1301) a plurality of virtual
machines 8 in the cloud data center 1426 (of FIG. 14); peri-
odically reallocating (1303) resources of the plurality of vir-
tual machines 8 according to a current resource demand of the
plurality of virtual machines 8 in order to minimize a number
ofactive physical servers required to handle a workload of the
physical servers (e.g., hosts 9, 10), wherein the reallocating
comprises: determining when a physical server is considered
to be overloaded so that some of the virtual machines 8 are
migrated from the overloaded physical server to other physi-
cal servers in order to meet a quality of service requirement;
determining when a physical server is considered to be under-
loaded so that the virtual machines 8 of the physical server are
migrated to other physical servers, wherein the physical
server is switched to a lower power mode; selecting particular
virtual machines 8 to migrate from the overloaded physical
server; and allocating the selected virtual machines for migra-
tion to other active or re-activated physical servers. The
method further comprises maximizing (1305) a mean inter-
migration time between virtual machine migrations under the
quality of service requirement based on a Markov chain
model; and using (1307) a multisize sliding window work-
load estimation process for a non-stationary workload to
maximize the mean inter-migration time.

The Markov chain model allows a derivation of a random-
ized control policy that optimally maximizes the mean inter-
migration time between virtual machine migrations under an
explicitly specified quality of service requirement for any
known stationary workload and a given state configuration in
an online setting. The method may further comprise only
maximizing an activity time of the overloaded physical
server; and only minimizing an activity time of an under-
loaded physical server. A workload of a physical server com-
prises a central processing unit utilization created over a

40

45

55

52

period of time by a set of virtual machines allocated to the
physical server, wherein the workload may be stationary. The
non-stationary workload is approximated as a sequence of
stationary workloads that are enabled one after another.

The method may further comprise submitting a virtual
machine provisioning request through a cloud user interface
3; processing the request and instantiating required virtual
machines 8; collecting data on resource utilization of virtual
machines 8 instantiated on a compute host 9, 72; passing the
datato alocal consolidation manager 6, 83 that invokes physi-
cal server overload detection, physical server underload
detection, a virtual machine selection process; passing out-
comes generated by the local consolidation manager 6, 83 to
a global consolidation manager 5, 87; invoking a virtual
machine placement process to determine a new placement of
a virtual machine 8 required to be migrated; initiating virtual
machine migrations as determined by the virtual machine
placement process; migrating the virtual machines 8 as
instructed by the global consolidation manager 5, 87; and
upon completion of the required migrations, the global con-
solidation manager 5, 87 switching the physical servers from
and to a lower power mode, wherein the lower power mode
comprises a sleep mode. The quality of service requirement
may be specified in terms of a workload independent quality
of service metric, and the overload detection occurs using an
offline process.

The techniques provided by the embodiments herein may
be implemented on an integrated circuit chip (not shown).
The chip design is created in a graphical computer program-
ming language, and stored in a computer storage medium
(such as a disk, tape, physical hard drive, or virtual hard drive
such as in a storage access network). If the designer does not
fabricate chips or the photolithographic masks used to fabri-
cate chips, the designer transmits the resulting design by
physical means (e.g., by providing a copy of the storage
medium storing the design) or electronically (e.g., through
the Internet) to such entities, directly or indirectly. The stored
design is then converted into the appropriate format (e.g.,
GDSII) for the fabrication of photolithographic masks, which
typically include multiple copies of the chip design in ques-
tion that are to be formed on a wafer. The photolithographic
masks are utilized to define areas of the wafer (and/or the
layers thereon) to be processed.

The embodiments herein can include both hardware and
software elements. The embodiments that are implemented in
software include but are not limited to, firmware, resident
software, microcode, etc. Furthermore, the embodiments
herein can take the form of a computer program product
accessible from a computer-usable or computer-readable
medium providing program code for use by or in connection
with a computer or any instruction execution system. For the
purposes of this description, a computer-usable or computer
readable medium can be any apparatus that can comprise,
store, communicate, propagate, or transport the program for
use by or in connection with the instruction execution system,
apparatus, or device.

The medium can be an electronic, magnetic, optical, elec-
tromagnetic, infrared, or semiconductor system (or apparatus
ordevice) or a propagation medium. Examples of'a computer-
readable medium include a semiconductor or solid state
memory, magnetic tape, a removable computer diskette, a
random access memory (RAM), aread-only memory (ROM),
arigid magnetic disk and an optical disk. Current examples of
optical disks include compact disk-read only memory (CD-
ROM), compact disk-read/write (CD-R/W) and DVD.

A data processing system suitable for storing and/or
executing program code will include at least one processor

US 9,363,190 B2

53

coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local memory
employed during actual execution of the program code, bulk
storage, and cache memories which provide temporary stor-
age of at least some program code in order to reduce the
number of times code must be retrieved from bulk storage
during execution.

Input/output (I/O) devices (including but not limited to
keyboards, displays, pointing devices, etc.) can be coupled to
the system either directly or through intervening I/O control-
lers. Network adapters may also be coupled to the system to
enable the data processing system to become coupled to other
data processing systems or remote printers or storage devices
through intervening private or public networks. Modems,
cable modem and Ethernet cards are just a few of the currently
available types of network adapters.

A representative hardware environment for practicing the
embodiments herein is depicted in FIG. 14, with reference to
FIGS. 1 through 13. This schematic drawing illustrates a
hardware configuration of an information handling/computer
system 1400 in accordance with the embodiments herein. The
system 1400 comprises at least one processor or central pro-
cessing unit (CPU) 1410. The CPUs 1410 are interconnected
via system bus 1412 to various devices such as a random
access memory (RAM) 1414, read-only memory (ROM)
1416, and an input/output (I/O) adapter 1418. The 1/O adapter
1418 can connect to peripheral devices, such as disk units
1411 and tape drives 1413, or other program storage devices
that are readable by the system 1400. The system 1400 can
read the inventive instructions on the program storage devices
and follow these instructions to execute the methodology of
the embodiments herein. The system 1400 further includes a
user interface adapter 1419 that connects a keyboard 1415,
mouse 1417, speaker 1424, microphone 1422, and/or other
user interface devices such as a touch screen device (not
shown) to the bus 1412 to gather user input. Additionally, a
communication adapter 1420 operatively connects the bus
1412 to a data processing network 1425, which operatively
connects to the cloud data center 1, and a display adapter 1421
connects the bus 1412 to a display device 1423 which may be
embodied as an output device such as a monitor, printer,
receiver, transmitter, or transceiver, for example.

Dynamic consolidation of Virtual Machines (VMs) is an
efficient method for improving the utilization of physical
resources and reducing energy consumption in Cloud data
centers. Determining when it is best to reallocate VMs from
an overloaded host is an aspect of dynamic VM consolidation
that directly influences the resource utilization and QoS deliv-
ered by the system required for meeting the SLAs. The influ-
ence on the QoS is explained by the fact that server overloads
cause resource shortages and performance degradation of
applications. Previous solutions to the problem of host over-
load detection are generally heuristic-based, or rely on statis-
tical analysis of historical data. The limitations of these
approaches are that they lead to sub-optimal results and do not
allow explicit specification of a QoS goal. The embodiments
herein provide a novel approach that for any known stationary
workload and a given state configuration optimally solves the
problem of host overload detection by maximizing the mean
inter-migration time under the specified QoS goal based on a
Markov chain model. The embodiments herein heuristically
adapt the algorithm to handle unknown non-stationary work-
loads using the Multisize Sliding Window workload estima-
tion technique. Through simulations with real-world work-
load traces from more than a thousand PlanetLab VMs, it is
demonstrated that the embodiments herein outperform the

10

15

20

25

30

35

40

45

50

55

60

65

54

best benchmark algorithm and provides approximately 88%
of the performance of the optimal offline algorithm.

The embodiments herein provide a system architecture and
implementation of OpenStack Neat (a computer program
product) acting as a framework for dynamic VM consolida-
tion in OpenStack Clouds. OpenStack Neat can be configured
to use custom VM consolidation algorithms, and transpar-
ently integrates with existing OpenStack deployments with-
out the necessity in modifying their configuration. In addi-
tion, to foster and encourage further research efforts in the
area of dynamic VM consolidation, the embodiments herein
propose a benchmark suite for evaluating and comparing
dynamic VM consolidation algorithms. The proposed bench-
mark suite comprises OpenStack Neat as the base software
(computer program product) framework, a set of real-world
workload traces, performance metrics, and evaluation meth-
odology. As an application of the proposed benchmark suite,
an experimental evaluation of OpenStack Neat and several
dynamic VM consolidation algorithms on a Cloud data center
testbed are conducted, which shows significant benefits of
dynamic VM consolidation resulting in up to 33% energy
savings.

The foregoing description of the specific embodiments will
so fully reveal the general nature of the embodiments herein
that others can, by applying current knowledge, readily
modify and/or adapt for various applications such specific
embodiments without departing from the generic concept,
and, therefore, such adaptations and modifications should and
are intended to be comprehended within the meaning and
range of equivalents of the disclosed embodiments. It is to be
understood that the phraseology or terminology employed
herein is for the purpose of description and not of limitation.
Therefore, while the embodiments herein have been
described in terms of preferred embodiments, those skilled in
the art will recognize that the embodiments herein can be
practiced with modification within the spirit and scope of the
appended claims.

REFERENCES

[1] M. Andreolini, S. Casolari, and M. Colajanni. Models and
framework for supporting runtime decisions in web-based
systems. ACM Transactions on the Web (TWEB), 2(3):17:
1-17:43, 2008.

[2] Anton Beloglazov. Scripts for setting up and analyzing
results of experiments using OpenStack Neat. (accessed on
26 Nov. 2012).

[3] Anton Beloglazov and Rajkumar Buyya. Optimal online
deterministic algorithms and adaptive heuristics for energy
and performance efficient dynamic consolidation of virtual
machines in Cloud data centers. Concurrency and Compu-
tation: Practice and Experience (CCPE), 24(13):1397-
1420, 2012.

[4] Anton Beloglazov, Rajkumar Buyya, Young Choon Lee,
and Albert Zomaya. A taxonomy and survey of energy-
efficient data centers and Cloud computing systems.
Advances in Computers, M. Zelkowitz (ed.), 82:47-111,
2011.

[5] Anton Beloglazov, Sareh Fotuhi Piraghaj, Mohammed
Alrokayan, and Rajkumar Buyya. Deploying OpenStack
on CentOS using the KVM hypervisor and GlusterFS dis-
tributed file system. Technical report, CLOUDS-TR-2012-
3, CLOUDS Laboratory, The University of Melbourne,
Australia, 2012.

[6] L. Benini, A. Bogliolo, G. A Paleologo, and G. De Mich-
eli. Policy optimization for dynamic power management.

US 9,363,190 B2

5§
IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 18(6):813-833, 1999.

[7] N. Bobroff, A. Kochut, and K. Beaty. Dynamic placement
of virtual machines for managing SLLA violations. In Pro-
ceedings of the 10th IFIP/IEEE International Symposium
on Integrated Network Management (IM), pages 119-128,
2007.

[8] G. Bolch. Queueing networks and Markov chains: mod-
eling and performance evaluation with computer science
applications. Wiley-Blackwell, 2006.

[9] Canonical Ltd. Ubuntu 12.04 (Precise Pangolin) Cloud
images. (accessed on 22 Nov. 2012).

[10] E.Y Chung, L. Benini, A. Bogliolo, Y. H Lu, and G. De
Micheli. Dynamic power management for nonstationary
service requests. [EEE Transactions on Computers,
51(11):1345-1361, 2002.

[11] X. Fan, W. D. Weber, and L.. A. Barroso. Power provi-
sioning for a warehouse-sized computer. In Proceedings of
the 34th Annual International Symposium on Computer
Architecture (ISCA), pages 13-23, 2007.

[12] E. Feller, L. Rilling, and C. Morin. Snooze: A scalable
and autonomic virtual machine management framework
for private Clouds. In Proceedings of the 12th IEEE/ACM
International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), pages 482-489, 2012.

[13] E. Feller, C. Rohr, D. Margery, and C. Morin. Energy
management in [aaS Clouds: A holistic approach. In Pro-
ceedings of the Sth IEEE International Conference on
Cloud Computing (IEEE CLOUD), pages 204-212, 2012.

[14] Gartner, Inc. Gartner estimates ICT industry accounts for
2 percent of global CO2 emissions, 2007. (accessed on 17
Jan. 2013).

[15] Daniel Gmach, Jerry Rolia, Ludmila Cherkasova, Guil-
laume Belrose, Tom Turicchi, and Alfons Kemper. An inte-
grated approach to resource pool management: Policies,
efficiency and quality metrics. In Proceedings of the 38th
IEEE International Conference on Dependable Systems
and Networks (DSN), pages 326-335, 2008.

[16] Daniel Gmach, Jerry Rolia, Ludmila Cherkasova, and
Alfons Kemper. Resource pool management: Reactive ver-
sus proactive or let’s be friends. Computer Networks,
53(17):2905-2922, 2009.

[17] Brian Guenter, Navendu Jain, and Charles Williams.
Managing cost, performance, and reliability tradeoffs for
energy-aware server provisioning. In Proceedings of the
30st Annual IEEE International Conference on Computer
Communications (INFOCOM), pages 1332-1340, 2011.

[18] F. Hermenier, X. Lorca, J. M. Menaud, G. Muller, and J.
Lawall. Entropy: A consolidation manager for clusters. In
Proceedings of the ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE),
pages 41-50, 2009.

[19] Gueyoung Jung, Matti A. Hiltunen, Kaustubh R. Joshi,
Richard D. Schlichting, and Calton Pu. Mistral: Dynami-
cally managing power, performance, and adaptation costin
Cloud infrastructures. In Proceedings of the 30th Interna-
tional Conference on Distributed Computing Systems
(ICDCS), pages 62-73, 2010.

[20] Jonathan G. Koomey. Growth in data center electricity
use 2005 to 2010. Technical report, Analytics Press, 2011.

[21] S. Kumar, V. Talwar, V. Kumar, P. Ranganathan, and K.
Schwan. vManage: Loosely coupled platform and virtual-
ization management in data centers. In Proceedings of the
6th International Conference on Autonomic Computing

(ICAC), pages 127-136, 2009.

10

15

20

25

30

35

40

45

50

55

60

56

[22]S. O. D Luiz, A. Perkusich, and A. M. N. Lima. Multisize
sliding window in workload estimation for dynamic power
management. /[EEE Transactions on Computers, 59(12):
1625-1639, 2010.

[23] D. Meisner, B. T. Gold, and T. F. Wenisch. PowerNap:
eliminating server idle power. ACM SIGPLAN Notices,
44(3):205-216, 2009.

[24] K. Mills, J. Filliben, and C. Dabrowski. Comparing
VM-placement algorithms for on-demand Clouds. In Pro-
ceedings of the 3rd IEEE International Conference on
Cloud Computing Technology and Science (CloudCom),
pages 91-98, 2011.

[25] R. Nathuji and K. Schwan. VirtualPower: Coordinated
power management in virtualized enterprise systems. ACM
SIGOPS Operating Systems Review, 41(6):265-278, 2007.

[26] Oracle Corporation. MySQL cluster CGE. (accessed on
23 Nov. 2012).

[27] K. S Park and V. S Pai. CoMon: a mostly-scalable moni-
toring system for PlanetlLab. ACM SIGOPS Operating Sys-
tems Review, 40(1):65-74, 2006.

[28] Rackspace, US Inc. Rackspace hosting reports second
quarter 2012 results, 2012. (accessed on 6 Nov. 2012).
[29] B. Speitkamp and M. Bichler. A mathematical program-
ming approach for server consolidation problems in virtu-
alized data centers. [EEE Transactions on Services Com-

puting (1SC), 3(4):266-278, 2010.

[30] S. Srikantaiah, A. Kansal, and F. Zhao. Energy aware
consolidation for Cloud computing. In Proceedings of the
2008 USENIX Workshop on Power Aware Computing and
Systems (HotPower), pages 1-5, 2008.

[31] A. Verma, G. Dasgupta, T. K Nayak, P. De, and R.
Kothari. Server workload analysis for power minimization
using consolidation. In Proceedings of the 2009 USENIX
Annual Technical Conference, pages 28-28, 2009.

[32] Akshat Verma, Puneet Ahuja, and Anindya Neogi.
pMapper: power and migration cost aware application
placement in virtualized systems. In Proceedings of the 9th
ACM/IFIP/USENIX International Conference on Middle-
ware, pages 243-264, 2008.

[33] VMware Inc. VMware distributed power management
concepts and use. Technical report, 2010.

[34] Xiaorui Wang and Yefu Wang. Coordinating power con-
trol and performance management for virtualized server
clusters. IEEE Transactions on Parallel and Distributed
Systems (TPDS), 22(2):245-259, 2011.

[35] Chuliang Weng, Minglu Li, Zhigang Wang, and Xinda
Lu. Automatic performance tuning for the virtualized clus-
ter system. In Proceedings of the 29th International Con-
ference on Distributed Computing Systems (ICDCS),
pages 183-190, 2009.

[36] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif.
Black-box and gray-box strategies for virtual machine
migration. In Proceedings of the 4th USENIX Symposium
on Networked Systems Design & Implementation, pages
229-242,2007.

[37] M. Yue. A simple proof of the inequality FFD (L.)<11/9
OPT (L)+1, for all 1 for the FFD bin-packing algorithm.
Acta Mathematicae Applicatae Sinica (English Series),
7(4):321-331, 1991.

[38] Q. Zheng and B. Veeravalli. Utilization-based pricing for
power management and profit optimization in data centers.
Journal of Parallel and Distributed Computing (JPDC),
72(1):27-34, 2011.

[39] W. Zheng, R. Bianchini, G. J. Janakiraman, J. R. Santos,
and Y. Turner. JustRunit: Experiment-based management
of virtualized data centers. In Proceedings of the 2009
USENIX Annual Technical Conference, pages 18-33, 2009.

US 9,363,190 B2

57
[40] X. Zhu, D. Young, B. J Watson, Z. Wang, J. Rolia, S.
Singhal, B. McKee, C. Hyser, et al. 1000 Islands: Inte-
grated capacity and workload management for the next
generation data center. In Proceedings of the Sth Interna-
tional Conference on Autonomic Computing (ICAC), pages
172-181, 2008.

What is claimed is:

1. A method of improving a utilization of physical
resources and reducing energy consumption in a cloud data
center, said method comprising:

providing a plurality of virtual machines in said cloud data

center;

periodically reallocating, by a computing device, resources

of said plurality of virtual machines according to a cur-

rent resource demand of said plurality of virtual

machines in order to minimize a number of active physi-

cal servers required to handle a workload of the physical

servers, wherein said reallocating comprises:

determining, by said computing device, when a physical
server is considered to be overloaded so that some of
the virtual machines are migrated from the over-
loaded physical server to other physical servers in
order to meet a quality of service requirement;

determining, by said computing device, when a physical
server is considered to be underloaded so that the
virtual machines of said physical server are migrated
to other physical servers, wherein said physical server
is switched to a lower power mode;

selecting, by said computing device, particular virtual
machines to migrate from said overloaded physical
server; and

allocating, by said computing device, the selected vir-
tual machines for migration to other active or re-
activated physical servers;

determining a Markov chain model, wherein said Markov

chain comprises a plurality of states of said cloud data
center, and wherein each of said plurality of states cor-
respond to a range of utilization of said physical
resources of said cloud data center;

maximizing, by said computing device, a mean inter-mi-

gration time between virtual machine migrations under
said quality of service requirement based on said
Markov chain model, wherein said periodically reallo-
cating resources is such that said mean inter-migration
time between virtual machine migrations is maximized;
and

using, by said computing device for a non-stationary work-

load, a multisize sliding window workload estimation
process to maximize said mean inter-migration time.

2. The method of claim 1, wherein said Markov chain
model allows a derivation of a randomized control policy that
optimally maximizes said mean inter-migration time between
virtual machine migrations under an explicitly specified qual-
ity of service requirement for any known stationary workload
and a given state configuration in an online setting.

3. The method of claim 1, further comprising:

maximizing, by said computing device, an activity time of

said overloaded physical server; and

minimizing, by said computing device, an activity time of

an underloaded physical server.

4. The method of claim 1, wherein a workload of a physical
server comprises a central processing unit utilization created
over a period of time by a set of virtual machines allocated to
said physical server, and wherein said workload is non-sta-
tionary.

20

25

30

35

40

45

60

58

5. The method of claim 4, wherein said non-stationary
workload is approximated as a sequence of stationary work-
loads that are enabled one after another.

6. The method of claim 1, further comprising:

submitting a virtual machine provisioning request through

a cloud user interface;

processing said request and instantiating required virtual

machines;

collecting data on resource utilization of virtual machines

instantiated on a compute host;

passing said data to a local consolidation manager that

invokes physical server overload detection, physical
server underload detection, a virtual machine selection
process;

passing outcomes generated by said local consolidation

manager to a global consolidation manager;

invoking a virtual machine placement process to determine

a new placement of a virtual machine required to be
migrated;

initiating virtual machine migrations as determined by said

virtual machine placement process;

migrating said virtual machines as instructed by said global

consolidation manager; and

upon completion of the required migrations, said global

consolidation manager switching said physical servers
from and to a lower power mode, wherein said lower
power mode comprises a sleep mode.

7. The method of claim 1, wherein overload detection
occurs using an offline process, and wherein in said oftline
process, said plurality of states at any point in time is known
by said computing device.

8. The method of claim 1, wherein said maximizing com-
prises determining a plurality of probabilities of transition
from a plurality of non-absorbing states of said plurality of
states to an absorbing state, wherein a probability of transition
from said absorbing state to any of said non-absorbing states
is zero.

9. A non-transitory program storage device readable by
computer, tangibly embodying a program of instructions
executable by said computer to perform a method of improv-
ing a utilization of physical resources and reducing energy
consumption in a cloud data center, said method comprising:

providing a plurality of virtual machines in said cloud data

center;

periodically reallocating, by a computing device, resources

of said plurality of virtual machines according to a cur-

rent resource demand of said plurality of virtual

machines in order to minimize a number of active physi-

cal servers required to handle a workload of the physical

servers, wherein said reallocating comprises:

determining, by said computing device, when a physical
server is considered to be overloaded so that some of
the virtual machines are migrated from the over-
loaded physical server to other physical servers in
order to meet a quality of service requirement;

determining, by said computing device, when a physical
server is considered to be underloaded so that the
virtual machines of said physical server are migrated
to other physical servers, wherein said physical server
is switched to a lower power mode;

selecting, by said computing device, particular virtual
machines to migrate from said overloaded physical
server; and

allocating, by said computing device, the selected vir-
tual machines for migration to other active or re-
activated physical servers;

US 9,363,190 B2

59

determining a Markov chain model, wherein said Markov
chain comprises a plurality of states of said cloud data
center, and wherein each of said plurality of states cor-
respond to a range of utilization of said physical
resources of said cloud data center;

maximizing, by said computing device, a mean inter-mi-

gration time between virtual machine migrations under
said quality of service requirement based on said
Markov chain model, wherein said periodically reallo-
cating resources is such that said mean inter-migration
time between virtual machine migrations is maximized;
and

using, by said computing device for a non-stationary work-

load, a multisize sliding window workload estimation
process to maximize said mean inter-migration time.

10. The program storage device of claim 9, wherein said
maximizing comprises determining a plurality of probabili-
ties of transition from a plurality of non-absorbing states of
said plurality of states to an absorbing state, wherein a prob-
ability of transition from said absorbing state to any of said
non-absorbing states is zero.

11. The program storage device of claim 9, wherein said
Markov chain model allows a derivation of a randomized
control policy that optimally maximizes said mean inter-
migration time between virtual machine migrations under an
explicitly specified quality of service requirement for any
known stationary workload and a given state configuration in
an online setting.

12. The program storage device of claim 9, further com-
prising:

maximizing, by said computing device, an activity time of

said overloaded physical server; and

minimizing, by said computing device, an activity time of

an underloaded physical server.

13. The program storage device of claim 9, wherein a
workload of a physical server comprises a central processing
unit utilization created over a period of time by a set of virtual
machines allocated to said physical server, and wherein said
workload is non-stationary.

14. The program storage device of claim 13, wherein said
non-stationary workload is approximated as a sequence of
stationary workloads that are enabled one after another.

15. The program storage device of claim 9, further com-
prising:

submitting a virtual machine provisioning request through

a cloud user interface;

processing said request and instantiating required virtual

machines;

collecting data on resource utilization of virtual machines

instantiated on a compute host;

passing said data to a local consolidation manager that

invokes physical server overload detection, physical
server underload detection, a virtual machine selection
process;

passing outcomes generated by said local consolidation

manager to a global consolidation manager;

invoking a virtual machine placement process to determine

a new placement of a virtual machine required to be
migrated;

initiating virtual machine migrations as determined by said

virtual machine placement process;

migrating said virtual machines as instructed by said global

consolidation manager; and

upon completion of the required migrations, said global

consolidation manager switching said physical servers

10

15

20

25

30

35

40

50

55

60

60

from and to a lower power mode, wherein said lower
power mode comprises a sleep mode.
16. The program storage device of claim 9, wherein over-
load detection occurs using an offline process, wherein in said
offline process, said plurality of states at any point in time is
known by said computing device.
17. A system for improving a utilization of physical
resources and reducing energy consumption in a cloud data
center, said system comprising:
a plurality of virtual machines in said cloud data center;
a computing device for periodically reallocating resources
of said plurality of virtual machines according to a cur-
rent resource demand of said plurality of virtual
machines in order to minimize a number of active physi-
cal servers required to handle a workload of the physical
servers, wherein said reallocating comprises:
determining when a physical server is considered to be
overloaded so that some of the virtual machines are
migrated from the overloaded physical server to other
physical servers in order to meet a quality of service
requirement;

determining when a physical server is considered to be
underloaded so that the virtual machines of said
physical server are migrated to other physical servers,
wherein said physical server is switched to a lower
power mode;

selecting particular virtual machines to migrate from
said overloaded physical server; and

allocating the selected virtual machines for migration to
other active or re-activated physical servers;

determining a Markov chain model, wherein said
Markov chain comprises a plurality of states of said
cloud data center, and wherein each of said plurality
of states correspond to a range of utilization of said
physical resources of said cloud data center;

maximizing a mean inter-migration time between vir-
tual machine migrations under said quality of service
requirement based on said Markov chain model,
wherein said periodically reallocating resources is
such that said mean inter-migration time between vir-
tual machine migrations is maximized; and

using, for a non-stationary workload, a multisize sliding
window workload estimation process to maximize
said mean inter-migration time.

18. The system of claim 17, wherein said Markov chain
model allows a derivation of a randomized control policy that
optimally maximizes said mean inter-migration time between
virtual machine migrations under an explicitly specified qual-
ity of service requirement for any known stationary workload
and a given state configuration in an online setting.

19. The system of claim 17, wherein a workload of a
physical server comprises a central processing unit utilization
created over a period of time by a set of virtual machines
allocated to said physical server, wherein said workload is
non-stationary, and wherein said non-stationary workload is
approximated as a sequence of stationary workloads that are
enabled one after another.

20. The system of claim 17, wherein said quality of service
requirement is specified in terms of a workload independent
quality of service metric, and wherein overload detection
occurs using an offline process, wherein in said offline pro-
cess, said plurality of states at any point in time is known by
said computing device.

#* #* #* #* #*

